

INFORME FINAL TÉCNICO Y DE DIFUSIÓN

"Zonificación Por Rendimiento y Calidad del Trigo Candeal entre la RM y La VIII Región"

Noviembre 2008

ANTECEDENTES GENERALES

- Código FIA-ES-L-2005-1-A-003
- Nombre del Proyecto ZONIFICACION POR RENDIMIENTO Y CALIDAD DE TRIGO CANDEAL ENTRE LA RM Y LA VIII REGION
- Región o Regiones de Ejecución (Originalmente planteadas en la propuesta y las efectivas)
 METROPOLITANA A OCTAVA (planteadas)
- Agente Ejecutor
 FAC. CIENCIAS AGRONÓMICAS. UNIVERSIDAD DE CHILE
- Agente(s) Asociado(s) (Originalmente planteados en la propuesta y los efectivos)
 INSTITUTO DE INVESTIGACIONES AGROPECUARIAS.
 CENTRO REGIONAL DE INVESTIGACIÓN QUILAMAPU.
 (planteado y efectivo).
- Coordinador del Proyecto LUIS MORALES SALINAS
- Costo Total (Programado y Real) \$56.096.701 (programado) \$56.071.815 (real)
- Aporte del FIA (en pesos; porcentaje del costo total) (Programado y Real)
 \$38.724.655 (69.03%) (programado)
 \$38.699.769 (68.98%) (real)
- Período de Ejecución (Programado y Real)

01/05/06 a 31/04/08 24 meses (programado) 01/05/06 a 24/11/08 31 meses (real)

I. RESUMEN EJECUTIVO

En este informe final se han desarrollado las etapas programadas para dar cumplimiento a los objetivos planteados. El estudio se dividió en 3 líneas de trabaio:

- 1. Modelo de simulación de crecimiento y fenología de trigo candeal
- 2. Zonificación de cultivos
 - · Cartografía de suelo
 - · Cartografía de clima
 - · Zonas agroecológicas
- 3. Información para validación.

Para mejorar el modelo de simulación de crecimiento y fenología de trigo candeal se determinó coeficientes genéticos involucrados en el desarrollo (acumulación de días grado), intercepción de la radiación (IAF y K), conversión a materia seca (EUA) y partición de asimilados a grano (IC) de las variedades de trigo candeal nacional.

Para la realización de la zonificación se generó una cartografía digital de suelo 1:250.000 y una cartografía topoclimatica 1:90.000 desde la V a la VIII Región. A partir de esta información se generaron varios distritos agrotopoclimaticos por cada Región mediante agrupación k-medias.

El modelo de trigo candeal permitió zonificar la región de estudio por rendimiento y contenido de proteína bajo condiciones de riego y secano, dando valores dentro de los esperables, en la misma escala geográfica que los agrotopoclimas.

La información obtenida de bases de datos de cosechas registradas por empresas privadas a partir de un análisis espacial multivariado identificó comunas con alta calidad, sin embargo esta información fue tomada en un amplio espectro de manejos, asociados a distintos tipos de agricultores. Por otra parte se obtuvo información de rendimiento y calidad del trigo candeal con distintos manejos de nitrógeno y medio ambientes. Toda esta información permitió mejorar la precisión y sensibilidad del modelo en toda el área de trabajo.

Finalmente, los resultados de este estudio han sido difundidos a través de Congresos, Seminarios y página web. La Transferencia será con cartillas divulgativas que se realizarán dentro del marco del Programa de Desarrollo Trigo Candeal.

II. INFORME TÉCNICO (TEXTO PRINCIPAL)

1. Objetivos del Proyecto:

Objetivos Generales

- Confeccionar una zonificación agroecológica (ZA) a escala 1: 90.000 con la superposición de mapas de climas y de suelo entre las Regiones Metropolitana y VIII.
- Generar una herramienta computacional que permita predecir el rendimiento y el contenido de proteína en el grano considerando un conjunto de variables agronómicas como rotación de cultivos, manejo de residuos de cosecha del cultivo anterior, riego, fecha de siembra y modalidad de fertilización nitrogenada (dosis, parcialización).
- 3. Establecer normas de fertilización que incluyan: i) dosis de nitrógeno, ii) momento de aplicación.

Objetivos Específicos

- 1. Recopilar y sistematizar información de series de suelos entre la RM y VIII Región, a partir de ortofotos a escala 1:20.000.
- Recopilar y sistematizar información meteorológica y climatológica a partir de fuentes públicas, como Dirección Meteorológica de Chile(DMC), Dirección General de Aguas(DMC) y CIREN.
- 3. Construir la cartografía climatológica raster a escala 1:90.000 para las variables térmicas, hídricas y radiativas.
- Zonificar el área de estudio en regiones agroecológicas, mediante análisis multicriterio y multivariante.
- 5. Recopilar y sistematizar información de ensayos de trigo candeal en el área de estudio a partir de fuentes públicas y privadas.
- 6. Realizar ensayos para medir la productividad y calidad en trigo candeal en el área de estudio.
- 7. Elaborar, calibrar y validar un modelo de productividad y calidad de trigo candeal.
- Zonificar el potencial productivo y de calidad para trigo candeal a partir un modelo de simulación.
- 9. Realizar difusión y Transferencia de los resultados.

2. Metodología del Proyecto:

La metodología utilizada se describe por cada objetivo especifico. Se presentan en capítulos separados juntos con los resultados.

- Principales problemas metodológicos enfrentados.
 - Tratamiento de muestras vegetales correspondiente a la evaluación de biomasa en la cual se separaba manualmente de cada tratamiento una superficie de 0.0875 m² cada planta en hoja, tallo y espiga. Durante 6 veces en cada temporada en Santiago y Chillan. Fue un trabajo lento y caro, no considerado.
 - Medición de contenido de agua en el suelo por método gravimetrico en el cual había que separar cuidadosamente las piedras.
- Adaptaciones o modificaciones introducidas durante la ejecución del proyecto, y razones que explican las discrepancias con la metodología originalmente propuesta.
 - Contratación de palomero: dos veces en cada temporada, a la siembra y previo a la cosecha, jornada completa. Provocó déficit en item de recursos humanos.
 - Contratación de personal temporal para tratamiento de muestras vegetales y mediciones de humedad.

3. Actividades del Proyecto:

La carta Gantt final del proyecto se muestra a continuación.

CARTA GANTT MENSUAL DEL ESTUDIO

Objetivo Actividad		Descripción	And the state of t
	- 0 0 = 0	Recopliaction de dators de suello desde estudios existentes. Construcción de tura base de datos numérica de datos de suello. Construcción de tura base de datos numérica de datos de suello. Construcción de información cartográfica, en page à glagita, de suelo desde estudios existentes. Digusticación de la información d'antográfica en page à formato digital. Creación de las Base de Datos de Suelos en un sistema de información geográfico (Actóriew).	
	0 ~ 0 0	Recopilación de datos de estadisticas climatológicas desde estudios acintentes. Procesamiento de estadistica climatica y generación de base de datos numérica de clima. Recopilación de información de datos de atitud y curvas de nivel del área de estudio. Generación de un modelo digital de elevación.	
	2 1 2	Cuantificación de retaciones topoclimáticas para las variables climatológicas mediante estadística multivariante. Genéricción de la cartografía digitat de las váriables climatológicas. Integración de la cartografía digital climática en un sistema de información geográfico (ArcView).	
	G 4 75	Análisis multivantante de los datos de clima y de suelo para encontrar distritos edafocimáticos. Análisis multipotento para encontrar distritos de producción y caldad optimas a partir de las canderisticias de la vantedad.	
	- 4 4 4 6 6	Recopilar datos de INIA de rendimiento, calidar, metacorlogia y manejo temporada 2004-2005 Recopilar datos de INIA de rendimiento, metacorlogia y manejo temporada 2005-2006 Realizar antilais de proteina a los tilgos INIA de la temporada 2005-2006 Construcción de base de datos de actividades 5-1 y 5-2. Redacción de later a MMM y PLS. Redacción de Informe.	
		Properación de terreno para ensayos. Toma de Muestras de suelo para su análisis químico. Siembra. Medición de establecimiento Medición contenido proteín a málisis. Medición contenido proteín a en grano	

Recognised in bibogaines Modelina Subruthin de ballance Morizo Subruthin de ballance de N Subruthin de crecimiento	Subrutna de dinamica del N en la planta: Recopliación de datos para validación Toma de datos en terreno	Calibración de subnifinas Validación	Zonificación el potencial productivo y calidad Integración de la zonificación en un SIG	Confección de cartillas divulgativas Planticación y organización de reuniones técnicas Reunionas técnicas	Análisis y confección del informes parciales y final.

- El principal retraso asociado a la modificación de la Carta Gantt fue el retraso en resultados de análisis de calidad producido por la rotura del equipo de análisis en INIA.

4. Resultados del Proyecto:

Los resultados del proyecto se presentan por cada objetivo y en capítulos separados.

El Objetivo 8 "Zonificar el potencial productivo y de calidad para trigo candeal a partir de un modelo de simulación" sintetiza el trabajo de los objetivos anteriores.

5. Fichas Técnicas y Análisis Económico:

 No aplicable. Sin embargo en el objetivo 8 "Zonificar el potencial productivo y de calidad para trigo candeal a partir de un modelo de simulación" se presenta un índice económico.

6. Impactos y Logros del Proyecto:

 Descripción y cuantificación de los impactos obtenidos, y estimación de lograr otros en el futuro, comparación con los esperados, y razones que explican las discrepancias.

No aplicable al estudio. Solo se consideraron los impactos científicos, descritos más adelante.

 Indicadores de impactos y logros a detallar dependiendo de los objetivos y naturaleza del proyecto:

Impactos Productivos, Económicos y Comerciales

Logro	Al inicio del Proyecto	Al final del proyecto	Diferencial
Formación de empresa o unidades de negocio			
Producción (por producto)			THE RESERVE
Costos de producción			

Ventas y/o Ingresos	
Nacional	
Internacional	
Convenios comerciales	

Impactos Sociales

Logro	Al inicio del Proyecto	Al final del proyecto	Diferencial
Nivel de empleo anual			
Nuevos empleos generados			
Productores o unidades de negocio replicadas			

Impactos Tecnológicos

Logro	KEEP PARTY	Numero		Detalle
	Nuevo en mercado	Nuevo en la empresa	Mejorado	
Producto				
Proceso	The State of the S		ENCOUNTED TO	
Servicio				

Propiedad Intelectual	Número	Detalle
Patentes		
Solicitudes de patente		
Intención de patentar		
Secreto industrial		THE STREET STREET, STR
Resultado no patentable		
Resultado interés público		

Logro	Número	Detalle
Convenio o alianza tecnológica		
Generación nuevos proyectos	FIA- PDT- 2007-007	Programa de desarrollo Tecnológico: Desarrollo de Trigo Candeal de Alta Calidad. Materia ivestigada: Rendimiento y calidad de trigo candeal. Objetivos: Fortalecer e incrementar la calidad, homogeneidad y competitividad del trigo candeal chileno producido en la zona comprendida entre las regiones. (2007-2010)

Impactos Científicos

Logro	Número	Detalle (Citas, título, decripción)
Publicaciones		
(Por Ranking)		

Eventos de divulgación científica

Silva, P., Martínez, E., Ortiz, M., Fuentes, J.A., Jobet, C., Matus, I., Ramírez, I., Morales, L., Castellaro, G. y Acevedo, E. 2006. Calidad de trigo harinero y candeal entre la IV y VI región de Chile. 57^{vo} Congreso Agronómico. 17-20 de Oct. Santiago, Chile.

Morales, L., Canessa, F., Silva, P., Acevedo, E. y Castellaro, G.2006. Zonificación edafoclimática para las regiones de Valparaíso y Metropolitana. 57^{vo} Congreso Agronómico. 17-20 de Oct. Santiago, Chile.

Morales, S., Canessa, F., Silva, P., Acevedo, E., Castellano, G., Mattar, C. y Urbina, L. 2007. Zonificación agrotopoclimática para la Región del Libertador Bernardo O'Higgins. V Jornadas Chilenas de Física y Química Ambiental. 2-4 de Mayo. Valparaíso.

Morales, L., Canessa F., Silva, P., Castellano, G. y Acevedo, E. 2007. Zonificacion agrotopoclimatica de la region del Bio-Bio. 58^{vo} Congreso Agronómico. 11-14 de Sept. Arica, Chile.

Silva, P., Matus, I., Peralta, R., Castellaro, G., Morales, L. y Acevedo, E. 2007. Fertilización nitrogenada, rendimiento y calidad de trigo candeal. 58^{vo} Congreso Agronómico. 11-14 de Sept. Arica, Chile.

Silva, P., Matus I., Peralta, R., Parra, G., Castellaro, G., Morales, L. y Acevedo, E. 2008. Interacción del rendimiento y calidad de trigo candeal con el medio ambiente. 59^{vo} Congreso Agronómico. 7-10 de Oct. La Serena, Chile.

Román, L.F., Castellaro G., Silva, P., Morales, L., Matus. I.y Acevedo, E. 2008. Determinación de coeficientes genéticos en trigo candeal (*Triticum turgidum L.* ssp. durum) variedades Llareta-inia y Corcolén-inia en condiciones óptimas. 59^{vo} Congreso Agronómico. 7-10 de Oct. La Serena, Chile.

Morales, L., Castellano, G. Silva, P. y Acevedo, E. 2008. Zonificación agroclimatica entre las regiones de Valparaíso y Bio-Bio. 59^{vo} Congreso Agronómico. 7-10 de Oct. La Serena, Chile.

Congresos internacionales

Acevedo, E., Silva, P., Kolopp, J y Matus, I. 2008. Based Durum Wheat Zoning in the Chilean Mediterranean Environments. INTERNATIONAL DURUM WHEAT SYMPOSIUM. 30 de junio y 3 de julio. Bologna, Italia.

Integración a redes de investigación	Desarrollo de una herramienta para facilitar la aplicación de buenas practicas agricolas (bpas) en trigo duro/candeal de calidad. CSIC 07/07-08

Impactos en Formación

Logro	Numero	Detalle (Título, grado, lugar, instituición)
Tesis pregrado	2	Giorgio Sanguinetti. Determinación de parámetros ecofisiológicos de trigo candeal (tritricum turgidum spp. durum) variedades corcolén inia y llareta inia bajo condición de stress hídrico. Tesis para optar al título de Ingeniero Agrónomo. Santiago. Universidad de Valparaíso-Universidad de Chile.
		Gloria Parra. Fertilización nitrogenada en trigo candeal var. corcolen - inia bajo condiciones de riego y secano en la región Metropolitana. Tesis para optar al título de Ingeniero Agrónomo. Santiago. Universidad Mayor-Universidad de Chile.
Tesis postgrado	1	Luis Felipe Román. DETERMINACIÓN DE COEFICIENTES GENÈTICOS EN TRIGO CANDEAL (<i>Triticum turgidum L.</i> ssp. durum) VARIEDADES LLARETA Y CORCOLÉN Tesis para optar al grado de Magister en Ciencias Agropecuarias. Santiago. Universidad de Chile.
Pasantías	1	Juliette Kolopp alumna de agronomía de la Ecole Nationale Supérieure Agronomique de Montpellier Francia.
Cursos de capacitación		

7. Problemas Enfrentados Durante el Proyecto:

- Legales
- Técnicos
- Administrativos- Entrada de Universidad de Chile al sistema impuesto de Chilecompras
- Gestión Palomero: dos veces en la temporada, a la siembra y previo a la cosecha Movilización, viáticos y combustible: El alza de los combustibles Aumento de costo en insumos, especialmente en fertilizantes. Problema equipo INIA
- Medidas tomadas para enfrentar cada uno de ellos.

8. Otros Aspectos de Interés

9. Conclusiones y Recomendaciones:

Las conclusiones a cerca de los resultados del proyecto se presentan por cada objetivo y en capítulos separados.

INFORME DE DIFUSIÓN

Congresos nacionales

Silva, P., Martínez, E., Ortiz, M., Fuentes, J.A., Jobet, C., Matus, I., Ramírez, I., Morales, L., Castellaro, G. y Acevedo, E. 2006. Calidad de trigo harinero y candeal entre la IV y VI región de Chile. 57^{vo} Congreso Agronómico. 17-20 de Oct. Santiago, Chile.

Morales, L., Canessa, F., Silva, P., Acevedo, E. y Castellaro, G.2006. Zonificación edafoclimática para las regiones de Valparaíso y Metropolitana. 57^{vo} Congreso Agronómico. 17-20 de Oct. Santiago, Chile.

Morales, S., Canessa, F., Silva, P., Acevedo, E., Castellano, G., Mattar, C. y Urbina, L. 2007. Zonificación agrotopoclimática para la Región del Libertador Bernardo O'Higgins. V Jornadas Chilenas de Física y Química Ambiental. 2-4 de Mayo. Valparaíso.

Morales, L., Canessa F., Silva, P., Castellano, G. y Acevedo, E. 2007. Zonificacion agrotopoclimatica de la region del Bio-Bio. 58^{vo} Congreso Agronómico. 11-14 de Sept. Arica, Chile.

Silva, P., Matus, I., Peralta, R., Castellaro, G., Morales, L. y Acevedo, E. 2007. Fertilización nitrogenada, rendimiento y calidad de trigo candeal. 58^{vo} Congreso Agronómico. 11-14 de Sept. Arica, Chile.

Silva, P., Matus I., Peralta, R., Parra, G., Castellaro, G., Morales, L. y Acevedo, E. 2008. Interacción del rendimiento y calidad de trigo candeal con el medio ambiente. 59^{vo} Congreso Agronómico. 7-10 de Oct. La Serena, Chile.

Román, L.F., Castellaro G., Silva, P., Morales, L., Matus. I.y Acevedo, E. 2008. Determinación de coeficientes genéticos en trigo candeal (*Triticum turgidum L.* ssp. durum) variedades Llareta-inia y Corcolén-inia en condiciones óptimas. 59^{vo} Congreso Agronómico. 7-10 de Oct. La Serena, Chile.

Morales, L., Castellano, G. Silva, P. y Acevedo, E. 2008. Zonificación agroclimatica entre las regiones de Valparaíso y Bio-Bio. 59^{vo} Congreso Agronómico. 7-10 de Oct. La Serena, Chile.

Congresos internacionales

Acevedo, E., <u>Silva, P.</u>, Kolopp, J y Matus, I. 2008. Based Durum Wheat Zoning in the Chilean Mediterranean Environments. INTERNATIONAL DURUM WHEAT SYMPOSIUM. 30 de junio y 3 de julio. Bologna, Italia.

o Organización de seminarios y talleres

Silva, P., Kolopp, J. y Acevedo, E. 2006. Parámetros de calidad a considerar en el trigo candeal: Zonificación. Seminario "Cultivo, calidad, mercado e industria de trigo candeal". Realizado en Chillán el 21 de Noviembre de 2006.

Seminario internacional "Desarrollo de trigo candeal de alta calidad". 13 de noviembre de 2008. Auditorio de INIA Quilamapu, Av. Vicente Méndez 515, Chillán. Este seminario contó con la participación de los expertos internacionales Luis García del Moral de la Universidad de Granada, Meloudi Nachit de ICARDA e Iván Ortiz Monasterio de CIMMYT, además de expertos nacionales.

Publicaciones científicas

Silva, P., Kolopp, J. y Acevedo, E. 2007. Calidad de trigo candeal, fisiología y manejo agronómico. In: Trigo Candeal: Calidad, mercado y zonas de cultivo. Acevedo, E. y Silva, P. (Eds). Santiago, Universidad de Chile. Facultad de Ciencias Agronómicas. Serie Ciencias Agronómicas N° 12. 77-88 pp.

Silva, P., Kolopp, J. y Acevedo, E. 2007. Trigo candeal: ¿donde cultivar para tener una mejor calidad? In: Trigo Candeal: Calidad, mercado y zonas de cultivo. Acevedo, E. y Silva, P. (Eds). Santiago, Universidad de Chile. Facultad de Ciencias Agronómicas. Serie Ciencias Agronómicas N° 12. 89-102 pp.

o Días de campo o reuniones técnicas

Días de campo en la Estación Experimental Antumapu: 24 de octubre de 2006 y 13 de noviembre de 2007.

Reuniones Técnicas: 12 de enero de 2007 y 18 de enero de 2008

o Páginas web

http://www.sap.uchile.cl/fia/index.html

En proceso

- Seminario. El Seminario DESARROLLO DE TRIGO CANDEAL DE ALTA CALIDAD, realizado el 13 de noviembre de 2008 en Chillán se informará dentro del Programa de Desarrollo de Trigo Candeal.
- Publicaciones divulgativas. Las Cartillas divulgativas se prepararan en el marco del Programa de Desarrollo de Trigo Candeal.

III.BIBLIOGRAFÍA CONSULTADA

La bibliografía consultada se encuentra en cada capítulo.

INFORME PROYECTO:

"Zonificación Por Rendimiento y Calidad del Trigo Candeal entre la RM y La VIII Región"

Recopilar y sistematizar información de series de suelos entre la RM y VIII Región.

CRISTIAN MATTAR B.
JOSÉ NEIRA R.
FRANCISCO LANG T.
LUIS MORALES S.
GIORGIO CASTELLARO G.

INTRODUCCIÓN

La espacialización de las series de suelo es una etapa importante dentro del proceso edafotopoclimatología, ya que conocer el lugar en donde se encuentra una serie determinada de suelo con las respectivas propiedades físicas y químicas permitiría generar una cartografía con mayor precisión en la determinación de futuros rendimientos para especies agrícolas.

El desarrollo de los suelos en Chile esta asociado a factores geológicos, geomorfológicos, climático y a la actividad volcánica. El material del suelo es variado, ya sea por la metereorización de rocas antiguas, depósitos de suelos volcánicos (suelos "trumaos"), depósitos glaciales, fluvioglaciales y aluviales, los últimos 3 dan origen a suelos más jóvenes y menos desarrollados que los anteriores.

En síntesis el relieve esta caracterizado por 3 unidades: Cordillera de la Costa, Cordillera de los Andes y Depresión Intermedia, los que influyen directamente en la génesis de los suelos.

Debido a que el 80% de los suelos son de tipo montañoso existe una fuerte tendencia a la inestabilidad de interfase superficial que no permite un desarrollo significativo de los perfiles de los suelos, y por esto la existencia de suelos jóvenes en nuestro territorio.

METODOLOGÍA

La metodología planteada para el cumplimiento de los objetivos es la siguiente:

Recopilar y sistematizar información de series de suelos entre la RM y VIII Región.

El proyecto, se realizó a partir de estudios preexistentes de suelos en el área comprendida por el proyecto. Se considera dentro de los estudios anteriores tanto cartografía como material escrito en informes y literatura. Esta etapa contempla los siguientes procesos: (1) Recopilación y Análisis de Estudios Existentes, (2) Traspaso de la Información Cartográfica en papel a formato digital, y (3) Creación de la Base de Datos de Suelos en un sistema de información geográfico (ArcView[®]).

1.1 Recopilación y Análisis de Estudios Existentes.

Se recopilarán los datos y cartografía de suelos (a nivel de serie) existente en el área de estudio y serán analizados en gabinete, rescatando de las descripción de las series de suelo las variables relevantes asociadas a las características de las mismas (número de estratas, textura, profundidad, constantes hídricas, densidad aparente, porcentaje de arena, materia orgánica, relación C/N, entre las más relevantes). En aquellos suelos que carezcan de alguna información física importante, esta será estimada a partir de datos básicos de textura indicada en la descripción de los perfiles modales.

1.2 Traspaso de la Información Cartográfica en papel a formato digital.

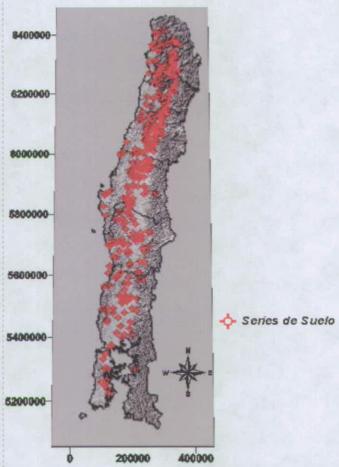
Se efectuaó el traspaso y adecuación de las delineaciones de suelos a las nuevas ortofotos, que constituyó la base cartográfica del proyecto. Para ello, la cartografía en papel fue digitalizada de tal forma de contar con un conjunto de cartas de las ortofotos en formato digital y compatible con un sistema de información geográfico (ArcView®).

1.3 Creación de la Base de Datos de Suelos en un sistema de información geográfico (ArcView[®]).

Una vez preparada la cartografía digital será ingresada a un Sistema de Información Geográfica (ArcView[®]). Consiste en el archivo en medios magnéticos de la información gráfica (cartografía) y alfanumérica (atributos), y su asociación en un sistema de base de datos relacional. El ingreso de la información agrológica al archivo computacional contempla las siguientes actividades:

- Ingreso de la Información Gráfica.
- Definición y Creación de la Base de Datos.
- "Linkeo" o Asociación.
- Generación de cartas en papel.
- · Ingreso de la Información Alfanumérica.
- Validación de la información alfanumérica.
- Unión Cartografía digital con información AD Alfanumérica.
- Poblamiento de la Base de Datos definitiva.
- Control de calidad.
- Entrega de Base de datos.

Se ha preparado un manual de codificación en formatos diseñados especialmente para incluir los niveles de información de suelos que son Series de suelos y Fases o Variaciones, con la información alfanumérica que caracteriza cada una de las unidades cartográficas. Esta información se codificará y digitará para su ingreso a un medio magnético. La información alfanumérica ingresada al sistema se debe depurar para su uso. Esto se realizará en forma visual y computacional para lo cual se prepararán pautas de validación, programas validadores computacionales efectuándose sucesivas correcciones.


Para efectuar la unión de la Cartografía digital con la información descriptiva (alfanumérica), se enlazará la información alfanumérica con las fórmulas de los archivos gráficos, considerando el porcentaje de cada fórmula incluida en cada polígono. Se efectuarán revisiones tanto de la información gráfica como alfanumérica con la información original, realizándose las correcciones necesarias.

Por medio del estudio agroecológico CIREN-CORFO para las regiones V, RM, VI, VII, VIII, IX y X, se procedió a digitar la ubicación de cada serie de suelo, la abreviación y su respectiva textura, la cual corresponde al primer horizonte. Esta base de datos presentaba anomalías en la ubicación de de algunas series de suelo, ya que más de 70 series de suelo del área de estudio estaban en un sistema distinto de proyección, por lo tanto se realizó un cambio de UTM para obtener finalmente todas las series de suelo en proyección UTM-19s. El datum no fue modificado. Por otra parte existieron series que no tenían ubicación geográfica por lo cual no fueron consideradas en esta etapa.

Esta base de datos se espacializó y se contrastó con los límites regionales, existiendo una gran concordancia producto de la mayor existencia de series de suelo en los valles y la inexistencia de estos en la Cordillera de Los Andes.

Como ilustración de lo anterior, se descargó el Modelo Digital de Elevación (MDE) GTOPO30, disponible gratuitamente en [1], este modelo corresponde a una imagen raster de alturas, con una resolución espacial de 1 Km. Sobre esta imagen se desplegaron las series de suelo y las regiones del área de estudio. Esto se puede apreciar en la figura 2.

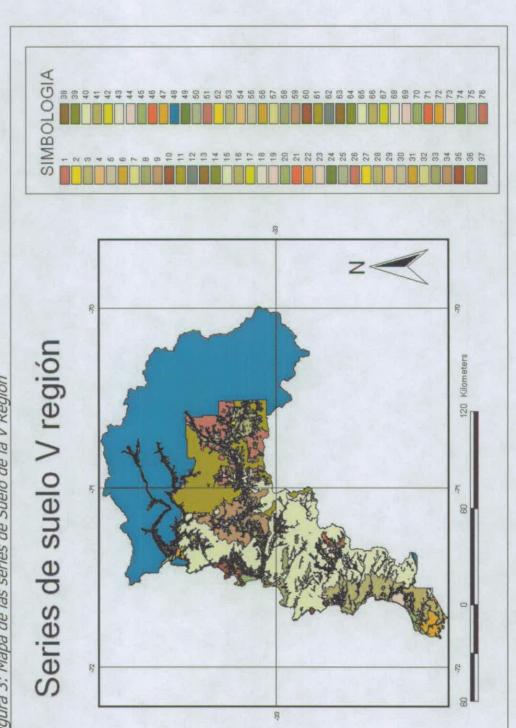
Figura 2. Distribución geográfica de los perfiles modales de las series de suelo y su relación con la topografía de la zona de estudio.

Las estaciones que no se encontraban con ubicación geográfica expresadas en coordenadas, son las que muestra la Cuadro 6.

Cuadro 6. Series de suelo sin coordenadas geográfica

Región	Abreviación
V	SAC
٧	SRC
٧	RCB
٧	TAP
V	TRO
RM	BRR
VI	CAT
VI	CAR
VI	CLH
VI	CUC
VI	CPA
VI	CHP
VI	LGE
VI	GYN
VI	HUQ
VI	BUR
VI	GRZ
VI	LHM
VI	LMQ
VI	LGD
VI	LCD
VI	LGS
VI	MAR
VI	MLB

Región	Abreviación
VI	MAN
VI	MRT
VI	MAC
VI	MIR
VI	NIL
VI	PRN
VI	PHC
VI	PIL
VI	POL
VI	PNO
VI	PUM
VI	PPL
VI	PUQ
VI	QHE
VI	QNH
VI	QAL
VI	RAN
VI	SPA
VI	TLH
VI	TAH
VI	TIN
VI	TOC
VI	YQL


RESULTADOS

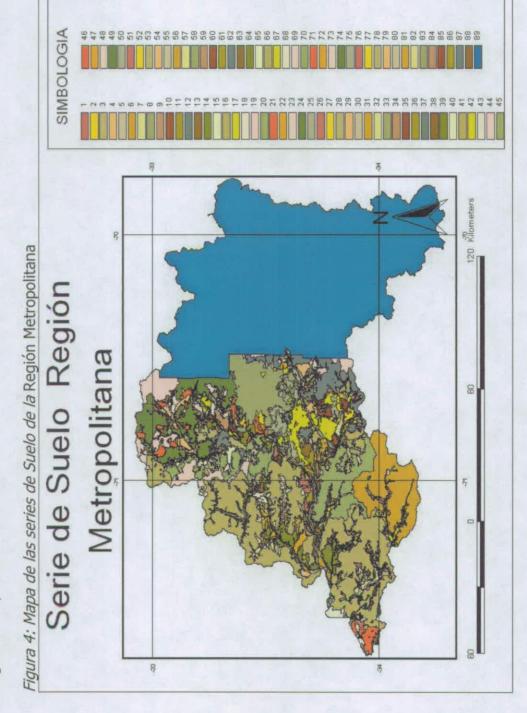
Una vez completado los procedimientos de digitalización de la información de recopilada para las series de suelos de las regiones V, RM, VI, VII y VIII, se filtró la información necesaria para estimar el rendimiento y contenido de proteína en el grano por la herramienta computacional, esta información se encuentra detallada en los anexos, mientras que una información resumida de las series de datos por región puede ser revisada en los cuadros 7; 8; 9; 10 y 11.

La cartografía obtenida se encuentra en el sistema de coordenadas Latitud-Longitud. Se eligió este sitemas debido a los requerimientos del modelo computacional antes mencionado. Además, las cartografías se encuentran en sistema vectorial (software Arcview®); Figuras 3; 4; 5; 6 y 7) y en sistema Raster (software IDRISI®), a escala de 90 metros. Se adjunta también, el modelo de elevación digital escala 90 mt.

Figura 3: Mapa de las series de Suelo de la V Región

Cuadro 7: Series de Suelo de la V Región

ID SERIE	UTM W (Km)	UTM N (Km)	Orden	Nombre de la Serie	Código de la serie	Textura superficial
1	300,4	6.283,70	Mollisol	Agua del Gato	AGD	franco arcillo limoso
2	293,7	6.372,50	Mollisol	Artificio	ART	arcillo limoso
3	256,85	6.308,00	Mollisol	Bochinche	ВОС	franco arenoso
4	292,9	6.368,45	Mollisol	La Calera	CAL	franco
5	320,05	6.364,15	Mollisol	Las Chilcas	CAS	arcilloso
6	273,25	6.372,90	Alfisol	Chilicauquén	CCQ	franco arenoso fino
7	283,05	6.262,60	Mollisol	Codigua	CDG	franco arenoso muy fino
8				No Suelos	CDR	
12	357,95	6.361,30	Mollisol	Calle Larga	CLG	franco arcillo arenoso
13	Bendania		Mollisol	Clarillo	CLR	
14	268,45	6.366,40	Mollisol	Campiche	CMP	franco
15	328,95	6.370,10	Mollisol	Colunquén	CNQ	franco arcillo limoso
16	287,65	6.398,95	Alfisol	Catapilco	CPC	franco
17	344,65	6.367,00	Mollisol	Curimón	CRM	franco
18	277,7	6.314,30	Inceptisol	Casablanca	CSB	franco arcilloso
19	319,25	6.379,30	Mollisol	Catemu	СТМ	franco
20	337,6	6.372,75	Mollisol	Cristo Redentor	CTR	franco arcillo limoso
21		11/81345	Inceptisol	Asociación Cuzco	CUZ	
9			Mollisol	Asociación Challay	CHL	Franco fino
10			Mollisol	Chipana	CHP	
11	333,85	6.376,60	Mollisol	Chagres	CHR	franco arenoso fino
22	304,4	6.423,50	Inceptisol	Encón	ENC	franco arenoso fino
23	296,35	6.345,95	Inceptisol	Granizo	GNZ	franco arenoso fino
24	303,65	6.360,30	Mollisol	Hualcapo	HCP	franco arenoso fino



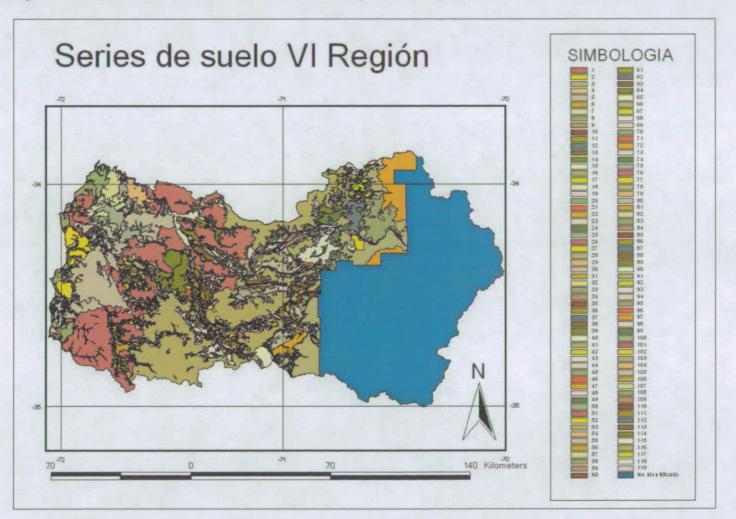
40°						
25	298,95	6.369,65	Mollisol	Hijuelas	НЈА	franco
26	347,45	6.379,20	Inceptisol	Jahuel	JHL	franco
27	288,1	6.404,25	Mollisol	Jaururo	JRR	franco
28	318,15	6.371,60	Mollisol	Lo Campo	LCM	franco arcillo limoso
29	287,6	6.343,90	Inceptisol	La Gloria	LGR	franco arenoso
30	278,75	6.412,00	Mollisol	Longotoma	LGT	franco arenoso
31	292,75	6.406,45	Mollisol	La Ligua	LGU	franco arcilloso
32	328,35	6.371,50	Mollisol	Los Hornos	LHS	franco arcilloso
34			Mollisol	Las Mercedes	LMC	franca arenosa
35	266,8	6.368,20	Entisol	Loncura	LNR	areno francoso
36	322,25	6.371,00	Mollisol	Los Pidenes	LPD	franco arenoso muy fino
37	277,9	6.307,20	Inceptisol	Las Rosas	LRR	franco arenoso fino
38	292,35	6.341,75	Mollisol	Lliu Iliu	LUL	franco
39	318,55	6.376,45	Mollisol	Las Varillas	LVR	franco
40	287,9	6.290,30	Alfisol	Lo Vásquez	LVZ	franco arcillo arenoso
33	316,25	6.363,55	Mollisol	Llay llay	LLY	arcillo limoso
41			Alfisol	Asociación la Manga	MGA	
42	312,15	6.410,20	Mollisol	Milagro	MLG	franco arenoso
43			Alfisol	Asociación Mansel	MN	
44	268,05	6.356,70	Alfisol	Mantagua	MNG	franco arenoso muy fino
45				Miscelaneos	MR	
46	347,3	6.375,70	Mollisol	Maitenes	MTN	franco arcilloso
47			Mollisol	Asociación Matanzas	MTZ	
48					NO RECONOC	
49	302,2	6.360,10	Inceptisol	Ocoa	OCA	franco
50	293,1	6.347,40	Mollisol	Olmué	OLM	franco arenoso fino
51	THE PERSON		Mollisol	Asociación la Parva	PA	
52	286,65	6.355,55	Inceptisol	La Patagua	PAT	franco limosa

-		1	1			1
53	342,25	6.370,25	Mollisol	Pocuro	PCR	franca
55	327,15	6.370,30	Histosol	Palomar	PLM	arcillo limoso
54	280,65	6.409,05	Mollisol	Pullalli	PLL	franca
56	330,35	6.372,45	Histosol	Panquehue	PQH	franco limoso
57	337,5	6.388,00	Mollisol	Putaendo	PTD	franco limosa
58	290,85	6.377,50	Mollisol	Pucalán	PUC	arcillo limosa
59	288,1	6.400,60	Inceptisol	Quebradilla	QBL	franco
60	291,35	6.358,70	Inceptisol	Quillota	QLT	franco arcilloso
61	NA	NA	Inceptisol	Santa Rosa de Casablanca	RCB	franco arenoso
62	333	6.340,50	Mollisol	Rungue	RUG	arcilloso
63	NA	NA	Inceptisol	Santa Amalia de Casablanca	SAC	franco arenoso
64	291,2	6.356,35	Mollisol	San Isidro	SDR	franco arcilloso
65	284,5	6.349,45	Mollisol	San Francisco de Limache	SFL	franco arenoso
66	312,15	6.409,10	Mollisol	San Lorenzo	SLZ	franco
67	346,2	6.374,05	Mollisol	Santa María	SMA	franco
68	NA	NA	Inceptisol	Santa Rita de Casablanca	SRC	franco arenoso
69	259,2	6.272,60	Inceptisol	Santo Domingo	STD	franco arenoso fino
70				Terrazas Aluviales No Difereneciadas	Т	
71	NA	NA	Inceptisol	Tapinhue	TAP	franco arenoso fino
72	279,5	6.406,80	Alfisol	Tabolango	TBL	franco arenoso fino
73				Terrazas Aluviales Valle Costero	TR	
74	NA	NA	Mollisol	Tronador	TRO	arcilloso
75	313,5	6.362,30	Entisol	Vichiculén	VCN	franco arenoso fino
76	271,6	6.367,50	Mollisol	Valla Alegre	VLG	franco limoso

Cuadro 8: Series de Suelo de la Región Metropolitana

SERIE	Long (Km)	Lat (Km)	Serie	Nombre Serie	Abreviación	Textura
1	300,4	6.283,70	Mollisol	Agua del gato	AGD	franco arcillo limosa.
2	NA	NA	Mollisol	Barrancas	BRR	franca
3	332	6.320,30	Vertisol	Batuco	BTC	arcillo limosa
4	342,7	6.297,70	Inceptisol	Buin	BUN	franco arenosa
5			Inceptisol	Cachapoal	CCH	
6	283,05	6.262,60	Mollisol	Codigua	CDG	franco arenosa muy fina
16	353	6.271,90	Mollisol	Clarillo	CLR	franca
17	340,2	6.319,65	Mollisol	Colina	CNA	franca
18	339,6	6.313,95	Entisol	Cotuba	COU	franca
19	329,1	6.268,20	Mollisol	Los Cardenales	CRD	franca
20	317,9	6.292,90	Mollisol	Cuesta Vieja	CTV	franco arenosa
21		AR NE	Inceptisol	Asociación Cuzco	CUZ	
7	306,25	6.295,70	Mollisol	Chorombo	СНВ	franca
8	343,7	6.315,80	Vertisol	Chicureo	CHC	arcillosa
9	346,3	6.249,65	Mollisol	Chada	CHD	franco limosa
10	335,6	6.314,50	Entisol	Chape	CHE	franca
11	305,65	6.270,70	Mollisol	Chiñigue	CHG	franca
12			Mollisol	Asociación Challay	CHL	franca fina
13	295,9	6.265,70	Mollisol	Cholqui	CHQ	franca
14	334,2	6.319,15	Mollisol	Chincolante	CHT	arcillo limosa
15	320,8	6.321,90	Inceptisol	Chicauma	CHU	areno francosa
22	352,8	6.273,20	Mollisol	Estero Seco	ETS	franca
23	348,7	6.319,60	Mollisol	Guay Guay	GGU	franco arcillosa
24	330,6	6.333,00	Mollisol	Huechún	HCN	arcillosa
25	290,75	6.265,40	Mollisol	Isla de Huechún	HCH	areno francosa fina
26	295,45	6.233,75	Inceptisol	Hacienda Alhue	HDL	franco arcillosa
27	296,05	6.269,40	Mollisol	La Higuera	HGR	franco arcillo limosa

28	342,05	6.251,15	Inceptisol	Hospital	HPT	franco arcillo limosa
29	344,7	6.309,40	Mollisol	Huechuraba	HUE	franco arcillosa
30	356,7	6.273,30	Mollisol	Huingán	HUN	franca
31	324,6	6.296,90	Mollisol	Lo Aguirre	LAG	franco arcillosa
32			Alfisol	Asociación La Lajuela	LAL	franca fina
33	288,65	6.253,00	Inceptisol	Las Perdices	LAP	franco arenosa
34	281,35	6.270,50	Mollisol	Alcantar	LCT	franco arcillosa
35	267,6	6.239,05	Inceptisol	Lingolingo	LGG	franco arenosa
36	340,8	6.263,90	Inceptisol	Linderos	LIN	franca
37	311,95	6.297,50	Mollisol	Las Mercedes	LMC	franca
38	329,2	6.311,70	Mollisol	Lampa	LMP	franco arenosa muy fina
39	322,05	6.276,10	Mollisol	Lonquén	LON	franco arenosa fina
40	315,8	6.290,00	Entisol	Lo Prado	LPR	franco arenosa
41	342,3	6.318,15	Mollisol	Liray	LRA	franco arcillosa
42	287,9	6.290,30	Alfisol	Lo Vasquez	LVZ	franco arcillo arenosa
43	342,1	6.277,20	Mollisol	Maipo	MAO	franca
44			Alfisol	Asociación la manga	MGA	Alfisol
45	340	6.324,10	NA	Mingaco	MIN	franco arcillosa
46			Inceptisol	Asociación Mansel	MN	
47	334,9	6.296,60	Mollisol	Mapocho	MPC	franco arcillo limosa
48	339,9	6.269,60	Alfisol	Los Morros	MRR	franca
49			Mollisol	Asociación Matanzas	MTZ	
50				No Reconocido	No Reconoc	
51			Mollisol	Asociación La Parva	PA	
52	313,1	6.282,70	Mollisol	Pahuilmo	PAH	franco arcillo limosa
53	279,6	6.245,70	Mollisol	Peumo Chico	PCH	franca
54				Piedmont Estratificado	PE	CAN HAME TO LEE
55	279,6	6.244,20	Mollisol	Peumo de lo Chacón	PLC	franco limosa
56	328	6.332,80	Mollisol	Polpaico	PLP	franca
57			Alfisol	Pimpinela	PMP	


58	296,9	6.292,60	Mollisol	Pomaire	PMR	franca
59	335,05	6.257,00		Paine	PNE	franco arcillo limosa
60	328,6	6.251,50		Pintué	PNT	franco arenosa
61	291,2	6.250,00		Popeta	PPT	franca
62	333,6	6.306,80		Peralillo	PRE	arcillosa
63	317,3	6.289,00		Pataguilla	PTA	franca
64	325	6.302,80		Cuesta Barriga	PTB	franco arenosa fina
65	312	6.294,00		Puntilla	PTL	arcillo limosa
66	285,2	6.255,80		Pudahuel	PUD	franco arenosa fina
67	308,2	6.294,50		Puangue	PUG	franco arenosa fina
68	337,1	6.306,70		Quilicura	QLC	franco arcillo limosa
69	289,4	6.228,00		Quilamuta	QLM	franco arenosa muy fina
70	341,7	6.339,00	Mollisol	Quilapilún	QLP	franca
71				Miscelaneos	R	Hand
72	330,1	6.291,50	Inceptisol	Rinconada de Lo Vial	RLV	franco arenosa
73	333	6.340,50		Rungue	RUG	arcillosa
74	287,6	6.277,15	Mollisol	San Diego	SDG	franca
75	282,3	6.246,10	Mollisol	Santa Rosa	SRS	franco arenosa muy fina
76	350,6	6.268,80	Mollisol	Santa Sara	SSR	franco arcillo limosa
77	337	6.288,80	Mollisol	Santiago	STG	franco arenosa
78	305,6	6.233,30	Inceptisol	Estancilla	STL	franco arenosa
79	331,4	6.309,50	Mollisol	Tagueral	TAQ	franco limosa
80				Terrazas Aluviales Estratificadas	TE	
81				Terrazas Remanentes	TM	
82	280,15	6.268,20	Mollisol	Tupartis	TPT	franca
83		The Bridge		Terraza Aluvial Valle Costero	TR	
84	278,5	6.237,00	Mollisol	Tronador	TRO	arcillosa
85			THE PERSON	No suelo	UR	
86	335,1	6.324,15	Vertisol	Urraca	URR	franco arcillo limoso

87	342,8	6.253,70	Mollisol	Valdivia de Paine	VAP	franco limosa
88	284,2	6.238,40	Mollisol	Viña Vieja	VIV	franco arenosa muy fina
89	338,9	6.313,80	Vertisol	La Vilana	VLA	arcillo limosa
90	305,1	6.257,10	Mollisol	Viluma	VLM	franco arcillosa

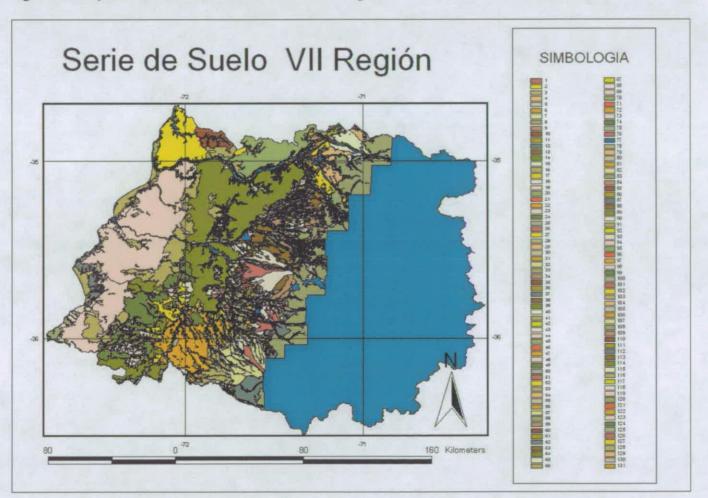
Figura 5: Mapa de las series de Suelo de la VI Región

Cuadro 9: Series de Suelo de la VI Región

SERIE	Long (Km)	Lat (Km)	Serie	Nombre Serie	Abreviación	Textura
1			Áridos	Aridos	A	
2			Aerodromo	Aerodromo	AER	
3			Inceptisol	Ajial	AJL	
4			Vertisol	Almahue	ALH	
5			Alfisol	Asociación Alto Colo	ALT	Service Code
6			Mollisol	Antivero	ANV	
7			Inceptisol	Alantaué	ATN	
8			Alfisol	Aytué	AYT	with the same
9			Alfisol	Barahona	BAR	
10			Inceptisol	Bajíos	BJS	
11			Alfisol	La Burra	BUR	
12			Inceptisol	Carrizal	CAR	
13			Inceptisol	Caðetenes	CAT	LANGE TO BE A SECOND
14	THE DESIGNATION		Mollisol	Cocalán	CCA	
15			Mollisol	Corcolén	CCL	
16			Inceptisol	Cachapoal	CCH	
17			Mollisol	Casas De Carén	CDC	
18			Caja de Estero	Caja De Estero	CDE	
19			Caja de Rio	Caja De Rio	CDR	
20	EN-VELT	N MENTER A	Inceptisol	Callejones	CJN	
21		LITTE TA	Alfisol	Caleuche	CLC	
22			Vertisol	Colchagua	CLH	
23			Alfisol	Asociación Coguil	COG	
24			Mollisol	Chepica	CPA	
25			Alfisol	Asociación Curanipe	CPE	

26	Mollisol	Cunaco	CUC	
27	Inceptisol	Asociación Cuzco	CUZ	- 15-15-
28	Mollisol	Asociación Challay	CHL	
29	Mollisol	Chipana	CHP	
30	Mollisol	Chincolante	CHT	
31	Alfisol	Asociación Espinillo	ESN	M.E.I
32	Mollisol	Graneros De La Cabaña	GLC	
33	Mollisol	Gualas	GLS	
34	Mollisol	Graneros	GRS	
35	Alfisol	Las Garzas	GRZ	
36	Mollisol	Goyana	GYN	
37	Inceptisol	Hacienda Alhue	HDL	
38	Mollisol	O'higgins	HGS	
39	Vertisol	Huique	HUQ	
40	Industria	Industria	IND	
41	Laguna	Laguna	LA	
42	Alfisol	Asociación La Lajuel	LAL	The last of
43	Vertisol	Los Cardos	LCD	
44	Inceptisol	Loma Grande	LGD	
45	Mollisol	Gatera	LGE	
46	Alfisol	Los Lingues	LGS	
47	Vertisol	Lihueimo	LHM	
48	Inceptisol	Limanque	LMQ	
49	Mollisol	Larmahue	LRM	y Fred La
50	Mollisol	La Rosa	LRS	
51	Mollisol	Laguna San Vicente Tag	LSV	
52	Alfisol	Lo Vasquez	LVZ	
53	Mina	Mina	M	
54	Inceptisol	Marchigue	MAC	
55	Entisol	Mancumán	MAN	

56	Inceptisol	Macarena	MAR	
57	Miscelaneo coluvial	Misceláneo Coluvial	MC	
58	Alfisol	Asociación Macal	MCL	
59	Miscelaneo Dunas	Misceláneo Dunas	MD	
60	Miscelaneo Estero	Misceláneo Estero	ME	
61	Alfisol	Miravalle	MIR	
62	Inceptisol	Malambo	MLB	
63	Mollisol	Millahue	MLH	
64	Mollisol	Malloa	MLL	
65	Miscelaneo Pantano	Misceláeo Pantano	MP	
66	Miscelaneo Quebrada	Misceláneo Quebrada	MQ	
67	Miscelaneo Rio	Misceláneo Río	MR	
68	Inceptisol	Marchant	MRT	
69	Miscelaneo Suelo	Misceláneo Suelo	MS	
70	Mollisol	Maitén De Malloa	MTL	
71	Mollisol	Asociación Matanzas	MTZ	REPUBLICATION OF THE PROPERTY
72	Miscelaneo Vega	Misceláneo Vega	MV	
73	Entisol	Nilahue	NIL	
74	Mollisol	Olivar	OLV	
75	Mollisol	Pichidegua	PCG	
76	Mollisol	Peumo Chico	PCH	
77	Alfisol	Pidihuinco	PHC	
78	Alfisol	Pilpoy	PIL	
79	Alfisol	Asociación Piuchen	PIU	


80	Mollisol	Peumo De Lo Chacën	PLC
81	Mollisol	Palquiales	PLQ
82	Playa	Playa	PLY
83	Mollisol	Peumo	PMO
84	Alfisol	Pimpinela	PMP
85	Alfisol	Puente Negro	PNO
86	Vertisol	Polonia	POL
87	Vertisol	Pupilla	PPL
88	Alfisol	Peor Es Nada	PRN
89	Mollisol	Patagua	PTG
90	Mollisol	Pudahuel	PUD
91	Inceptisol	Pumanque	PUM
92	Inceptisol	Puquillay	PUQ
93	Alfisol	Quinchamalal	QAL
94	Vertisol	Quiahue	QHE
95	Inceptisol	Quilamuta	QLM
96	Mollisol	Quelmenes	QMS
97	Mollisol	Quinahue	QNH
98	Terreno Rocoso	Terrenos Rocosos	R
99	Inceptisol	Ranquilhue	RAN
100	Mollisol	Rancagua	RNG
101	Mollisol	Asociación Rosario	RSR
102	Salinas	Salinas	SA
103	Alfisol	San Pedro De Alcantara	SPA
104	Alfisol	Asociación Sierra Bellavista	SRB
105	Inceptisol	Estancilla	STL
106	Mollisol	San Vicente	SVT
107	Alfisol	Talhuén	TAH
108	Terraza	Terrazas Aluviales Rio Claro	TC

	aluvial			
109	Mollisol	Teno	TEN	10 617
110	Terraza aluvial	Terrazas Aluviales Rio Cachap	ТН	Citor
111	Entisol	Tinguiririca	TIN	
112	Inceptisol	Talcarehue	TLH	
113	Alfisol	Тосо	тос	
114	Terraza Reciente	Terrazas Recientes	TR	
114	Tranque	Tranque	TR	
115	Mollisol	Tricahue	TRH	
116	Terraza aluvial	Terrazas Aluviales	TZ	
117	Urbano	Urbano	UR	
118	Mollisol	Vña Vieja	VIV	
119	Inceptisol	Yaquil	YQL	
120	Inceptisol	Zamorano	ZMR-1	
121		No Reconocido	No Reconoc	L. Carrier

Figura 6: Mapa de las series de Suelo de la VII Región

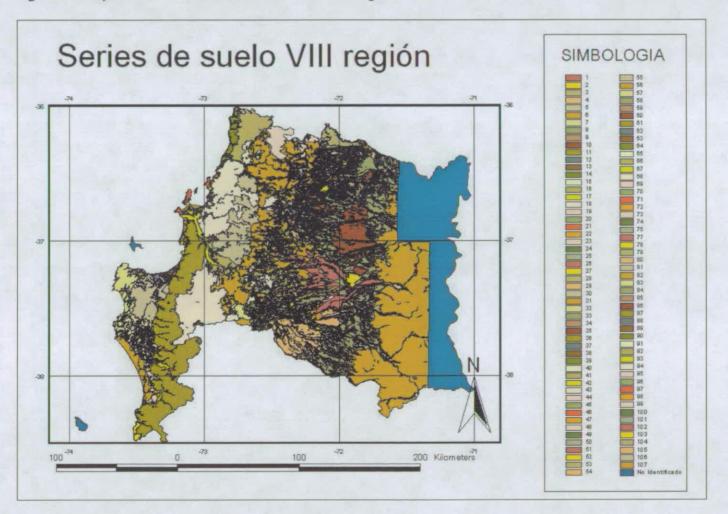
Cuadro 10: Series de Suelo de la VII Región

SERIE	Long (Km)	Lat (Km)	Serie	Nombre Serie	Abreviación	Textura
1	261,6	6.026,00	Inceptisol	Achibueno	ACH	franca
2					ALT	
3	314,6	6.145,10	Alfisol	Ayitué	AYT	franco arcillo limosa
4	700,08	6.005,10	Inceptisol	Buchupureo	BPR	franco limosa
4	243,9	6.086,70	Inceptisol	Cabrería	BPR	franca
5	297,8	6.071,50	Andisol	Bramadero	BRA	franca
6	275	6.099,20	Inceptisol	Camarico	CAM	franco arenosa fina
7	231,8	6.138,80	Inceptisol	Carrizal	CAR	franco arenosa
8	698,56	5.997,90	Inceptisol	Cobquecura	CBC	franco arcillo limosa
9	279,1	6.044,50	Mollisol	Colbún	CBN	franco arcillo limosa
10					CBR	
11	297,8	6.121,40	Mollisol	Condell	CDL	franco limosa
15	240,7	6.042,10	Alfisol	Caliboro	CLB	franca
16	260,9	6.105,80	Inceptisol	Culpehue	CLE	franco arenosa fina
17	290,1	6.141,50	Alfisol	Comalle	CME	franco arcillosa
18	653,72	5.875,68	Inceptisol	Carampangue	CMG	franco arenosa muy fina
19	761,8	6.005,30	Alfisol	Campanacura	CMR	franco arcillosa
20	261,8	6.127,70	Inceptisol	Caone	CNE	franco arenosa
21	746,6	5.957,95	Vertisol	Canosa	CNS	franco arcillo limosa
22	274,2	6.117,50	Alfisol	Collín	COL	franco arcillosa
23					CPE	
24					CQ	

25		1 - 5 - 6	1		CR	
26	294,9	6.128,50	Mollisol	Curicó	CRC	franco arcillo limosa
27	222,4	6.115,30	Inceptisol	Curepto	CRT	franco arcillo limosa
28	295,7	6.096,10	Andisol	Cumpeo	CUM	franco limosa
29	247,4	6.084,70	Alfisol	Cunculén	CUN	franco arenosa
30	238,8	6.044,10	Mollisol	Comávida	CVD	franco arcillosa
12	723,8	6.042,00	Mollisol	Chanco	CHA	franco limosa
13	263,5	6.019,00	Alfisol	Chiguay	CHI	franco arcillosa
14	302,4	6.125,30	Vertisol	Chequenlemo	CHM	arcillo limosa
31	255,2	6.073,70	Inceptisol	Duao	DAO	franco arcillosa
32			7.16-2	TO MITTELL RE-	DIG	
33	230,8	6.114,20	Inceptisol	Domulgo	DMG	franco limosa
	268,8	6.007,20	Andisol	Diguillín	DNG	franco limosa
34	294,1	6.139,50	Inceptisol	El Molino	ELM	arcillosa
35	277	6.119,20	Alfisol	El Peñón	EPN	franco arenosa muy fin
36	300,2	6142,2	Mollisol	Gualas	GLS	arcillosa
37	262,5	6.103,20	Mollisol	Guaycután	GTA	franca
38	297,3	6.123,00	Mollisol	Guayquillo	GUQ	franco arcillosa
39	305,7	6.121,30	Mollisol	Huecán	HAN	franca
40	288	6.080,70	Mollisol	Huencuecho	HHC	franco arcillo arenosa
41	253,5	6.119,80	Inceptisol	Hualañé	HLE	franco arenosa
42	223,7	6.113,60	Inceptisol	Huellón	HLN	franco arcillo limosa
	241,8	5.976,20	Inceptisol	Huenutil	HNT	franco arcillosa
43	256,14	5.975,90	Mollisol	Huapi	HUP	franco arenosa fina
44					KT	

45			Total Line		LAL	
	279	6.120,20	Alfisol	La Campana	LCA	franco limosa
47	262,4	6.129,90	Inceptisol	Los Coipos	LCP	franca
48	245,6	6.084,20	Inceptisol	Las Doscientas	LDC	franco arenosa
49	227,1	6.125,00	Inceptisol	Licantén	LIC	franco arcillo arenosa
50	264,6	6.080,20	Inceptisol	Liucura	LIU	franco limosa
51	273,5	6.055,40	Entisol	Linares	LNS	franco arenosa fina
52	298,5	6.111,50	Inceptisol	Lontué	LNT	franco arenosa
53	260,5	6.033,60	Alfisol	La Obra	LOB	franco arcillosa
54	762,8	6.005,80	Mollisol	Lo Salas	LOS	franca
55	247,7	6.092,30	Inceptisol	Los Puercos	LPC	franco arenosa fina
56	225,4	6.111,80	Inceptisol	La Palma	LPM	franco arenosa fina
57	319	6.130,90	Andisol	Los Queñes	LQS	franco limosa
58	305,6	6.094,70	Inceptisol	Las Trancas	LTS	franco arcillosa
59	281,6	6.074,30	Alfisol	Lurín	LUR	franco arcillosa
60	287,9	6.290,30	Alfisol	Lo Vásquez	LVZ	franco arcillo arenosa
61	262,5	6.129,30	Mollisol	Loiza	LZA	franco arenosa muy fin
62	278,1	6.062,80	Alfisol	Mariposa	MAP	franco arcillo limosa
63	318,2	6.166,40	Inceptisol	Macarena	MAR	franco arenosa fina
64	749,08	5.927,60	Alfisol	Mirador	MDR	franco arcillosa
65	245	6.055,60	Inceptisol	Melozal	MEL	franco arcillo arenosa
66					MISC	
67	283,4	6.128,60	Mollisol	Majadilla	MJA	franca
68	278,8	6.053,90	Andisol	Maulecura	MLC	franca
69	748,25	6.016,80	Alfisol	Maule	MLE	franco arenosa

08'960'9	Alfisol	Montonera	TNM	franco arcillo arenosa
6.061,60	Inceptisol	Moyano	MOY	franco arcillosa
6.022,00	Entisol	Miraflores	MRF	franco arenosa muy fina
75,72	Mollisol	Miramar	MRM	franco arcillo limosa
6.065,40	Inceptisol	Matacabritos	MTC	franco arenosa muy fina
6.139,80	Entisol	Nilahue	NIL	franca
5.971,40	Inceptisol	Ninhue	NNH	franca
			NOSN	
6.066,50	Inceptisol	Panguilemu	PAG	franco arcillo arenosa
6.034,40	Inceptisol	Palmilla	PAL	franco arcillo limosa
6.081,80	Entisol	Pangue	PAN	franco arcillosa
	Inceptisol	Piedra Blanca	PBL	franca
	Mollisol	Pelarco	PEL	franco arenosa fina
	Alfisol	Peumo Negro	PEN	franco limosa
	Inceptisol	Perquilauquén	PEQ	franca
in l	Mollisol	Perquín	PER	arcillosa
	Alfisol	Pilpoy	PIL	franco arenosa
	Inceptisol	Panimávida	PND	franco arcillosa
	Alfisol	Pencahue	PNH	franco arenosa fina
			PO	
	Mollisol	Palquibudi	PQB	franco limosa
6.024,50	Alfisol	Parral	PRL	franco arcillosa
06'6	Mollisol	Peteroa	PTR	franca
6.061,90	Mollisol	Peumal	PUL	franco arenosa
	Inceptisol	Putagán	PUT	franco arenosa muy fina


95	289	6.140,20	Mollisol	Quicharo	QCH	franco arcillo limosa
96	251,5	6.079,40	Vertisol	Quepo	QEP	franco arcillosa
97	233,1	6.002,70	Vertisol	Quella	QLA	franco arcillosa
98	261,3	6.108,60	Inceptisol	Quillayes	QLY	franco arenosa fina
99	305,6	6143,7	Mollisol	Quelmenes	QMS	arcillo limosa
100	295	6.131,00	Mollisol	Quete Quete	QTQ	franca
101	762,1	5.963,30	Inceptisol	Quilmén	QUM	franco arcillo limosa
102	306,3	6.093,90	Andisol	Radal	RAD	franco limosa
103	278,7	6.036,20	Inceptisol	Rari	RAR	franco arcillosa
104	299,9	6.131,60	Andisol	Romeral	RML	franco arenosa muy fin
105	247,8	6.072,80	Inceptisol	Rauquén	RQN	franca
106					SBA	
107	251,6	6.055,10	Mollisol	San Javier	SJV	areno francosa
108					SRB	
109	277,1	6.092,20	Mollisol	San Rafael	SRF	franco arcillosa
110	290,8	6.118,20	Mollisol	Santa Rosa de Lontué	STR	franca
111		S. Casimi			T	The State of the S
112	259,5	6.103,80	Inceptisol	Talguenal	TAG	franco
113	267,3	6.082,40	Alfisol	Talca	TAL	franca
114	271	6.121,90	Inceptisol	Tricao	TCO	franco arcillo limosa
115	308,7	6144,4	Mollisol	Teno	TEN	franco arcillo limosa
116					TG	
117	707,02	6.008,94	Inceptisol	Tregualemo	TGL	franca
118	318,5	6.169,10	Inceptisol	Talcarehue	TLH	franco arcillo limosa
119	273,3	6.117,90	Inceptisol	Tonlemo	TNL	franco arcilloso

120	742,7	6.002,00	Inceptisol	Totoral	TOT	franco arenosa fina
121				Ma 2 19 12	TR	
122	288,3	6.119,00	Mollisol	Treile	TRE	franco limosa
123	754,8	5.975,30	Alfisol	Trilico	TRL	franco arcillosa
124	245,4	6.085,40	Inceptisol	Tutucura	ттс	franca a franco arcillo limosa
125	764,7	6.008,90	Alfisol	Unicavén	UNV	franco arcillosa
126	242,8	6.043,70	Inceptisol	Vaquería	VAQ	franca
127	250,8	6.012,10	Inceptisol	Villaseca	VIC	franco arcillosa
128	753,4	6.000,00	Alfisol	Virquén	VRQ	franco arenosa
129	228,3	6.112,00	Inceptisol	Yacán	YAC	franco arenosa fina
130	304,4	6.167,90	Inceptisol	Yaquil	YQL	franco arcillo arenosa
131	303, 3	6.126,00	Mollisol	Zapallar	ZPR	arcillosa

Figura 7: Mapa de las series de Suelo de la VIII Región

Cuadro 11: Series de Suelo de la VIII Región

SERIE	Long (Km)	Lat (Km)	Serie	Nombre Serie	Abreviación	Textura
1	713,1	5.839,30	Mollisol	Anilehue	ANL	franco limosa
2	273,2	5.866,40	Andisol	Antuco	ANT	franco arenosa
3	736,25	5.897,25	Entisol	Arenales	ARN	arenosa
4	634,1	5.833,00	Alfisol	Antihuala	ATL	franco arcillo limosa
5	251,1	5.963,70	Andisol	Arrayán	AYN	franco limosa
6	748,6	5.958,70	Inceptisol	Bidico	BDC	franco arcillosa
7	740,1	5.923,75	Inceptisol	Bulnes	BNS	franco arcillosa
8	700,08	6.005,10	Inceptisol	Buchupureo	BPR	franco limosa
9	715,95	5.889,10	Mollisol	Cabrero	CAB	franco arcillo limosa
10	718,9	5.847,55	Andisol	Caillihue	CAH	franca
11	698,56	5.997,90	Inceptisol	Cobquecura	CBC	franco arcillo limosa
12	709,8	5.855,30	Mollisol	Culenco	ссо	franco arcillo limosa
13	727,6	5.942,40	Entisol	Confluencia	CFA	areno francosa fina
14	718,75	5.839,30	Inceptisol	Coigue	CGE	franco arenosa
15	758,05	5.924,66	Alfisol	Collinco	CLL	franco arcillosa
16	653,72	5.875,68	Inceptisol	Carampangue	CMG	franco arenosa muy fina
17	761,8	6.005,30	Alfisol	Campanacura	CMR	franco arcillosa
18	740,95	5.928,90	Mollisol	Carimay	CMY	franco arcillosa
19	718,3	5.847,30	Inceptisol	Candelaria	CND	franco limosa
20	746,6	5957,95	Vertisol	Canosa	CNS	franco arcillo limosa
21	749,35	5.889,45	Andisol	Coreo	COR	arenosa
22	738,5	5.919,10	Alfisol	Coltón	СОТ	franco arenosa muy fina
23	721,25	5.845,70	Alfisol	Coyanco	COY	franco limosa

24	720,9	5.800,05	Alfisol	Collipulli	CPL	franco arcillo limosa
25					CPU	
26					cQ	
27					CR	
28	247,9	5.942,40	Inceptisol	Cato	сто	arcillosa
29	229,85	5.943,70	Inceptisol	Culenar	CUL	franca
30	251,8	5.953,70	Inceptisol	Chacayal	CYL	franco limosa
31	746,8	5.964,90	Entisol	Changaral	CHN	franco arenosa fina
32	714,55	5.849,95	Inceptisol	Chacaico	CHY	areno francosa muy fina
33	753,8	5.952,40	Mollisol	Dadinco	DDC	franca
34	727,9	5.842,45	Entisol	Duqueco	DUQ	areno francosa
35	688,05	5.813,75	Entisol	El Manzano	EMZ	areno francosa
36	234,9	5.945,40	Inceptisol	Gallipavo	GAL	franca
37	241,8	5.976,20	Inceptisol	Huenutil	HNT	franco arcillosa
38	256,14	5.975,90	Mollisol	Huapi	HUP	franco arenosa fina
39	MALL ST				KT	
40	242	5.887,06	Andisol	Lomas Atravesadas	LAT	franco limosa
41	733,6	5.947,20	Inceptisol	La Cucha	LCC	franco arcillo arenos fina
42	732,4	5.941,80	Inceptisol	Llahuen	LHN	franco limosa
43	725,9	5.944,80	Entisol	Llahuecuy	LHY	areno francoso fino
44	725,1	5.830,90	Mollisol	Los Olmos	LOM	arcillo limosa
45	762,8	6.005,80	Mollisol	Lo Salas	LOS	franca
46	638	5.868,10	Mollisol	Las puentes	LPU	franco arcillo limosa
47	661	5.882,70	Entisol	Laraquete	LQT	areno francosa
48	736,35	5.926,00	Mollisol	Los Tilos	LTI	franco arenosa fina
49	718,9	5.848,00	Mollisol	Las Vegas	LVG	franco limosa
50	233,8	5.952,60	Mollisol	Mebuca	MBU	franca

51	266,6	5.956,00	Inceptisol	Macala Poniente	MCP	franco arenosa muy fina
52	749,08	5.927,60	Alfisol	Mirador	MDR	franco arcillosa
53					MER	
54					MISC	
55	748,25	6.016, 8	Alfisol	Maule	MLE	franco arenosa
56	272,4	5862,2	Inceptisol	Manquel	MQL	franco limosa
57	643,34	5.875,72	Mollisol	Miramar	MRM	franco arcillo limosa
58	235,9	5.921,40	Andisol	Mayulermo	MYO	franco limosa
59					NA	
60	249,35	5.940,80	Ultisol	Niblinto	NBL	arcillosa
61	718,9	5.832,10	Mollisol	Negrete	NEG	franco arcillo limosa
62	711,05	5.841,80	Mollisol	Ninhueno	NIH	franco arenosa muy fin
63	737,6	5.971,80	Mollisol	Ninquihue	NIN	franco limosa
64	737,4	5.971,40	Inceptisol	Ninhue	NNH	franca
65					NOSU	
66	721,7	5.873,70	Alfisol	Pantoja	PAJ	franca
67	638,2	5.801,30	Andisol	Paicaví	PCV	franca a franco limosa
68	236,2	5.864,00	Entisol	Pedregales	PED	arenosa
69	247,8	5.982,00	Inceptisol	Perquilauquén	PEQ	franca
70	731,6	5.851,65	Mollisol	Paillihue	PLH	franco arcillosa
71					PO	
72					PR	
73	250,1	6.024,50	Alfisol	Parral	PRL	franco arcillosa
74	656,3	5.668,75	Andisol	Puerto Saavedra	PSA	franca
75	754,45	5.914,62	Inceptisol	Pueblo Seco	PSE	franca
76	730,2	5.936,30	Mollisol	Quinchamalí	QHL	franco arcillo limosa
77	233,1	6.002,70	Vertisol	Quella	QLA	franco arcillosa

78	731,65	5.926,60	Entisol	Quillón	QLN	areno francosa
79	762,1	5.963,30	Inceptisol	Quilmén	QUM	franco arcillo limosa
80	654	5722,5	Andisol	Quiripio	QUP	franco limosa
81	723,8	5.837,10	Mollisol	Rapelco	RAP	franco arenosa fina
82	721,4	5.826,50	Mollisol	Renaico	REN	franco arenosa fina
83	258,29	5.961,85	Andisol	Santa Bárbara	SBA	franco limosa
84	688,75	5785,75	Inceptisol	Los Sauces	SCS	franco arcillosa
85	713,75	5.850,60	Mollisol	Santa Fe	SFE	franco arenosa muy fina
86	752	5.955,20	Inceptisol	San José de Puyaral	SJP	franco limosa
87	735,35	5.929,15	Mollisol	Santa Clara	STC	arcillosa
88	A THE L				STN	
89	734,7	5.892,39	Mollisol	Santa Teresa	STT	areno francosa
90					TA	
91					TAM	
92	750,25	5.924,66	Alfisol	Tres Esquinas	TES	franca
93					TG	
94	707,02	6.008,94	Inceptisol	Tregualemu	TGL	franca
95	720,3	5.843,80	Inceptisol	Tijeral	TIJ	franca
96					TME	
97	714,4	5.891,90	Mollisol	Tomeco	TOM	arcillo arenosa
98	742,7	6.002,00	Inceptisol	Totoral	ТОТ	franco arenosa fina
99	234,6	5.966,90	Inceptisol	Tiuquilemu	TQL	franca
100	764,1	5.950,10	Mollisol	Talquipén	TQP	franca
101	754,8	5.975,30	Alfisol	Trilico	TRL	franco arcillosa
102	243,5	5.870,00	Andisol	Trupán	TRU	franco limosa
103	242,4	5.945,65	Alfisol	Trasval	TSV	franca
104	250,8	6.012,10	Inceptisol	Villaseca	VIC	franco arcillosa

	VRQ	YUN
	Virquén	Yungay
	Alfisol	Andisol
	00'000'9	5.889,90
GOBIERNO DE CHILI FUNDACION PARA LA INNOVACION AGRARIA	105 753,4	106 235,7
*	105	106

franco arenosa franco limosa

BIBLIOGRAFÍA

CEPAL/OCDE. Evaluaciones del desempeño Ambiental: Chile. Organización de Cooperación y Desarrollo Económico (OCDE) y Comisión Económica para América Latina y el Caribe (CEPAL). 2005. 246 pág

Escobar, Jairo. Contaminación de los ríos y su efecto sobre las áreas costeras., CEPAL: División de Recursos Naturales e Infraestructura. Organización de Naciones Unidas (ONU), Chile.2002. 68 pág.

Instituto Nacional de Estadística (INE). Chile: Estadísticas del Medio Ambiente 2000-2004. INE. 2005. Pág. 388. Consultado 11 de Enero, 2007 [http://www.ine.cl/canales/chile_estadístico/estadísticas_medio_ambiente/medio_ambiente.php]

Luzio Leighton, Walter; Alcayaga Casali, Sergio. *Mapa de asociaciones de grandes grupos de suelos de Chile*. En: Agricultura Técnica, 52, N.4, pp. 347-353, 1992

Ongley, E.D. Lucha Contra la Contaminación Agrícola de los Recursos Hídricos. (Estudio FAO Riego y Drenaje - 55)

Universidad de Chile. Suelos, Una visión actualizada del recurso. Departamento de Ingeniería y Suelos, Facultada de Ciencias Agronomicas y Forestales, Universidad de Chile. PUBLICACIONES MISCELANEAS AGRICOLAS Nº 38, SEGUNDA EDICIÓN, 1994

[1] http://glcfapp.umiacs.umd.edu:8080/esdi/index.jsp

Anexos

Anexo 1: Información de las series de suelos de la V Región

dentificador	Serie	Nº Estrato	Estrato (cm)	Prof (cm)	Fracción de Arena	DENSIDAD APARENTE g/cm3		HUMEDAD RETENIDA 1500 kPa %	CO %	MO %	relación C/N	Valores iniciales de agua	Nitrogeno minera inicial
	AGD	4	0 - 19	19	14,1		35	26	3,3	5,7			
1	AGD	4	19 - 46	27	11,1		38	30	2,6	4,5			
	AGD	4	46 - 70	24	17,1		36	28	1,1	1,9			
	AGD	4	70 - 85	15	35,6	THAT I	26	18	0,4	0,7			
	ART	4	0 - 23	23	7,4		31	21	3,3	5,7			
2	ART	4	23 - 45	22	7		37	24	2,4	4,1			
	ART	4	45 - 74	29	20,9		33	19	1,1	1,9			
	ART	4	74 - 95	21	19,4		30	19	1	1,7			
	BOC	3	0 - 31	31	73,9				0,83				
3	BOC	3	31 - 55	24	79,9				0,42				
	BOC	3	55 - 120	65	81	A.F.			0,22				
	CLG	3	0 - 15	15	28,6		25	17	2,3	4			
12	CLG	3	15 - 34	19	23,4		25	17	0,8	1,4			
	CLG	3	34 - 63	29	18,2		28	14					
	CMP	4	0 - 14	14	45,2		22	10	2,5	4,3			
14	CMP	4	14 - 27	13	45,5		18	9	1	1,7			
	CMP	4	27 - 49	22	45,5		16	9	0,5	0,9			
73-F	CMP	4	49 - 69	20	44,2		17	12	0,3	0,5			
18	CSB	7	0 - 15	15	34,1	1,8	27	19	3,9	6,7	T. J. T.		
	CSB	7	15 - 33	18	29,6	1,7	31	22	2,7	4,6			
	CSB	7	33 - 44	11	35,4	1,6	27	17	1,8	3,1			
	CSB	7	44 - 58	14	47,1	1,6	22	9	0,8	1,4			
	CSB	7	58 - 75	17	64,6	1,7	14	8	0,2	0,3			
	CSB	7	75 - 90	15	71,7	1,8	12	7.0	0,1	0,2			

7000											
	CSB	7	90 - 118 +	28	56,4	1,7	16	10	0,1	0,2	
16	CPC	2	0 - 19	19	39,3		24	12	1,5	2,6	
	CPC	2	25 - 54	29	26,2		37	25	0,4	0,7	
	CTM	5	0 - 16	16	43,1		20	10	1,4	2,4	
	CTM	5	16 - 30	14	39,5		17	10	0,9	1,6	
19	CTM	5	30 - 55	25	35,9		15	9	0,3	0,5	
	CTM	5	55 - 92	37	37,5		16	10	0,2	0,3	
	CTM	5	92 - 110	18	40		16	7	0,1	0,2	
	CDG	5	0 - 22	22	54,4	1,7	22	12	2,4	4,1	
	CDG	5	22 - 40	18	94,9		5	3	0,5	0,9	
7	CDG	5	40 - 55	15	98,2		5	3	0,1	0,2	
	CDG	5	55 - 70	15	98,3		4	2	0,1	0,2	
	CDG	5	70 - 100	30	98		5	3	0,1	0,2	
	CNQ	5	0 - 19	19	11,9		44	29	4,2	7,2	
	CNQ	5	19 - 33	14	9,5		51	40	4,5	7,8	
15	CNQ	5	33 - 50	17	8,7		56	45	4,8	8,3	
	CNQ	5	50 - 60	10	11,4		42	34	2,1	3,6	
	CNQ	5	60 - 120	60	20,2		35	26	0,4	0,7	
	CTR	3	0 - 18	18	25,1		25	15	2	3,4	
20	CTR	3	18 - 38	20	28,2		26	16	1,6	2,8	
	CTR	3	38 - 105	67	50		17	10	0,2	0,3	
	CRM	5	0 - 18	18	40,8		21	12	1,1	1,9	
	CRM	5	18 - 37	19	38,8		22	13	0,9	1,6	
17	CRM	- 5	37 - 64	27	39,5		20	13	0,5	0,9	
	CRM	5	64 - 96	32	45,6		20	11	0,6	1	
	CRM	5	96 - 135	39	41,3		20	8	0,7	1,2	
	CHR	3	0 - 18	18	25,2				3,37		
11	CHR	3	18 - 32	14	65,5				0,55		
5	CHR	3	32 - 55	23	89,7			+ 1111	0,16		
	CCQ	3	0 - 9	9	68,7		17	9	0,9	1,6	
6	CCQ	3	9 - 31	22	43,5		30	22	0,5	0,9	
11.	CCQ	3	31 - 55	24	50,6		29	20	0,4	0,7	

50									
	ENC	4	0 - 18	18	74,8	9	4	0,7	1,2
22	ENC	4	18 - 46	28	44,5	10	5	0,4	0,7
2.4.	ENC	4	46 - 72	26	64,1	13	7	0,2	0,3
	ENC	4	72 - 100	28	72,3	11	5	0,1	0,2
	GNZ	5	0 - 10	10	66,9	12	6	0,7	1,2
	GNZ	5	10 - 28	18	56,8	14	8	0,4	0,7
23	GNZ	5	28 - 54	26	52,4	13	8	0,4	0,7
	GNZ	5	54 - 75	21	54,3	14	7.0	0,3	0,5
	GNZ	5	75 - 100	25	63,2	13	8	0,1	0,2
	НЈА	4	0 - 20	20	29,4	33	18	3,8	6,6
25	ACH	4	20 - 46	26	39,9	24	14	1,2	2,1
23	HJA	4	46 - 68	22	35,2	25	15	1,9	3,3
	НЈА	4	68 - 110	42	40,5	23	13	0,7	1,2
	HCP	4	0 - 20	20	67,3	16	9	1,3	2,2
24	HCP	4	20 - 42	22	67,4	15	9	0,9	1,6
27	HCP	4	42 - 72	30	54,7	19	10	1	1,7
	HCP	4	72 - 94	22	61,8	17	8	0,6	1
	JHL	4	0 - 15	15	46,2	19	9	1	1,7
26	JHL	4	15 - 31	16	40,2	21	10	1	1,7
20	JHL	4	40 - 59	19	51,5	15	8	0,4	0,7
	JHL	4	59 - 86	27	38,5	17	9	0,3	0,5
	JRR	3	0 - 17	17	39,7	25	18	2,6	4,5
27	JRR	3	17 - 46	29	27,6	23	15	1,1	1,9
	JRR	3	46 - 78	32	36,7	23	16	0,6	1
	CAL	4	0 - 21	21	31,3	33	24	1,8	3,1
4	CAL	4	21 - 39	18	30	33	23	1,8	3,1
7	CAL	4	39 - 87	48	23,1	32	20	1,7	2,9
	CAL	4	87 - 110	23	31	30	20	0,9	1,6
	LGR	4	0 - 18	18	72,8			1,72	
29	LGR	4	18 - 31	13	71,6			0,49	
23	LGR	4	31 - 53	22	74,4			0,39	
	LGR	4	53 - 72	19	75,6			0,32	

The state of the s										
	LGU	5	0 - 21	21	24,3		26	13	1,9	3,3
	LGU	5	21 - 43	22	19,9		24	13	1,1	1,9
31	LGU	5	43 - 79	36	24,7		23	15	0,3	0,5
	LGU	5	79 - 103	24	32,8		23	14	0,1	0,2
	LGU	5	103 - 130	27	33,4		23	14	0,1	0,2
	CAS	4	0 - 20	20	11,7		43	33	1,9	3,3
5	CAS	4	20 - 52	32	10,2		48	37	0,8	1,4
	CAS	4	52 - 95	43	12,2		45	35	0,5	0,9
	CAS	4	95 - 120	25	22		38	30	0,2	0,3
	LRR	7	0 - 18	18	68,6	1,8	11	6	1	1,7
	LRR	7	18 - 36	18	69,7	1,8	10	6	0,2	0,3
	LRR	7	36 - 52	16	63,9	1,8	15	9	0,2	0,3
37	LRR	7	52 - 70	18	57,8		17	11	0,1	0,2
	LRR	7	70 - 87	17	65,4	2	13	8	0,1	0,2
	LRR	7	87 - 90	3	63,3	2	12	8	0	0
	LRR	7	90 - 118	28	59,8	2	12	8	0	0
	LVR	4	0 - 20	20	27,6		19	12	0,6	1
39	LVR	4	20 - 53	33	36,6		23	14	0,9	1,6
	LVR	4	53 - 75	22	27,7		23	14	1,7	2,9
4 - 1	LVR	4	75 - 120	45	28,8		23	13	0,2	0,3
28	LCM	2	0 - 10	10	19,5		47	32	4	6,9
	LCM	2	10 - 45	35	11,3		55	34	3,3	5,7
	LNR	3	0 -19	19	81,1		9	7	1,1	1,9
35	LNR	3	19 - 40	21	77,6		9	7	0,4	0,7
	LNR	3	40 - 61	21	80,7		9	6	0,2	0,3
	LGT	3	0 - 19	19	78,1		9	5	0,8	1,4
30	LGT	3	19 - 72	53	80,2		7	4	0,2	0,3
	LGT	3	72 - 110	38	83,2		6	4	0,1	0,2
	LHS	3	0 - 22	22	23,5		35	17	3,8	6,6
32	LHS	3	22 - 41	19	26,1		36	18	3,4	5,9
	LHS	3	41 - 65	24	37,6		30	13	1,5	2,6
	[m] [m]		12 00	A- 1	0.10		0.0	4.0	210	2/0

PD PD VZ	3	20 - 48 48 - 70	28	31				5,13		
		48 - 70						2120		
VZ		10 10	22	37,1				6,33		
	5	0 - 18	18	55,8	1,6	21	9	1,1	1,9	
VZ	5	18 - 32	14	46,9	1,8	24	9	0,5	0,9	
VZ	5	32 - 43	11	48,1	1,8	22	12	0,4	0,7	
VZ	5	43 - 57	14	56,8	1,8	22	12	0,2	0,3	
VZ	5	57 - 78	21	55,3	1,8	20	11	0,2	0,3	
LY	4	0 - 17	17	10,6		44	24	2,6	4,5	
LY	4	17 - 51	34	5,6		46	26	1,7	2,9	
LY	4	51 - 82	31	6,2		47	24	1,4	24	
LY	4	82 - 107	25	7		48	25	0,9	1,6	
UL	4	0 - 19	19	37,7		26	14	2,2	3,8	
UL	4	19 - 35	16	38		20				
UL	4	35 -53	18	31,9		22				
UL	4	53 - 76	23	32,4		24	17			
ITN	5	0 - 20	20	27,7		26	16			
ITN	5	20 - 43								
ITN	5	43 -66	23							
ITN	5	66 - 96	30	26,8			15			
ITN	5	96 - 120	24	24,6		23	15		0,3	
ING	4	0 - 18	18	52,8		17	10		2,2	Est 14
ING	4	18 - 36	18	44,8						
ING	4	36 - 51	15	41,3						
ING	4	51 - 85	34	46		19				
ILG	5	0 - 23	23	69,3		14				10.1
ILG	5	23 - 48	25					1		
ILG	5	48 - 69						0,4		
LG	5	69 - 104	35							
LG	5	104 - 120	16	58,7		17	8			
CA	4	0 - 21	21							18
CA	4									
CA	4									
LY UI UI UI UI II II II II II II II II II	L L L IN	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 82 - 107 L 4 0 - 19 L 4 19 - 35 L 4 35 - 53 L 4 53 - 76 N 5 0 - 20 N 5 20 - 43 N 5 43 - 66 N 5 66 - 96 N 5 96 - 120 L 6 4 0 - 18 L 7 18 - 36 L 7 18 L 7 18 - 36	4 82 - 107 25 L 4 0 - 19 19 L 4 19 - 35 16 L 4 35 - 53 18 L 4 53 - 76 23 N 5 0 - 20 20 N 5 20 - 43 23 N 5 43 - 66 23 N 5 66 - 96 30 N 5 96 - 120 24 L 6 4 0 - 18 18 L 7 18 - 36 18 L 8 18 - 36 18 L 9 18 L 9 18 18 L 9 18 L	4 51 - 82 31 6,2 4 82 - 107 25 7 L 4 0 - 19 19 37,7 L 4 19 - 35 16 38 L 4 35 - 53 18 31,9 L 4 53 - 76 23 32,4 N 5 0 - 20 20 27,7 N 5 20 - 43 23 26,2 N 5 43 - 66 23 22,7 N 5 66 - 96 30 26,8 N 5 96 - 120 24 24,6 N 4 18 - 36 18 44,8 N 4 36 - 51 15 41,3 N 4 36 - 51 15 41,3 N 5 0 - 23 23 69,3 N	4 51 - 82 31 6,2 4 82 - 107 25 7 L 4 0 - 19 19 37,7 L 4 19 - 35 16 38 L 4 35 - 53 18 31,9 L 4 53 - 76 23 32,4 N 5 0 - 20 20 27,7 N 5 20 - 43 23 26,2 N 5 43 - 66 23 22,7 N 5 66 - 96 30 26,8 N 5 96 - 120 24 24,6 N 6 4 18 - 36 18 44,8 N 6 4 36 - 51 15 41,3 N 6 5 23 - 48 25 71 N 6 5 48 - 69	6 4 51 - 82 31 6,2 47 6 4 82 - 107 25 7 48 1 4 0 - 19 19 37,7 26 1 4 19 - 35 16 38 20 1 4 35 - 53 18 31,9 22 1 4 53 - 76 23 32,4 24 2 4 53 - 76 23 32,4 24 2 1 4 53 - 76 23 32,4 24 2 1 4 53 - 76 23 32,4 24 2 1 4 53 - 76 23 32,4 24 2 1 4 23 26,2 27 27 2 1 4 3 - 66 23 22,7 25 25 2 1 0 1 24,6 23 23 26,8 26 26 23 27 25 28 26 28 28 17 18 <t< td=""><td>6 4 51 - 82 31 6,2 47 24 6 4 82 - 107 25 7 48 25 L 4 0 - 19 19 37,7 26 14 L 4 19 - 35 16 38 20 14 L 4 35 - 53 18 31,9 22 15 L 4 53 - 76 23 32,4 24 17 N 5 0 - 20 20 27,7 26 16 N 5 20 - 43 23 26,2 27 16 N 5 43 - 66 23 22,7 25 14 N 5 66 - 96 30 26,8 26 15 N 5 96 - 120 24 24,6 23 15 IG 4 0 - 18 18 52,8 17 10 IG 4 18 - 36 18 44,8 18 11 IG 4 51 - 85 34</td><td>6 4 51 - 82 31 6,2 47 24 1,4 6 4 82 - 107 25 7 48 25 0,9 L 4 0 - 19 19 37,7 26 14 2,2 L 4 19 - 35 16 38 20 14 0,6 L 4 35 - 53 18 31,9 22 15 0,2 L 4 53 - 76 23 32,4 24 17 0,1 N 5 0 - 20 20 27,7 26 16 1,6 N 5 20 - 43 23 26,2 27 16 1,3 N 5 43 - 66 23 22,7 25 14 0,7 N 5 66 - 96 30 26,8 26 15 0,4 N 5 96 - 120 24 24,6 23 15 0,2 IG 4 0 - 18 18 52,8 17 10 1,3</td><td>6 4 51 - 82 31 6,2 47 24 1,4 24 6 4 82 - 107 25 7 48 25 0,9 1,6 L 4 0 - 19 19 37,7 26 14 2,2 3,8 L 4 19 - 35 16 38 20 14 0,6 1 L 4 35 - 53 18 31,9 22 15 0,2 0,3 L 4 53 - 76 23 32,4 24 17 0,1 0,2 N 5 0 - 20 20 27,7 26 16 1,6 2,8 N 5 20 - 43 23 26,2 27 16 1,3 2,2 N 5 43 - 66 23 22,7 25 14 0,7 1,2 N 5 66 - 96 30 26,8 26 15 0,4 0,7 N 5 96 - 120 24 24,6 23 15 0,2</td></t<>	6 4 51 - 82 31 6,2 47 24 6 4 82 - 107 25 7 48 25 L 4 0 - 19 19 37,7 26 14 L 4 19 - 35 16 38 20 14 L 4 35 - 53 18 31,9 22 15 L 4 53 - 76 23 32,4 24 17 N 5 0 - 20 20 27,7 26 16 N 5 20 - 43 23 26,2 27 16 N 5 43 - 66 23 22,7 25 14 N 5 66 - 96 30 26,8 26 15 N 5 96 - 120 24 24,6 23 15 IG 4 0 - 18 18 52,8 17 10 IG 4 18 - 36 18 44,8 18 11 IG 4 51 - 85 34	6 4 51 - 82 31 6,2 47 24 1,4 6 4 82 - 107 25 7 48 25 0,9 L 4 0 - 19 19 37,7 26 14 2,2 L 4 19 - 35 16 38 20 14 0,6 L 4 35 - 53 18 31,9 22 15 0,2 L 4 53 - 76 23 32,4 24 17 0,1 N 5 0 - 20 20 27,7 26 16 1,6 N 5 20 - 43 23 26,2 27 16 1,3 N 5 43 - 66 23 22,7 25 14 0,7 N 5 66 - 96 30 26,8 26 15 0,4 N 5 96 - 120 24 24,6 23 15 0,2 IG 4 0 - 18 18 52,8 17 10 1,3	6 4 51 - 82 31 6,2 47 24 1,4 24 6 4 82 - 107 25 7 48 25 0,9 1,6 L 4 0 - 19 19 37,7 26 14 2,2 3,8 L 4 19 - 35 16 38 20 14 0,6 1 L 4 35 - 53 18 31,9 22 15 0,2 0,3 L 4 53 - 76 23 32,4 24 17 0,1 0,2 N 5 0 - 20 20 27,7 26 16 1,6 2,8 N 5 20 - 43 23 26,2 27 16 1,3 2,2 N 5 43 - 66 23 22,7 25 14 0,7 1,2 N 5 66 - 96 30 26,8 26 15 0,4 0,7 N 5 96 - 120 24 24,6 23 15 0,2

-										
	OCA	4	63 - 100	37	35,5	20	13	0,5	0,9	
	OLM	3	0 - 8	8	52,6	22	15	3,3	5,7	
50	OLM	3	8 - 25	17	52,5	21	14	1,9	3,3	
	OLM	3	25 - 36	- 11	63,8	14	10	0,5	0,9	
	PLM	3	0 - 18	18	7	76	40	20,7	35,7	
55	PLM	3	18 - 44	26	8,2	70	38	17,1	29,5	
	PLM	3	44 - 72	28	21	55	28	8,2	14,1	
	PQH	3	0 - 16	16	25,4			11,71		
56	PQH	3	16 - 24	8	24,3			17,32		
	PQH	3	24 - 100	76	22,6			10,14		
	PAT	3	0 - 15	15	20,4	34	21	1,7	2,9	
52	PAT	3	15 - 33	18	24,8	34	17	1,4	2,4	
115	PAT	3	33 - 55	22	18	38	21	2,3	4	
	PCR	5	0 - 18	18	40,8	23	13	1,2	2,1	
	PCR	5	18 - 48	30	30,9	24	14	1	1,7	
53	PCR	5	48 - 82	34	28,6	24	14	0,6	1	
	PCR	5	82 - 110	28	17	29	15	0,6	1	
	PCR	5	110 - 130	20	17	29	16	0,5	0,9	
	PUC	3	0 - 25	25	3,3	44	29	3,7	6,4	
58	PUC	3	25 - 70	45	3,6	43	28	1,7	2,9	
	PUC	3	70 - 100	30	4,2	42	27	1,1	1,9	
	PLL	5	0 - 17	17	13,6	33	20	2,8	4,8	
	PLL	5	17 - 38	21	8,2	29	18	1,2	2,1	
54	PLL	5	38 - 63	25	20,4	25	17	0,6	1	
	PLL	5	63 - 89	26	36,4	25	14	0,3	0,5	
	PLL	5	89 - 115	26	16,5	29	13	0,2	0,3	
57	PTD	2	0 - 13	13	25,6	27	13	2,1	3,6	11
3/	PTD	2	13 - 34	21	25	25	13	1,7	2,9	
FO	QBL	2	0 - 17	17	47,2	20	11	0,9	1,6	
59	QBL	2	17 - 29	12	46,1	19	9	0,4	0,7	
60	QLT	4	0 - 14	14	27,2	36	22	3,9	6,7	
	QLT	4	14 - 36	22	26,9	36		3,7		

Mar.											
	QLT	4	36 - 57	21	32,6		31	19	2,1	3,6	
	QLT	4	57 - 75	18	37,7		26	14	0,5	0,9	
	RUG	5	0-15	15	37,5	1,8	31	23	2,6	4,5	
	RUG	5	15-43	28	35,2	1,8	33	24	1,2	2,1	
62	RUG	5	43-66	23	33,6	1,8	34	27	0,7	1,2	
	RUG	5	66-98	32	25,4	1,8	36	28	0,5	0,9	
	RUG	5	98-120	22	23,6	1,8	40	28	0,3	0,5	
65	SFL	2	0 - 14	14	59,8		18	9	1,7	2,9	
-	SFL	2	14 - 33	19	61,2		16	9	1	1,7	
	SDR	4	0 - 18	18	20,5		32	25	4,5	7,8	
64	SDR	4	18 - 38	20	5				3,1	5,3	
	SDR	4	38 - 67	29	18,3		52	38	3,1	5,3	
	SDR	4	67 - 93	26	18,2		39	28	1	1,7	
	SLZ	5	0 - 15	15	44		25	15	2,4	4,1	17
	SLZ	5	15 - 34	19	44,2		26	17	2,3	4	
66	SLZ	5	34 - 55	21	41,5		22	14	0,4	0,7	
	SLZ	5	55 - 78	23	51,8		18	10	0,3	0,5	
	SLZ	5	78 - 110	32	67,8		12	6	0,1	0,2	
	SAC	5	0 - 25	25	67,1	1,7	12	6	1,7	2,9	
	SAC	5	25 - 47	22	56,4	2	19	11	0,2	0,3	
63	SAC	5	47 - 66	19	43	2	29	19	0,1	0,2	
	SAC	5	66 - 84	18	65,7	2	15	9	0,1	0,2	
	SAC	5	84 - 110	26	67,2	2	11	8	0	0	
	SMA	4	0 - 17	17	32,4		27	16	2	3,4	
67	SMA	4	17 - 54	37	20,8		28	17	1,1	1,9	
	SMA	4	54 - 67	13	30,4		26	15	0,7	1,2	
115	SMA	4	67 - 110	43	43,9		20	10	0,3	0,5	
68	SRC	6	0 - 18	18	70,2	1,9	13	8	2,4	4,1	
	SRC	6	18 - 37	19	71,3	1,7	11	6	0,4	0,7	
	SRC	6	37 - 64	27	71,5	1,8	11	6	0,2	0,3	
	SRC	6	64 - 85	21	73	1,9	11	6	0,1	0,2	
	SRC	6	85 - 110	25	74,3	2	11	6	0,1	0,2	

-											
	SRC	6	110 - 125	15	74,4	2	9	5	0,1	0,2	
	RCB	8	0 - 16	16	76,3	1,9	9	5	1,2	2,1	
	RCB	8	16 - 42	26	80	1,6	9	5	0,4	0,7	
	RCB	8	42 - 49	7	69,4	1,9	15	9	0,2	0,3	
61	RCB	8	49 - 60	11	57	1,9	26	16	0,2	0,3	
-	RCB	8	60 - 77	17	48,3	1,9	21	12	0,1	0,2	
	RCB	8	77 - 94	17	41,2	2	26	16	0,1	0,2	
	RCB	8	94 - 105	11	65,4	2	18	10	0	0	
	RCB	8	105 - 120	15	71,1	2	15	9	0	0	
	STD	5	0 - 19	19	85,3				0,31		
	STD	5	19 - 29	10	88				0,37		
69	STD	5	29 - 62	33	88,6				0,39		
	STD	5	62 - 81	19	88,4				0,17		
160	STD	5	81 - 107 +	26	88,2				0,09		
	TBL	3	0 - 17	17	58,5		16	6	0,6	1	
72	TBL	3	17 - 44	27	24,6		36	29	0,5	0,9	
	TBL	3	44 - 59	15	17,7		43	29	0,2	0,3	
	TAP	5	0 - 15	15	59,6	1,7	22	10	1,8	3,1	
	TAP	5	15 - 32	17	62,3	1,7	18	9	1,4	2,4	
71	TAP	5	32 - 58	26	66,7	1,7	14	7	0,5	0,9	
	TAP	5	58 - 100	42	91,6	1,7	13	6	0,5	0,9	
	TAP	5	100 - 132	32	74,9	1,7	4	2	0,1	0,2	
	TRO	5	0-14	14	5,4	1,8	40	25	1,8	3,1	
	TRO	5	14-26	12	6,1	1,8	39	26	1,3	2,2	
74	TRO	5	26-54	28	6,6	1,8	38	24	1,1	1,9	
	TRO	5	54-86	32	8,2	1,8	38	24	1	1,7	
	TRO	5	86-120 y +	34	15,8	1,7	39	25	0,5	0,9	
	VLG	3	0 - 19	19	23,4		29	16	1,9	3,3	
76	VLG	3	19 - 51	32	37,6		26	14	0,8	1,4	
9-1	VLG	3	63 - 80	17	44,7		23	12	0,6	1	
75	VCN	2	0 - 12	12	75,4		9	5	1,2	2,1	
/3	VCN	2	12 - 45	33	80,3		9	5	0,9	1,6	

Anexo 2: Información de las series de suelos de la Región Metropolitana

Identificado r	Serie	Nº Estrato	Estrato (cm)	Prof (cm)	Fracción de Arena	DENSIDAD APARENTE g/cm3	HUMEDAD RETENIDA 33 kPa %	HUMEDAD RETENIDA 1500 kPa %	CO %	MO %	relación C/N	Valores iniciales de agua	nitrogeno mineral inicial
	AGD	4	0 - 19	19	14,1		35	26	3,3	5,7			
1	AGD	4	19 - 46	27	11,1		38	30	2,6	4,5			
	AGD	4	46 - 70	24	17,1		36	28	1,1	1,9			
	AGD	4	70 - 85	15	35,6		26	18	0,4	0,7			
	LCT	5	0 - 17	17	30,2	1,7	29	15	2,4	4,1			
	LCT	5	17 - 31	14	25,6	1,6	30	18	1,6	2,8			
34	LCT	5	31 - 49	18	22,7	1,6	31	18	1,1	1,9			
	LCT	5	49 - 82	33	18,7	1,8	31	19	0,4	0,7			
	LCT	5	82 - 120	38	18	1,9	31	20	0,4	0,7			
	BRR-	5	0 - 20	20	42		22	13	2,8	4,8			To Maria Tay
	BRR-	5	20 - 36	16	41		22	15	2,5	4,3			
2	BRR-	5	36 - 55	19	31,2		30	20	1,2	2			
	BRR-	5	55 - 77	22	30,9		30	21	0,6	1			
	BRR-	5	77 - 90	13	28,7		30	22	0,4	0,7			
	BTC	5	0 - 5	5	15	16.1	43	27	2,8	4,8			
	BTC	5	5 - 24	19	12		44	28	0,7	1,2			
3	BTC	5	24 - 51	27	4,7		64	35	0,2	0,3			
	BTC	5	51 - 63	12	15,1		42	25	0,2	0,3			
	BTC	5	63 - 90	27	55,2		23	12	0,2	0,3			
	BUN	5	0 - 20	20	52,2		14,7	7,5		2			
	BUN	5	20 - 36	16	51		15,8	8		1,7			
4	BUN	5	36 - 50	14	62,8		13,4	7,2		0,9			
	BUN	5	50 - 76	26	36,7		22	13		0,9			
	BUN	5	76 - 98	22	56,6		15,5	8,4		0,6			
	CLR	5	0 - 35	35	35		20	11	2	3,4			
	CLR	5	35 - 60	25	40,8		19	11	0,5	0,9			
7	CLR	5	60 - 82	22	43		19	9	0,2	0,3			
	CLR	5	82 - 115	33	53,8		13	8	0,2	0,3			
	CLR	5	115 - 145	30	57,1		12	7	0,1	0,3			
6	CDG	5	0 - 22	22	54,4	1,7	22	12	2,4	4,1		P. C. Salani	108 70 7

8000	GOBIERNO DE CHILE
Sec.	FUNDACIÓN PARA LA INNOVACIÓN AGRARIA

	CDG	5	22 - 40	18	94,9		5	3	0,5	0,9
	CDG	5	40 - 55	15	98,2		5	3	0,1	0,2
	CDG	5	55 - 70	15	98,3		4	2	0,1	0,2
	CDG	5	70 - 100	30	98	- 1	5	3	0,1	0,2
	CNA	5	0 - 15	15	45,2		25	11	1,2	2,1
	CNA	5	15 - 35	20	46,4		24	14	1	1,7
8	CNA	5	35 - 50	15	50,3		21	11	0,5	0,9
	CNA	5	50 - 65	15	32,1		29	14	0,8	1,4
	CNA	5	65 - 95	30	29,9		33	16	0,7	1,2
	COU	5	0 - 15	15	47,3		25	24	0,4	0,7
	COU	5	15 - 25	10	43		35	22	0,4	0,7
9	COU	5	25 - 37	12	17,2		46	28	0,3	0,5
	COU	5	37 - 55	18	42,3		36	21	0,2	0,3
	COU	5	55 - 85	30	28,3		68	32	0,2	0,3
	CTV	4	0 -11	11	52,7		21	10	1,9	3,3
20	CTV	4	11-34	23	56,2		17	8	0,7	1,2
20	CTV	4	34 - 62	28	48		18	8	0,3	0,5
	CTV	4	62 -103	41	43,7		19	10	0,2	0,3
	CHD	5	0 - 23	23	25,1		26	16	2,6	4,5
	CHD	5	23 - 42	19	26	1,7	25	16	2,1	3,6
15	CHD	5	42 - 70	28	31,6	1,8	24	15	1,1	1,9
	CHD	5	70 - 92	22	42,2	1,8	21	13	0,4	0,7
	CHD	5	92 - 114	22	47	1,8	20	12	0,4	0,7
16	CHE	5	0 - 15	15	36,8		24	17	1,6	2,8
10	CHE	5	15 - 32	17	39,2		18	17	1,3	2,2
	CHE	5	32 - 38	6	58,1		28	12	0,6	1
	CHE	5	38 - 52	14	39,9		37	19	1	1,7
	CHE	5	52 - 86	34	16,6		34	26	1,9	3,3
17	CHG	5	0 - 14	14	45,2	1,6	24	12	2,9	5
1/	CHG	5	14 - 28	14	45,3	1,6	24	12	2,8	4,8
	CHG	5	28 - 45	17	42,5	1,6	23	10	2,3	4
	CHG	5	45 - 57	12	50,2	1,7	22	11	1,7	2,9
	CHG	5	57 - 100	43	65,3		16	8	0,7	1,2
15	CHU	5	0 - 17	17	79,6	HER TH	8	4	0,7	1,2

RINDAC	NO DE CHILE
	CIÓN PARA LA

6										
	CHU	5	17 - 40	23	85		5	3	0,3	0,5
	CHU	5	40 - 65	25	85,9		6	3	0,2	0,3
	CHU	5	65 - 96	31	86,6		6	3	0,1	0,2
	CHU	5	96 - 115	19	86,1		5	3	0,1	0,2
8	CHC	5	0 - 25	25	16,4		37	30	1,1	1,9
	CHC	5	25 - 70	45	16,6		40	32	0,9	1,6
	CHC	5	70 - 86	16	18,2		39	30	0,8	1,4
	CHC	5	86 - 102	16	21,5		36	26	0,6	1
	CHC	5	102 - 120	18	26,3		31	26	0,2	0,3
14	CHT	-3	0 - 10	10	7,9		47	35	3,9	6,7
	CHT	3	10 - 50	40	7,6		51	37	3,5	6
	CHT	3	50 - 100	50	25,7		39	23	0,5	0,9
	CHQ	5	0 - 18	18	27,3	1,7	26	15	2,8	4,8
13	CHQ	5	18 - 32	14	23	1,6	24	14	1,7	2,9
	CHQ	5	32 - 53	21	25,1	1,6	20	11	1,1	1,9
	CHQ	5	53 - 72	19	53,2	1,9	18	10	0,3	0,5
	CHQ	5	72 - 90	18	39,7	1,9	19	11	0,2	0,3
7	СНВ	5	0 - 18	18	38,1	1,7	23	12	1,8	3,1
	СНВ	5	18 - 32	14	37	1,6	23	12	0,9	1,6
	СНВ	5	32 - 59	27	45,5	1,5	20	10	0,5	0,9
	CHB	5	59 - 95	36	94,6		3	2	0	0
	CHB	5	95 - 102	7	66,9	1,6	10	8	0,2	0,3
78	STL	4	0 - 22	22	81,3	1,5	10	5	1,3	2,2
	STL	4	22 - 31	9	76,2	1,4	14	6	1,3	1,4
	STL	4	31 - 57	26	68,8	1,3	19	7	0,8	1,4
	STL	4	57 - 85	28	91,3		6	3	0,1	0,2
22	ETS	3	0 - 36	36	32		22	11	1,6	2,8
	ETS	3	36 - 56	20	49,1		15	10	0,9	1,6
	ETS	3	56 - 125	69	99,9		11	7	0,4	0,7
23	GGU	3	0 - 22	22	41,3		24	15	2,3	4
	GGU	3	22 - 28	6	52,8		22	17	1,7	2,9
	GGU	3	28 -60	32	70,1		14	11	0,3	0,5
26	HDL	5	0 - 14	14	32,5	1,7	28	14	2	3,4
	HDL	5	14 - 29	15	32,4	1,5	27	14	1	1,7

GOBIERNO DE CH	
	II.E.
FUNDACIÓN PARA INNOVACIÓN AGRA	LA

	HDL	5	29 - 47	18	35,8	1,6	26	14	0,7	1,2	
	HDL	5	47 - 82	35	40,3	1,6	26	13	0,5	0,9	
	HDL	5	82 - 108	26	47,3	1,7	22	11	0,4	0,7	
24	HCN	5	0 - 21	21	8,8	1,8	48	32	2	3,4	
	HCN	5	21 - 42	21	7,6	1,7	45	30	1,8	3,1	
	HCN	5	42 - 65	23	12,4	1,7	45	30	1,4	2,4	
	HCN	5	65 - 84	19	20,6	1,7	39	26	1,1	1,9	
	HCN	5	84 - 102	18	23,7	1,7	35	23	0,6	1	
28	HUE	4	0 - 17	17	27		25	16	2,3	4	
	HUE	4	17 - 43	26	31,7		25	15	1,6	2,8	
	HUE	4	43 - 80	37	28,1		33	22	0,7	1,2	
	HUE	4	80 - 112	32	34		31	22	0,3	0,5	
27	HPT	5	0 - 16	16	12,8	1,6	51	29	5	8,6	
21	HPT	5	16 - 32	16	11,1	1,6	47	27	2,7	4,6	
	HPT	5	32 - 45	13	11,1	1,6	43	24	1,3	2,2	
	HPT	5	45 - 55	10	13,5	1,7	40	22	0,8	1,4	
	HPT	- 5	55 - 70	15	22	1,7	36	18	0,5	0,9	
29	HUN	4	0 - 28	28	38		26	13	1,6	2,8	
	HUN	4	28 - 58	30	57,4		15	8	0,4	0,7	
	HUN	4	58 - 91	33	44,5		20	10	0,8	1,4	
	HUN	4	91 - 122	31	51,8		15	7	0,2	0,3	
25	HCH	5	0 - 20	20	42,1	1,5	21	12	1,3	2,3	
23	HCH	5	20 - 41	21	40	1,6	22	13	1,1	1,9	
	HCH	5	41 - 71	30	75,2		7	2	0,2	0,3	
	HCH	5	71 - 106	35	70,5		7	2	0,2	0,4	
	HCH	5	106 - 120	14	64,4		10	4	0,3	0,5	
4-1	HGR	5	0 - 14	14	20,2		40	27	4,2	7,2	
	HGR	5	14 - 39	25	18		47	34	2	3,4	
27	HGR	5	39 - 68	29	17,6		45	35	1,8	3,1	
	HGR	5	68 - 90	22	21,9		30	25	1	1,7	
	HGR	5	90 - 120	30	27,2		32	22	0,9	1,6	
38	LMP	5	0 - 17	17	55,2	1,5	26	13	1,6	2,8	
	LMP	5	17 - 32	15	55,3	1,5	25	12	1,3	2,2	
	LMP	5	32 - 58	26	70,2	1,5	16	8	0,6	1	

	LMP	5	58 - 96	38	57,8	1,6	21	11	0,4	0,7	
	LMP	5	96 - 107	11	47,6	1,6	24	10	0,2	0,3	
37	LMC	5	0 - 11	11	51,4		23	11	1,3	2,2	
3/	LMC	5	11 - 32	21	54,4		23	9	1,1	1,8	
	LMC	5	32 - 56	24	52,6		20	8	0,2	0,3	
	LMC	5	56 - 72	16	56,1		20	9	0,2	0,3	
	LMC	5	72 - 105	33	76,7		5	4	0,03	0,05	
33	LAP	4	0 - 16	16	73,4	1,9	13	7	0,6	1	
	LAP	4	16 - 40	24	73,3	1,8	13	6	0,3	0,5	
	LAP	4	40 - 57	17	74,1	1,8	12	5	0,2	0,3	
	LAP	4	57 - 74	17	96,7		-3	2	0	0	
89	VLA	4	0 - 6	6	12,2		40	27	2,4	4,1	Professional Surveyor
	VLA	4	6 - 57	51	3,4		47	31	1	1,7	
	VLA	4	57 - 80	23	5,5		50	33	0,7	1,2	
	VLA	4	80 - 120	40	8,5		52	36	0,7	1,2	
36	LIN	4	0 - 15	15	34,5		20,5	14,3		2,4	
	LIN	4	15 - 40	25	28,9		21,9	14,9		2,3	
	LIN	4	40 - 56	16	24,1		22	14,2		1,4	
	LIN	4	56 - 76	20	29,9		22,4	12,4		1	
35	LGG	5	0 - 22	22	72,5	2	10	4	0,5	0,85	
33	LGG	5	22 - 36	14	76,8	2	8	4	0,2	0,34	
	LGG	5	36 - 53	17	69,7	1,9	11	6	0,2	0,34	
	LGG	5	53 - 58	5	57,3	1,9	18	10	0,2	0,34	
	LGG	5	68 - 120	52	61,4	1,9	15	9	0,2	0,34	
41	LRA	5	0 - 20	20	43,5		36	20	2	3,4	
1.0	LRA	5	20 - 34	14	33,5		24	12	1,4	2,4	
	LRA	5	34 - 45	11	20,4		24	12	0,5	0,9	
	LRA	5	45 - 56	11	40,6		23	12	0,3	0,5	
	LRA	5	56 - 65	9	44,1		24	11	0,2	0,3	
39	LON	5	0 - 16	16	50,2	1,6	28	17	5,6	9,6	
	LON	5	16 - 33	17	53,1		22	11	3,4	5,9	
	LON	5	33 - 50	17	60		18	11	1,8	3,1	
	LON	5	50 - 75	25	72,4		16	10	0,8	1,4	
	LON	5	75 - 100	25	89,3		8	4	0,2	0,3	

31	LAG	4	0 - 18	18	17,1		TALL F		5,3		
	LAG	4	18 - 35	17	18,3				2,76		
	LAG	4	35 - 58	23	26,6				1,13		
	LAG	4	58 - 70	12	48,7				0,26		
40	LPR	4	0 - 16	16	68		16	7	1	1,7	
	LPR	4	16 - 45	29	67,2		36	22	0,2	0,4	
	LPR	4	45 - 73	28	79,4		17	7	0,1	0,2	
	LPR	4	73 - 82	9	87,1		12	5	0,03	0,05	
10	CRD	4	0 - 26	26	32,2	1,7	23	16	2,1	3,6	
	CRD	4	26 - 51	25	35,6	1,7	23	14	1,3	2,2	
	CRD	4	51 - 90	39	29,7	1,5	26	15	0,8	1,4	
	CRD	4	90 - 120	30	13,4	1,6	31	20	0,8	1,4	
48	MRR	5	0 - 15	15	31,8		23,2	13,4		3,4	
10	MRR	5	15 - 33	18	29,6		24,7	14,6		3,2	
	MRR	5	33 - 46	13	28,1		24,7	16		3	
	MRR	5	46 - 69	23	33,6		21,7	14,9		2	
	MRR	5	69 - 77	8	35,7		22,1	14,9		1,6	
42	LVZ	5	0 - 18	18	55,8	1,6	21	9	1,1	1,9	
12	LVZ	5	18 - 32	14	46,9	1,8	24	9	0,5	0,9	
	LVZ	5	32 - 43	11	48,1	1,8	22	12	0,4	0,7	
	LVZ	5	43 - 57	14	56,8	1,8	22	12	0,2	0,3	
	LVZ	5	57 - 78	21	55,3	1,8	20	11	0,2	0,3	
42	MAO	6	0 - 16	16	42	1,5	21	13	1,5	2,6	
43	MAO	6	16 - 33	17	38	1,6	22	14	1,2	2,1	
	MAO	6	33 - 50	17	25,8	1,7	24	16	1,2	2,1	
	MAO	6	50 - 74	24	33,3	1,9	23	16	0,8	1,4	
	MAO	6	74 - 92	18	40,3	1,9	27	18	0,4	0,7	
	MAO	6	92 - 120	28	45,8	1,8	22	13	0,3	0,5	
47	MPC	5	0 - 21	21	23,6	1,6	33	17	1,9	3,3	
17	MPC	5	21 - 46	25	28	1,7	31	16	0,5	0,9	
	MPC	5	46 - 67	21	18,3	1,6	37	21	0,3	0,5	
	MPC	5	67 - 82	15	25	1,6	34	19	0,2	0,3	
	MPC	5	82 - 90	8	85,7		9	6	0,4	0,2	

	MIN	3	77 - 106	29	44,4		26	13	0,1	0,2	
	MIN	3	106 - 123	17	51,6		21	11			
52	PAH	5	0 - 25	25	13,7	1,5	35	25	3,3	6,2	
32	PAH	5	25 - 49	24	13,5	1,4	34	23	1,5	2,6	
	PAH	5	49 - 70	21	15,1	1,4	34	23	1,1	1,9	
	PAH	5	70 - 100	30	15,1	1,5	34	23	1	1,7	
	PAH	5	100 - 120	20	16,2	1,5	34	23	0,9	1,6	
59	PNE	4	0 -24	24	19,2		49,4	34		14	
	PNE	4	24 - 37	13	21,8		46,3	31,5		13,6	
	PNE	4	37 - 60	23	32,3		34,3	23,8		4,8	
	PNE	4	60 - 80	20	41,1		27	17,5		1,9	
63	PTA	3	0 - 13	13	40,6		25	13	0,9	1,6	
	PTA	3	13 - 28	15	37,5		26	13	0,5	0,9	
	PTA	3	28 - 64	36	23,1		35	21	0,3	0,5	
62	PRE	4	0 - 8	8	4,6		55	46	4,6	7,9	
	PRE	4	8 - 36	28	4,2		53	36	2,6	4,5	
	PRE	4	36 - 90	54	5		48	33	1	1,7	
	PRE	4	90 - 120	30	15,7		38	26	0,3	0,5	
53	PCH	5	0 - 13	13	48,4	1,7	24	10	2	3,4	
55	PCH	5	13 - 35	22	47,2	1,7	23	10	0,9	1,6	
	PCH	5	35 - 60	25	66,8	1,8	18	9	0,4	0,7	
	PCH	5	60 - 84	24	77,8	1,8	10	5	0,2	0,3	
	PCH	5	84 - 125	41	55,8	1,7	19	9	0,2	0,3	
55	PLC	5	0 - 12	12	28,5	1,6			8	13,8	
55	PLC	5	12 - 26	14	32	1,5	30	13	1,4	2,4	
	PLC	5	26 - 38	12	20,2	1,6	28	13	1,3	2,2	
	PLC	5	38 - 67	29	12,7	1,7	29	17	1,2	2,1	
	PLC	5	67 - 88	21	12,6	1,7	30	17	0,6	1	
64	PTB	4	0 - 20	20	20,2		21	11	2,4	4,1	7193
	PTB	4	20 - 38	18	56,7	1,8	15	8	0,4	0,7	
	PTB	4	38 - 67	29	19,2	1,9	15	8	0,1	0,2	
	PTB	4	67 - 110	43	60	2	13	8	0	0	
60	PNT	5	0 - 20	20	67,2	1,6	17	9	1,7	2,9	
	PNT	5	20 - 36	16	77,3	1,6	11	6	0,6	1	

PNT 5 36 - 55 19 84,7 6 4 0,2 0,3 PNT 5 55 - 80 25 72 1,6 15 8 0,4 0,7 PNT 5 80 - 110 30 79,9 1,7 10 5 0,2 0,3 PMR 5 0 - 23 23 55,9 2 20 10 1,2 2,1 PMR 5 462 - 78 17 6,3 2 16 9 0,1 0,2 PMR 5 62 - 78 16 6,3 2 16 9 0,1 0,2 PMR 5 62 - 78 16 6,3 2 1,6 0,2 0,3 0,2 0,3 0,2 0,3 0,3 0,3 0,2 0,3 0,3 0,2 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,4 0,7 0,3	5 36-55 19 84,7 6 4 0.2 5 55-80 25 72 1,6 15 8 0,4 5 80-110 30 29,9 1,7 10 5 0,4 5 80-110 30 29,9 1,7 10 5 0,4 5 0-23 23 55,9 2 20 10 1,2 5 45-62 17 63,6 2,1 20 10 1,2 5 62-78 16 62,9 2,1 20 10 0,1 5 62-78 16 62,9 2,1 20 10 0,1 5 62-78 16 62,9 2,1 20 10 0,1 5 62-78 16 62,9 2,1 20 10 0,1 5 62-78 13 25,4 1,5 33 20 1,9 0,1	PNT	PNT	PNT	PMR	PMR	PMR	PMR	PMR	PLP	PLP	PLP	PLP	PLP	PPT	PPT	PPT	PPT	PPT	PUG	PUG	PUG	PUG	PUG	PUD	DUD	DUD	DUD	PTL	PTL	PTL	QLM	QLM	QLM	
19 84,7 6 4 0,2 25 72,1,6 15 8 0,4 30 79,9 1,7 10 5 0,2 23 55,9 2 20 10 1,2 24 63,6 2 16 9 0,1 16 62,9 2,1 20 10 0,1 16 62,9 2,1 20 10 0,1 17 18,8 1,5 33 22 1,9 0,1 17 18,8 1,5 32 20 0,1 0,1 11 19,2 1,3 39 20 0,4 0,2 0,4 13 55,4 1,7 17 8 1,6 0,2 0,4 14 48,8 1,7 17 8 1,6 0,4 0,1 13 89,9 1,6 24 11 0,1 0,2 0,1 14 48,8 1,7 17 8 1,6 0,2 0,1 1	19 84,7 6 4 0,2 25 72 1,6 15 8 0,4 30 79,9 1,7 10 5 0,2 23 55,9 2 20 10 1,2 22 50 1 17 9 0,2 17 63,6 2,1 20 10 0,1 17 63,6 2,1 20 1,2 0,1 17 63,6 2,1 20 1,0 0,1 16 62,9 2,1 20 1,0 0,1 17 18 1,5 33 22 1,9 18 1,5 33 22 1,9 0,1 19 1,5 33 22 1,9 0,1 11 1,5 33 22 1,9 0,1 11 1,3 39 20 0,1 11 4,8 1,7 20 <																							1/4											
19 84,7 6 4 0,2 25 72 1,6 15 8 0,4 30 79,9 1,7 10 5 0,2 23 55,9 2 20 10 1,2 24 50,0 1 17 9 0,1 25 50 1 17 9 0,1 16 62,9 2,1 20 10 0,1 16 62,9 2,1 20 1,0 0,1 17 18,8 1,5 33 22 1,9 0,1 17 18,8 1,7 17 8 1,6 0,9 11 48,8 1,7 17 8 1,6 0,9 13 29,5 1,6 24 11 0,1 14 48,8 1,7 1 8 1,6 13 29,5 1,6 27 1 0,1 <td< td=""><td>19 84,7 6 4 0,2 25 72 1,6 15 8 0,4 20 79,9 1,7 10 5 0,2 23 55,9 2 20 10 1,2 24 63,6 2 1 1,2 0,2 25 1 1 9 0,2 0,2 17 63,6 2,1 20 10 0,1 16 62,9 2,1 20 10 0,1 17 18,8 1,5 32 20 0,1 17 18,8 1,5 32 20 0,1 18 1,5 32 20 0,1 19 55,4 1,5 32 20 0,1 11 48,8 1,7 1 8 1,6 14 48,8 1,7 1 8 1,6 14 48,8 1,7 1 1</td><td></td><td>5</td><td>2</td><td>5</td><td>22</td><td>2</td><td>2</td><td>2</td><td>5</td><td>15</td><td>2</td><td>2</td><td>2</td><td>2</td><td>25</td><td>2</td><td>2</td><td>25</td><td>2</td><td>22</td><td>2</td><td>5</td><td>2</td><td>4</td><td>4</td><td>4</td><td>4</td><td>n</td><td>3</td><td>3</td><td>5</td><td>2</td><td>2</td><td></td></td<>	19 84,7 6 4 0,2 25 72 1,6 15 8 0,4 20 79,9 1,7 10 5 0,2 23 55,9 2 20 10 1,2 24 63,6 2 1 1,2 0,2 25 1 1 9 0,2 0,2 17 63,6 2,1 20 10 0,1 16 62,9 2,1 20 10 0,1 17 18,8 1,5 32 20 0,1 17 18,8 1,5 32 20 0,1 18 1,5 32 20 0,1 19 55,4 1,5 32 20 0,1 11 48,8 1,7 1 8 1,6 14 48,8 1,7 1 8 1,6 14 48,8 1,7 1 1		5	2	5	22	2	2	2	5	15	2	2	2	2	25	2	2	25	2	22	2	5	2	4	4	4	4	n	3	3	5	2	2	
84,7 6 4 0,2 72 1,6 15 8 0,4 79,9 1,7 10 5 0,2 55,9 2 20 10 1,2 50 1 17 9 0,2 63,6 2,1 20 10 0,1 63,6 2,1 20 10 0,1 63,6 2,1 20 10 0,1 62,9 2,1 20 10 0,1 18,8 1,5 33 22 1,9 19,2 1,3 39 20 0,9 19,2 1,3 39 20 0,9 19,2 1,3 39 20 0,9 19,4 1,7 17 8 1,6 20,5 1,3 39 20 0,9 44,3 1,7 17 0,2 8,5 1,6 24 11 0,1	84,7 6 4 0,2 72 1,6 15 8 0,4 79,9 1,7 10 5 0,2 55,9 2 20 10 1,2 50 1 17 9 0,2 63,6 2,1 20 10 0,1 62,9 2,1 20 10 0,1 53,7 1,9 3 22 1,9 0,1 55,4 1,5 32 20 0,9 0,4 29,5 1,3 39 20 0,4 0,4 29,5 1,3 36 18 0,4 44,3 1,7 17 8 1,6 0,4 44,3 1,7 20 10 0,9 89,9 1,6 24 11 0,1 89,9 1,6 27 1,4 27 89,9 1,6 27 1,4 58,9 1,6 </td <td>36 - 55</td> <td>55 - 80</td> <td>80 - 110</td> <td>0 - 23</td> <td>23 - 45</td> <td>45 - 62</td> <td>62 - 78</td> <td>78 - 115</td> <td>0-17</td> <td>17 - 30</td> <td>30 - 51</td> <td>51 - 87</td> <td>87 - 120</td> <td>0 - 14</td> <td>14 - 53</td> <td>23 - 67</td> <td>08 - 29</td> <td>80 - 100</td> <td>0-10</td> <td>10 - 24</td> <td>24 - 56</td> <td>29 - 95</td> <td>67 - 110</td> <td>0-19</td> <td>19 - 34</td> <td>34 - 48</td> <td>48 - 55</td> <td>0 - 15</td> <td>15 - 38</td> <td>38 - 85</td> <td>0 - 19</td> <td>19 - 35</td> <td>35 - 57</td> <td></td>	36 - 55	55 - 80	80 - 110	0 - 23	23 - 45	45 - 62	62 - 78	78 - 115	0-17	17 - 30	30 - 51	51 - 87	87 - 120	0 - 14	14 - 53	23 - 67	08 - 29	80 - 100	0-10	10 - 24	24 - 56	29 - 95	67 - 110	0-19	19 - 34	34 - 48	48 - 55	0 - 15	15 - 38	38 - 85	0 - 19	19 - 35	35 - 57	
6 4 0,2 1,6 15 8 0,4 1,7 10 5 0,02 2 20 10 1,2 2 16 9 0,1 2,1 20 10 0,1 1,3 33 22 1,9 1,3 39 20 0,4 1,3 39 20 0,4 1,4 27 11 0,1 1,6 25 11 0,2 1,7 17 8 1,6 1,6 27 12 0,1 1,6 27 11 0,1 1,6 25 11 1,7 1,7 20 10 0,9 1,4 27 13 0,5 1,4 24 13 0,5 1,7 24 13 0,5 1,4 27 13 0,5 1,7 27 13 0,5 1,7 27 13 0,5 1,7 27 13 0,5 1,7 27 13 0,5 1,7 27 13 0,5 1,7 27 13 0,5 1,7 27 13 0,5 1,7 27 13 0,5 1,7 27 13 0,5 1,7 27 13 0,5 1,7 27 13 0,5 1,7 27 13 0,5 1,7 27 13 0,5 1,7 27 13 0,5 1,7 27 13 0,5 1,7 27 13 0,5 1,7 12 6 6 0,5 1,7 12 6 0,5 1,7 12 6 0,5 1,7 12 6 0,5 1,7 12 0 0,1	6 4 0,2 1,6 15 8 0,4 1,7 10 5 0,02 2 20 10 1,2 2 16 9 0,1 2,1 20 10 0,1 1,9 32 20 0,8 1,3 39 20 0,4 1,7 17 8 1,6 1,6 27 11 0,1 1,6 24 11 0,1 1,6 27 12 0,1 1,6 27 12 0,1 1,7 17 8 1,6 1,7 20 10 0,9 1,8 1,6 1,9 0,9 1,4 27 13 0,5 1,4 27 13 0,5 1,4 27 13 0,5 1,7 4 24 13 0,5 1,7 4 24 13 0,5 1,7 12 6 0,9 1,7 20 10 0,9 1,4 27 13 0,5 1,7 4 24 13 0,5 1,7 12 6 0,9 1,7 12 0,0 1,7 12 0,0 1,7 12 0,0 1,7 12 0,0 1,7 12 0,0	19	25	30	23	22	17	16	37	17	13	21	36	33	14	39	14	13	20	10	14	32	11	43	19	15	14	7	15	23	47	19	16	22	
6 4 0,2 15 8 0,4 10 5 0,2 20 10 1,2 17 9 0,1 18 9 0,1 20 10 0,1 20 10 0,1 33 22 1,9 39 20 0,8 39 20 0,8 39 20 0,8 39 20 0,9 14 7 0,2 20 10 0,9 14 7 0,2 24 11 0,1 27 12 0,1 27 12 0,1 28 1,5 18 9 1,4 27 12 0,1 27 13 0,5 27 13 0,5 27 18 0,4 28 1,5 18 9 1,4 27 12 0,1 28 1,5 48 1,5 49 0,7 29 2,5 39 0,9 40 31 4,4 40 29 2,5 30 0,9 41 31 0,5 42 13 0,5 43 31 4,4 40 29 2,5 35 19 0,9	6 4 0,2 15 8 0,4 10 5 0,2 20 10 1,2 17 9 0,1 20 10 0,1 20 10 0,1 20 10 0,1 33 22 1,9 39 20 0,4 39 20 0,4 39 20 0,4 39 20 0,4 39 20 0,4 39 20 0,9 14 7 0,2 27 12 0,1 27 12 0,1 27 12 0,1 28 1,6 29 1,4 27 12 0,1 27 12 0,1 28 1,5 29 0,0 27 12 0,1 27 13 0,5 27 18 0,4 27 18 0,4 27 18 0,4 27 18 0,4 27 18 0,5 27 18 0,5 28 1,6 29 2,5 35 19 0,5	84,7	72	6'62	55,9	20	63,6	67'9	53,7	18,8	55,4	19,2	21,8	29,5	48,8	44,3	70,5	6'68	83,5	6'65	58,9	27,2	74,9	45,8	58,5	64	60,1	2'69	2,9	3,4	2,6	62,2	79,1	67,1	
4 0,2 8 0,4 5 0,2 9 0,1 10 0,1 10 0,1 10 0,1 12 0,1 13 0,5 19 0,5 11 1,2 11 0,1 12 0,1 13 0,5 19 0,5 19 0,5 10 0,9 10	4 0,2 8 0,4 5 0,2 9 0,1 10 0,1 10 0,1 10 0,1 11 0,2 12 0,2 13 0,5 13 0,5 14 0,9 16 0,9 17 0,1 18 1,6 10 0,9 17 0,1 11 0,1 12 0,1 13 0,5 13 0,5 14 1,6 16 0,9 17 0,1 18 1,4 10 0,9 6 0,3 11 1,4 10 0,9 6 0,3 11 1,4 11 0,1 12 0,7 13 0,5 13 0,5 13 0,5 14 1,6 16 0,3 17 0,1 18 1,4 19 0,9 10 0,9 10 0,9 10 0,9 11 1,4 10 0,9 10 0,9 11 1,4 10 0,9 11 1,4 10 0,9 11 1,4 11 1,7 12 0,7 13 0,5 14 1,4 16 0,5 17 1,4 18 0,4 18 1,4 19 0,5 19 0		1,6	1,7	2	1	2	2,1	1,9	1,5	1,5	1,3	1,3	1,3	1,7	1,7	1,8	1,6	1,6						1,6	1,4	1,3	1,4				1,7	1,7	1,7	
0,2 0,4 0,2 1,2 0,1 0,1 1,9 0,4 0,9 0,0 0,0 0,3 0,3 0,4 0,4 0,4 0,4 0,7 1,5 1,7 0,7 1,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0	0,2 0,4 0,2 1,2 0,1 1,9 0,1 1,6 0,9 0,0 0,1 1,7 1,7 1,7 1,7 1,7 1,7 0,7 0,3 0,3 0,3 0,3 0,3 0,5 0,4 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7	9	15	10	20	17	16	20		33	32	39	39	36	17	20	14	24	27	17	18	25	12	25	25	27	27	24	44	40	35	12	6	11	
		4	00	25	10	6	6	10		22	20	19	20	18	00	10	7	11	12	00	6	10	9	12	11	13	18	13	31	29	19	9	4	2	
0,3 0,7 0,7 0,3 2,1 0,2 0,2 0,2 0,2 0,2 0,2 0,3 0,2 0,3 0,3 0,3 0,5 1,6 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7	0,3 0,7 0,3 2,1 0,2 0,2 0,2 0,2 3,3 1,4 0,9 0,7 0,7 0,7 2,4 1,6 0,3 0,5 1,6 0,5 1,6 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7	0,2	0,4	0,2	1,2	0,2	0,1	0,1	0,1	1,9	8'0	0,5	0,4	0,4	1,6	6'0	0,2	0,1	0,1	1,5	1,4	6'0	0,3	2'0	1,2	0,5	0,4	0,2	4,4	2,5	6'0	0,5	0,1	0,1	
		0,3	0,7	0,3	2,1	6,3	0,2	0,2	0,2	3,3	1,4	6'0	2'0	0,7	2,8	1,6	6,3	0,2	0,2	2,6	2,4	1,6	0,5	1,2	2,1	6'0	2'0	0,3	9'2	4,4	1,6	6'0	0,2	0,2	

45.5	QLM	5	87 - 113	26	93,4		4	2	0	0	
70	QLP	5	0 - 15	15	34,5		21	14	1,8	3,1	
	QLP	5	15 - 28	13	44,9	1,7	19	12	0,6	1	
	QLP	5	28 - 42	14	44,1	1,6	24	13	0,4	0,7	
	QLP	5	42 - 70	28	37,1	1,5	23	14	0,2	0,3	
	QLP	5	70 - 100	30	37,6	1,5	22	13	0,2	0,3	
68	QLC	4	0 - 9	9	22,4		35	25	0,9	1,6	
	QLC	4	21-sep	12	25,2		35	22	2	3,4	
	QLC	4	21 - 39	18	41,9		30	18	0,4	0,7	
	QLC	4	39 - 80	41	36,8		34	23	0,3	0,5	
72	RLV	5	0 - 17	17	55,1	1,6	17	9	1,7	2,9	
	RLV	5	17 - 32	15	57,5	1,7	17	9	1,5	2,6	
	RLV	5	32 - 54	22	67,6	1,6	10	6	0,2	0,3	
	RLV	5	54 - 76	22	72,6	1,7	9	5	0,1	0,2	
	RLV	5	76 - 105	29	78,4	1,7	7	5	0,1	0,2	
73	RUG	5	0 - 15	15	37,5	1,8	31	23	2,6	4,5	
/5	RUG	5	15 - 43	28	35,2	1,8	33	24	1,2	2,1	
	RUG	5	43 - 66	23	33,6	1,8	34	27	0,7	1,2	
	RUG	5	66 - 98	32	25,4	1,8	36	28	0,5	0,9	
	RUG	5	98 - 120	22	23,6	1,8	40	28	0,3	0,5	
74	SDG	5	0 - 29	29	42,3	1,8	26	12	1,8	3,1	
	SDG	5	29 - 43	14	44,2	1,8	24	12	0,4	0,7	
	SDG	- 5	43 - 57	14	38,2	1,9	30	18	0,2	0,3	
	SDG	5	57 - 70	13	39,4	1,9	27	16	0,2	0,3	
	SDG	5	70 - 90	20	58	2	23	12	0,1	0,2	
75	SRS	5	0 - 18	18	47,6	1,7	22	10	1,1	1,9	
,,,	SRS	5	18 - 37	19	51,9	1,4	22	9	0,4	0,7	
	SRS	5	37 - 63	26	48,4	1,7	23	9	0,3	0,5	
	SRS	5	63 - 75	12	54,1	1,8	21	8	0,3	0,5	
	SRS	5	75 - 120	45	54,7	1,9	22	9	0,1	0,2	
76	SSR	4	0 - 30	30	11,2		33	20	1,7	2,9	4
	SSR	4	36 - 65	29	11,7		33	20	1,1	1,9	
	SSR	4	65 - 85	20	12,3		32	20	0,5	0,9	
	SSR	4	85 - 100	15	20,9		34	21	0,3	0,5	

10000	
(Ch	GOBIERNO DE CHILE FUNDACIÓN PARA LA INNOVACIÓN AGRARIA

69										
77	STG	3	0 - 15	15	51,2	1,7	17	9	1,9	3,3
	STG	3	15 - 35	20	53,7	1,7	15	8	0,7	1,2
	STG	3	35 - 70	35	66,3	1,7	14	7	0,5	0,9
79	TAQ	4	0 - 20	20	34	1,3	43	21	3,4	5,9
	TAQ	4	20 - 41	21	30,6	1,3	43	20	2	3,4
	TAQ	4	41 - 65	24	19,4	1,3	42	19	1,4	2,4
	TAQ	4	65 - 85	20	25,7	1,7	28	14	0,6	1
84	TRO	5	0 - 14	14	5,4	1,8	40	25	1,8	3,1
01	TRO	5	14 - 26	12	6,1	1,8	39	26	1,3	2,2
	TRO	5	26 - 54	28	6,6	1,8	38	24	1,1	1,9
	TRO	5	54 - 86	32	8,2	1,8	38	24	1	1,7
	TRO	5	86 - 120	34	15,8	1,7	39	25	0,5	0,9
82	TPT	5	0 - 22	22	62,1	1,4	15	8	1,5	2,6
02	TPT	5	22 - 36	14	64	1,3	13	7	0,9	1,6
	TPT	5	36 - 67	31	57,9	1,5	15	8	0,3	0,5
	TPT	5	67 - 90	23	77	1,4	9	5	0,1	0,2
	TPT	5	90 - 120	30	57,5		16	8	0,1	0,2
86	URR	4	0 - 26	26	14,1				2,6	4,5
00	URR	4	26 - 60	34	5,2				2	3,4
	URR	4	60 - 82	22	5,4				1,7	2,9
	URR	4	82 - 100	18	7,1				1	1,7
87	VAP	5	0 - 21	21	30,4	1,7	29	13	1,6	2,8
7,	VAP	5	21 - 33	12	33,1		27	12	1,2	2,1
	VAP	5	33 - 50	17	23,8	1,5	43	22	2,2	3,8
	VAP	5	50 - 91	41	17,7	1,5	44	23	2,4	4,1
	VAP	5	91 - 120	29	19,5		37	21	0,8	1,4
90	VLM	5	0 - 21	21	36,7	1,9	29	13	1,1	1,9
5 60	VLM	5	21 - 37	16	38	1,8	23	13	0,2	0,3
	VLM	5	37 - 62	25	41,8	1,1	21	11	0,2	0,3
	VLM	5	62 - 92	30	39,6	2	20	10	0,2	0,3
	VLM	5	92 - 120	28	51,6	2	19	10	0,1	0,2
88	VIV	5	0 - 12	12	53,1	1,6	24	12	2,6	4,5
	VIV	5	12 - 28	16	55	1,6	22	12	1,8	3,1
	VIV	5	28 - 57	29	60,7	1,5	20	10	1	1,7

	1,6	
	47,6	45.0
	41	00
	86 - 75	00+ 00
BIERNO DE CHILE INDACIÓN PARA LA NOVACIÓN AGRARIA	2	
GOBIERNO DE CHILE FUNDACION PARA LA INNOVACION AGRARIA	VIV	1,771.7
*		
-		

1,4

0,8

11

23

Anexo 3: Información de las series de suelos de la VI Región

Identificador	Serie	Nº Estrato	Estrato (cm)	Prof (cm)	Fracción de Arena	DENSIDAD APARENTE g/cm3	HUMEDAD RETENIDA 33 kPa %	HUMEDAD RETENIDA 1500 kPa %	CO %	MO %	relación C/N	alores inciales de agua	nitrogeno mineral inicial
	AJL	5	0-20	20	44,1		23	13	2,5	4,2			
	AJL	5	20-32	12	49,5		18	11	1,3	2,2			
3	AJL	5	32-48	16	55,5		18	11	0,7	1,2			
	AJL	5	48-80	32	48,5		18	11	0,5	0,8			
	AJL	5	80-105	25	44,5	N-9-13	21	13	0,5	0,9			
	ATÑ	4	0-16	16	13,5		34	25	2,2	3,8			
7	ATÑ	4	16-48	32	8,8		39	30	1,3	2,2			
	ATÑ	4	48-90	42	9,4		42	24	1,3	2,2			
	ATÑ	4	90-130	40	8,1		42	23	1,4	2,4			
	ALH	3	0-16	16	31,2		47	32	3,2	5,4		tall a	
4	ALH	3	16-40	24	29,8		42	31	1,3	2,3			
	ALH	3	40-120	80	34,2		37	26	0,7	1,2			
	ANV	5	0-16	16	44,7		22	11	1,3	2,3			
	ANV	5	16-35	19	45,3		21	12	1,5	2,6			
6	ANV	5	35-50	15	48,2		21	13	0,8	1,3			
	ANV	5	50-70	20	47,6		22	14	0,6	1,1			
	ANV	5	70-100	30	55,2		21	9	0,6	1,7			
	AYT	3	0-15	15	53,2		34	21	2,52	4,34			
8	AYT	3	15-60	45	51,6		29	21	1,54	2,65			
	AYT	3	60-110	50	38,3		31	27	0,64	1,1			
	BJS	5	0-10	10	24,3		32	19	1,59	2,74			
	BJS	5	10-30	20	31,8		30	19	0,6	1,03			
10	BJS	5	30-46	16	43,2		26	14	0,35	0,6			
	BJS	5	46-70	24	42,5		15	12	0,23	0,39			
5.3751	BJS	5	70-94	24	45,7		23	17	0,19	0,32			
9	BAR	5	0-16	16	44,9		23	10	1,2	2			
	BAR		16-21	5	51,8		19	9	0,7	1,1			

5 64,5 36 50 14 48,5 1,46 21, 16 52,1 1,44 21, 16 21,6 1,44 21, 13 24,7 1,44 21, 13 24,7 1,44 21, 13 24,7 1,44 21, 13 24,7 1,44 21, 14 3,4,1 1,44 21, 15 34,1 1,44 21, 16 21,6 1,44 21, 17 77,7 1,47 1,77 1,77 1,77 1,77 1,77 1,			0,0																																																																																																																																
36 50 14 48,5 1,46 16 65,4 1,33 16 52,1 1,44 16 21,6 1,44 13 24,7 8 8 34 1 15 34,1 1 20 69,7 2 20 69,7 3 30 58,5 1 14 37 3 21 46,2 1 40,5 1 40,5 16 47,3 1 16 47,3 1 16 47,3 1 16 47,3 1 16 47,3 1 16 47,3 1 17 40,5 1 20 73,8 1 58 69,5 1,24 17 39,1 1,24 17 39,1 1,26 27,4 1,26 54,1 1,26 54,1 1,26 <tr <="" td=""><td></td><td>5 0,2</td><td>0,4</td></tr> <tr><td>14 48,5 1,46 16 65,4 1,33 16 52,1 1,44 16 11,44 16 21,6 13 24,7 8 34,1 15 34,1 15 34,1 17 77,7 20 69,7 20 69,7 30 58,5 14 37, 21 46,2 16 47,3 15 46,2 16 47,3 21 46,2 21 46,2 21 46,2 21 46,2 21 46,2 21 46,2 21 37,7 21 46,2 21 47,2</td><td></td><td></td><td>0,4</td></tr> <tr><td>16 65,4 1,33 16 52,1 1,44 16 11,6 13 24,7 8 34,1 15 34,1 15 54,1 17 77,7 20 69,7 20 69,7 30 58,5 14 37 21 46,2 16 47,3 15 40,5 21 46,2 21 47,3 21 1,24 21 1,28 21 1,28 21 1,28 21 1,28</td><td>21,95 8,22</td><td></td><td>2,4</td></tr> <tr><td>16 52,1 1,44 16 21,6 13 24,7 8 34 15 34,1 15 54,1 23 68,8 17 77,7 20 69,7 30 58,5 14 37 21 46,2 16 47,3 15 68,6 5-18 13 73 5 68,6 5-18 13 73 8 44,2 1,46 69,9 1,22 68,1 1,23 8 44,2 1,26 68,1 1,28 10 44,1</td><td></td><td>10</td><td>8'0</td></tr> <tr><td>16 21,6 13 24,7 8 34 15 34,1 15 54,1 15 54,1 20 68,8 17 77,7 20 69,7 30 58,5 14 37 21 46,2 16 47,3 15 40,5 15 68,6 5-18 13 73 20 73,8 5 68,6 5 69,5 32 72,8 17 39,1 1,24 17 39,1 1,24 17 39,1 1,24 17 39,1 1,24 17 39,1 1,25 68,1 1,26 55,4 1,26 55,4 1,26 55,4 1,26</td><td></td><td>1</td><td>6,0</td></tr> <tr><td>13 24,7 8 34 15 34,1 15 34,1 15 54,1 23 68,8 17 77,7 20 69,7 20 69,7 30 58,5 19 33,9 14 37 21 46,2 16 47,3 15 40,5 5 68,6 5 69,5 5 68,6 6 9,5 1,2 40,5 1,3 1 24,2 1,4 6 24,2 1,7 39,1 1,21 24, 8 44,2 1,26 22, 1,4 68,1 1,28 24, 24,1</td><td></td><td>2</td><td>1,9</td></tr> <tr><td>8 34 15 34,1 15 54,1 23 68,8 17 77,7 20 69,7 30 58,5 19 33,9 14 37 21 46,2 16 47,3 16 47,3 16 47,3 16 47,3 17 39,1 18 35,9 17 39,1 18 35,9 17 39,1 17 39,1 17 39,1 17 39,1 17 39,1 17 39,1 17 52,2 69,9 17 54,2 17 54,1 1,26 22,2 54,1 1,28 24,1</td><td></td><td>10</td><td>1,4</td></tr> <tr><td>15 34,1 15 54,1 17 77,7 20 69,7 20 69,7 30 58,5 19 33,9 14 37 21 46,2 16 47,3 15 40,5 5 68,6 5 88,6 5 69,5 17 39,1 1,24 21 18 35,9 1,24 24 17 39,1 1,24 24 18 35,9 1,24 24 17 39,1 1,26 22 54,1 1,26 22 54,1 1,28 24</td><td></td><td></td><td>0,4</td></tr> <tr><td>15 54,1 23 68,8 17 77,7 20 69,7 20 69,7 30 58,5 14 37 21 46,2 16 47,3 15 40,5 5 68,6 5 69,5 20 73,8 5 69,5 17 39,1 1,24 24 18 35,9 1,24 24 17 39,1 1,21 24 8 44,2 1,46 24 6 69,9 1,2 20 6 68,1 1,26 22 5 74,1 1,28 24 10 4,1</td><td>29 14</td><td>+</td><td>0,1</td></tr> <tr><td>23 68,8 17 77,7 20 69,7 20 69,7 30 58,5 14 37 21 46,2 16 47,3 15 40,5 5-18 13 73 20 73,8 58 69,5 32 72,8 18 35,9 1,24 21 17 39,1 1,31 24 18 35,9 1,24 24 17 39,1 1,31 24 18 55,9 1,26 22 17 59,9 1,2 20 68,1 1,26 22 54,1 1,28 24</td><td></td><td>3</td><td>0</td></tr> <tr><td>5-18 1.7 77,7 20 69,7 20 69,7 3.49 2.4 46,2 2.4 47,2 2.4</td><td>17 6</td><td></td><td>1,8</td></tr> <tr><td>20 69,7 30 58,5 19 33,9 14 37 21 46,2 16 47,3 15 40,5 5 68,6 5 68,6 5 69,5 32 72,8 17 39,1 1,24 21 17 39,1 1,31 24,8 17 39,1 1,22 20,69,9 17 39,1 1,22 20,69,9 17 57,4 1,26 22,21,54,1</td><td>12</td><td>5 0,3</td><td>6,0</td></tr> <tr><td>30 58,5 14 37, 14 46,2 16 47,3 15 40,5 5 68,6 5 68,6 73,8 50 73,8 58 69,5 32 72,8 17 39,1 1,24 21 18 35,9 1,24 24 17 39,1 1,31 24 8 44,2 1,46 24 8 44,2 1,46 24 8 69,9 1,2 20 68,1 1,22 21 57,4 1,26 22 57,4 1,26 22 54,1 1,28 24</td><td></td><td></td><td>8'0</td></tr> <tr><td>19 33,9 14 37 21 46,2 16 47,3 15 40,5 5 68,6 5-18 13 73 20 73,8 58 69,5 32 72,8 17 39,1 1,24 24 17 39,1 1,31 24 69,9 1,2 20 68,1 1,26 22 57,4 1,26 22 57,4 1,26 22 54,1 1,28 24</td><td></td><td></td><td>9,0</td></tr> <tr><td>14 37 21 46,2 16 47,3 15 40,5 5 68,6 5 68,6 5 69,5 32 73,8 58 69,5 32 72,8 18 35,9 1,24 21 17 39,1 1,31 24,8 17 39,1 1,24 24 17 59,1 1,24 24 17 59,1 1,24 24 17 59,1 1,24 24 17 59,1 1,24 24 17 59,1 1,24 24 17 59,1 1,24 24 17 59,1 1,24 24 17 59,1 1,24 24 17 59,1 1,24 24 17 59,1 1,26 22 18 57,4 1,26 22 19 54,1 1,28 24</td><td>27 16</td><td></td><td>5,1</td></tr> <tr><td>21 46,2 16 47,3 15 40,5 5 68,6 5-18 13 73 20 73,8 58 69,5 32 72,8 17 39,1 1,24 17 39,1 1,31 8 44,2 1,46 69,9 1,2 68,1 1,22 68,1 1,22 57,4 1,26 57,4 1,26 54,1 1,28</td><td></td><td>1,5</td><td>2,5</td></tr> <tr><td>16 47,3 15 40,5 5 68,6 5-18 13 73 20 73,8 58 69,5 32 72,8 18 35,9 1,24 17 39,1 1,31 8 44,2 1,46 69,9 1,2 68,1 1,22 68,1 1,22 57,4 1,26 54,1 1,28</td><td>19 12</td><td></td><td>8'0</td></tr> <tr><td>5 68,6 5-18 13 73 20 73,8 58 69,5 32 72,8 18 35,9 1,24 17 39,1 1,31 8 44,2 1,46 69,9 1,2 68,1 1,22 57,4 1,26 54,1 1,28</td><td></td><td></td><td>0,4</td></tr> <tr><td>5-18 13 73 20 73,8 58 69,5 32 72,8 18 35,9 1,24 17 39,1 1,31 8 44,2 1,46 69,9 1,2 68,1 1,22 68,1 1,26 57,4 1,26 54,1 1,28</td><td>22 13</td><td></td><td>0,3</td></tr> <tr><td>5-18 13 73 20 73,8 58 69,5 32 72,8 18 35,9 1,24 17 39,1 1,31 8 44,2 1,46 69,9 1,2 68,1 1,22 68,1 1,26 57,4 1,26 54,1 1,28</td><td>15</td><td>7</td><td>2,5</td></tr> <tr><td>20 73,8 58 69,5 32 72,8 18 35,9 1,24 17 39,1 1,31 8 44,2 1,46 69,9 1,2 68,1 1,22 57,4 1,26 54,1 1,28</td><td>16</td><td>7</td><td>2</td></tr> <tr><td>58 69,5 32 72,8 18 35,9 1,24 17 39,1 1,31 8 44,2 1,46 69,9 1,2 68,1 1,22 68,1 1,22 57,4 1,26 57,4 1,26 54,1 1,28</td><td>11</td><td>2</td><td>1,1</td></tr> <tr><td>32 72,8 18 35,9 1,24 17 39,1 1,31 8 44,2 1,46 69,9 1,2 68,1 1,22 57,4 1,26 54,1 1,28</td><td>14</td><td></td><td>0,3</td></tr> <tr><td>18 35,9 1,24 17 39,1 1,31 8 44,2 1,46 69,9 1,2 68,1 1,22 57,4 1,26 57,4 1,26 54,1 1,28</td><td></td><td>5</td><td>0,2</td></tr> <tr><td>17 39,1 1,31 8 44,2 1,46 69,9 1,2 68,1 1,22 57,4 1,26 54,1 1,28</td><td></td><td>**</td><td>3,2</td></tr> <tr><td>8 44,2 1,46 69,9 1,2 68,1 1,22 57,4 1,26 54,1 1,28</td><td></td><td>2</td><td>2,1</td></tr> <tr><td>69,9 1,2 68,1 1,22 57,4 1,26 54,1 1,28</td><td></td><td>2</td><td>1,9</td></tr> <tr><td>68,1 1,22 57,4 1,26 54,1 1,28 10 4,1</td><td>20,02 11,53</td><td>3</td><td>2,6</td></tr> <tr><td>57,4 1,26 54,1 1,28 10 4,1</td><td></td><td>2</td><td>2,4</td></tr> <tr><td>54,1 1,28</td><td></td><td>3</td><td>2'0</td></tr> <tr><td>10 4,1</td><td></td><td></td><td>2'0</td></tr> <tr><td></td><td></td><td></td><td>4,9</td></tr> <tr><td>4,4</td><td></td><td>9'0 8</td><td>1</td></tr>		5 0,2	0,4	14 48,5 1,46 16 65,4 1,33 16 52,1 1,44 16 11,44 16 21,6 13 24,7 8 34,1 15 34,1 15 34,1 17 77,7 20 69,7 20 69,7 30 58,5 14 37, 21 46,2 16 47,3 15 46,2 16 47,3 21 46,2 21 46,2 21 46,2 21 46,2 21 46,2 21 46,2 21 37,7 21 46,2 21 47,2			0,4	16 65,4 1,33 16 52,1 1,44 16 11,6 13 24,7 8 34,1 15 34,1 15 54,1 17 77,7 20 69,7 20 69,7 30 58,5 14 37 21 46,2 16 47,3 15 40,5 21 46,2 21 47,3 21 1,24 21 1,28 21 1,28 21 1,28 21 1,28	21,95 8,22		2,4	16 52,1 1,44 16 21,6 13 24,7 8 34 15 34,1 15 54,1 23 68,8 17 77,7 20 69,7 30 58,5 14 37 21 46,2 16 47,3 15 68,6 5-18 13 73 5 68,6 5-18 13 73 8 44,2 1,46 69,9 1,22 68,1 1,23 8 44,2 1,26 68,1 1,28 10 44,1		10	8'0	16 21,6 13 24,7 8 34 15 34,1 15 54,1 15 54,1 20 68,8 17 77,7 20 69,7 30 58,5 14 37 21 46,2 16 47,3 15 40,5 15 68,6 5-18 13 73 20 73,8 5 68,6 5 69,5 32 72,8 17 39,1 1,24 17 39,1 1,24 17 39,1 1,24 17 39,1 1,24 17 39,1 1,25 68,1 1,26 55,4 1,26 55,4 1,26 55,4 1,26		1	6,0	13 24,7 8 34 15 34,1 15 34,1 15 54,1 23 68,8 17 77,7 20 69,7 20 69,7 30 58,5 19 33,9 14 37 21 46,2 16 47,3 15 40,5 5 68,6 5 69,5 5 68,6 6 9,5 1,2 40,5 1,3 1 24,2 1,4 6 24,2 1,7 39,1 1,21 24, 8 44,2 1,26 22, 1,4 68,1 1,28 24, 24,1		2	1,9	8 34 15 34,1 15 54,1 23 68,8 17 77,7 20 69,7 30 58,5 19 33,9 14 37 21 46,2 16 47,3 16 47,3 16 47,3 16 47,3 17 39,1 18 35,9 17 39,1 18 35,9 17 39,1 17 39,1 17 39,1 17 39,1 17 39,1 17 39,1 17 52,2 69,9 17 54,2 17 54,1 1,26 22,2 54,1 1,28 24,1		10	1,4	15 34,1 15 54,1 17 77,7 20 69,7 20 69,7 30 58,5 19 33,9 14 37 21 46,2 16 47,3 15 40,5 5 68,6 5 88,6 5 69,5 17 39,1 1,24 21 18 35,9 1,24 24 17 39,1 1,24 24 18 35,9 1,24 24 17 39,1 1,26 22 54,1 1,26 22 54,1 1,28 24			0,4	15 54,1 23 68,8 17 77,7 20 69,7 20 69,7 30 58,5 14 37 21 46,2 16 47,3 15 40,5 5 68,6 5 69,5 20 73,8 5 69,5 17 39,1 1,24 24 18 35,9 1,24 24 17 39,1 1,21 24 8 44,2 1,46 24 6 69,9 1,2 20 6 68,1 1,26 22 5 74,1 1,28 24 10 4,1	29 14	+	0,1	23 68,8 17 77,7 20 69,7 20 69,7 30 58,5 14 37 21 46,2 16 47,3 15 40,5 5-18 13 73 20 73,8 58 69,5 32 72,8 18 35,9 1,24 21 17 39,1 1,31 24 18 35,9 1,24 24 17 39,1 1,31 24 18 55,9 1,26 22 17 59,9 1,2 20 68,1 1,26 22 54,1 1,28 24		3	0	5-18 1.7 77,7 20 69,7 20 69,7 3.49 2.4 46,2 2.4 47,2 2.4	17 6		1,8	20 69,7 30 58,5 19 33,9 14 37 21 46,2 16 47,3 15 40,5 5 68,6 5 68,6 5 69,5 32 72,8 17 39,1 1,24 21 17 39,1 1,31 24,8 17 39,1 1,22 20,69,9 17 39,1 1,22 20,69,9 17 57,4 1,26 22,21,54,1	12	5 0,3	6,0	30 58,5 14 37, 14 46,2 16 47,3 15 40,5 5 68,6 5 68,6 73,8 50 73,8 58 69,5 32 72,8 17 39,1 1,24 21 18 35,9 1,24 24 17 39,1 1,31 24 8 44,2 1,46 24 8 44,2 1,46 24 8 69,9 1,2 20 68,1 1,22 21 57,4 1,26 22 57,4 1,26 22 54,1 1,28 24			8'0	19 33,9 14 37 21 46,2 16 47,3 15 40,5 5 68,6 5-18 13 73 20 73,8 58 69,5 32 72,8 17 39,1 1,24 24 17 39,1 1,31 24 69,9 1,2 20 68,1 1,26 22 57,4 1,26 22 57,4 1,26 22 54,1 1,28 24			9,0	14 37 21 46,2 16 47,3 15 40,5 5 68,6 5 68,6 5 69,5 32 73,8 58 69,5 32 72,8 18 35,9 1,24 21 17 39,1 1,31 24,8 17 39,1 1,24 24 17 59,1 1,24 24 17 59,1 1,24 24 17 59,1 1,24 24 17 59,1 1,24 24 17 59,1 1,24 24 17 59,1 1,24 24 17 59,1 1,24 24 17 59,1 1,24 24 17 59,1 1,24 24 17 59,1 1,26 22 18 57,4 1,26 22 19 54,1 1,28 24	27 16		5,1	21 46,2 16 47,3 15 40,5 5 68,6 5-18 13 73 20 73,8 58 69,5 32 72,8 17 39,1 1,24 17 39,1 1,31 8 44,2 1,46 69,9 1,2 68,1 1,22 68,1 1,22 57,4 1,26 57,4 1,26 54,1 1,28		1,5	2,5	16 47,3 15 40,5 5 68,6 5-18 13 73 20 73,8 58 69,5 32 72,8 18 35,9 1,24 17 39,1 1,31 8 44,2 1,46 69,9 1,2 68,1 1,22 68,1 1,22 57,4 1,26 54,1 1,28	19 12		8'0	5 68,6 5-18 13 73 20 73,8 58 69,5 32 72,8 18 35,9 1,24 17 39,1 1,31 8 44,2 1,46 69,9 1,2 68,1 1,22 57,4 1,26 54,1 1,28			0,4	5-18 13 73 20 73,8 58 69,5 32 72,8 18 35,9 1,24 17 39,1 1,31 8 44,2 1,46 69,9 1,2 68,1 1,22 68,1 1,26 57,4 1,26 54,1 1,28	22 13		0,3	5-18 13 73 20 73,8 58 69,5 32 72,8 18 35,9 1,24 17 39,1 1,31 8 44,2 1,46 69,9 1,2 68,1 1,22 68,1 1,26 57,4 1,26 54,1 1,28	15	7	2,5	20 73,8 58 69,5 32 72,8 18 35,9 1,24 17 39,1 1,31 8 44,2 1,46 69,9 1,2 68,1 1,22 57,4 1,26 54,1 1,28	16	7	2	58 69,5 32 72,8 18 35,9 1,24 17 39,1 1,31 8 44,2 1,46 69,9 1,2 68,1 1,22 68,1 1,22 57,4 1,26 57,4 1,26 54,1 1,28	11	2	1,1	32 72,8 18 35,9 1,24 17 39,1 1,31 8 44,2 1,46 69,9 1,2 68,1 1,22 57,4 1,26 54,1 1,28	14		0,3	18 35,9 1,24 17 39,1 1,31 8 44,2 1,46 69,9 1,2 68,1 1,22 57,4 1,26 57,4 1,26 54,1 1,28		5	0,2	17 39,1 1,31 8 44,2 1,46 69,9 1,2 68,1 1,22 57,4 1,26 54,1 1,28		**	3,2	8 44,2 1,46 69,9 1,2 68,1 1,22 57,4 1,26 54,1 1,28		2	2,1	69,9 1,2 68,1 1,22 57,4 1,26 54,1 1,28		2	1,9	68,1 1,22 57,4 1,26 54,1 1,28 10 4,1	20,02 11,53	3	2,6	57,4 1,26 54,1 1,28 10 4,1		2	2,4	54,1 1,28		3	2'0	10 4,1			2'0				4,9	4,4		9'0 8	1
	5 0,2	0,4																																																																																																																																	
14 48,5 1,46 16 65,4 1,33 16 52,1 1,44 16 11,44 16 21,6 13 24,7 8 34,1 15 34,1 15 34,1 17 77,7 20 69,7 20 69,7 30 58,5 14 37, 21 46,2 16 47,3 15 46,2 16 47,3 21 46,2 21 46,2 21 46,2 21 46,2 21 46,2 21 46,2 21 37,7 21 46,2 21 47,2			0,4																																																																																																																																
16 65,4 1,33 16 52,1 1,44 16 11,6 13 24,7 8 34,1 15 34,1 15 54,1 17 77,7 20 69,7 20 69,7 30 58,5 14 37 21 46,2 16 47,3 15 40,5 21 46,2 21 47,3 21 1,24 21 1,28 21 1,28 21 1,28 21 1,28	21,95 8,22		2,4																																																																																																																																
16 52,1 1,44 16 21,6 13 24,7 8 34 15 34,1 15 54,1 23 68,8 17 77,7 20 69,7 30 58,5 14 37 21 46,2 16 47,3 15 68,6 5-18 13 73 5 68,6 5-18 13 73 8 44,2 1,46 69,9 1,22 68,1 1,23 8 44,2 1,26 68,1 1,28 10 44,1		10	8'0																																																																																																																																
16 21,6 13 24,7 8 34 15 34,1 15 54,1 15 54,1 20 68,8 17 77,7 20 69,7 30 58,5 14 37 21 46,2 16 47,3 15 40,5 15 68,6 5-18 13 73 20 73,8 5 68,6 5 69,5 32 72,8 17 39,1 1,24 17 39,1 1,24 17 39,1 1,24 17 39,1 1,24 17 39,1 1,25 68,1 1,26 55,4 1,26 55,4 1,26 55,4 1,26		1	6,0																																																																																																																																
13 24,7 8 34 15 34,1 15 34,1 15 54,1 23 68,8 17 77,7 20 69,7 20 69,7 30 58,5 19 33,9 14 37 21 46,2 16 47,3 15 40,5 5 68,6 5 69,5 5 68,6 6 9,5 1,2 40,5 1,3 1 24,2 1,4 6 24,2 1,7 39,1 1,21 24, 8 44,2 1,26 22, 1,4 68,1 1,28 24, 24,1		2	1,9																																																																																																																																
8 34 15 34,1 15 54,1 23 68,8 17 77,7 20 69,7 30 58,5 19 33,9 14 37 21 46,2 16 47,3 16 47,3 16 47,3 16 47,3 17 39,1 18 35,9 17 39,1 18 35,9 17 39,1 17 39,1 17 39,1 17 39,1 17 39,1 17 39,1 17 52,2 69,9 17 54,2 17 54,1 1,26 22,2 54,1 1,28 24,1		10	1,4																																																																																																																																
15 34,1 15 54,1 17 77,7 20 69,7 20 69,7 30 58,5 19 33,9 14 37 21 46,2 16 47,3 15 40,5 5 68,6 5 88,6 5 69,5 17 39,1 1,24 21 18 35,9 1,24 24 17 39,1 1,24 24 18 35,9 1,24 24 17 39,1 1,26 22 54,1 1,26 22 54,1 1,28 24			0,4																																																																																																																																
15 54,1 23 68,8 17 77,7 20 69,7 20 69,7 30 58,5 14 37 21 46,2 16 47,3 15 40,5 5 68,6 5 69,5 20 73,8 5 69,5 17 39,1 1,24 24 18 35,9 1,24 24 17 39,1 1,21 24 8 44,2 1,46 24 6 69,9 1,2 20 6 68,1 1,26 22 5 74,1 1,28 24 10 4,1	29 14	+	0,1																																																																																																																																
23 68,8 17 77,7 20 69,7 20 69,7 30 58,5 14 37 21 46,2 16 47,3 15 40,5 5-18 13 73 20 73,8 58 69,5 32 72,8 18 35,9 1,24 21 17 39,1 1,31 24 18 35,9 1,24 24 17 39,1 1,31 24 18 55,9 1,26 22 17 59,9 1,2 20 68,1 1,26 22 54,1 1,28 24		3	0																																																																																																																																
5-18 1.7 77,7 20 69,7 20 69,7 3.49 2.4 46,2 2.4 47,2 2.4	17 6		1,8																																																																																																																																
20 69,7 30 58,5 19 33,9 14 37 21 46,2 16 47,3 15 40,5 5 68,6 5 68,6 5 69,5 32 72,8 17 39,1 1,24 21 17 39,1 1,31 24,8 17 39,1 1,22 20,69,9 17 39,1 1,22 20,69,9 17 57,4 1,26 22,21,54,1	12	5 0,3	6,0																																																																																																																																
30 58,5 14 37, 14 46,2 16 47,3 15 40,5 5 68,6 5 68,6 73,8 50 73,8 58 69,5 32 72,8 17 39,1 1,24 21 18 35,9 1,24 24 17 39,1 1,31 24 8 44,2 1,46 24 8 44,2 1,46 24 8 69,9 1,2 20 68,1 1,22 21 57,4 1,26 22 57,4 1,26 22 54,1 1,28 24			8'0																																																																																																																																
19 33,9 14 37 21 46,2 16 47,3 15 40,5 5 68,6 5-18 13 73 20 73,8 58 69,5 32 72,8 17 39,1 1,24 24 17 39,1 1,31 24 69,9 1,2 20 68,1 1,26 22 57,4 1,26 22 57,4 1,26 22 54,1 1,28 24			9,0																																																																																																																																
14 37 21 46,2 16 47,3 15 40,5 5 68,6 5 68,6 5 69,5 32 73,8 58 69,5 32 72,8 18 35,9 1,24 21 17 39,1 1,31 24,8 17 39,1 1,24 24 17 59,1 1,24 24 17 59,1 1,24 24 17 59,1 1,24 24 17 59,1 1,24 24 17 59,1 1,24 24 17 59,1 1,24 24 17 59,1 1,24 24 17 59,1 1,24 24 17 59,1 1,24 24 17 59,1 1,26 22 18 57,4 1,26 22 19 54,1 1,28 24	27 16		5,1																																																																																																																																
21 46,2 16 47,3 15 40,5 5 68,6 5-18 13 73 20 73,8 58 69,5 32 72,8 17 39,1 1,24 17 39,1 1,31 8 44,2 1,46 69,9 1,2 68,1 1,22 68,1 1,22 57,4 1,26 57,4 1,26 54,1 1,28		1,5	2,5																																																																																																																																
16 47,3 15 40,5 5 68,6 5-18 13 73 20 73,8 58 69,5 32 72,8 18 35,9 1,24 17 39,1 1,31 8 44,2 1,46 69,9 1,2 68,1 1,22 68,1 1,22 57,4 1,26 54,1 1,28	19 12		8'0																																																																																																																																
5 68,6 5-18 13 73 20 73,8 58 69,5 32 72,8 18 35,9 1,24 17 39,1 1,31 8 44,2 1,46 69,9 1,2 68,1 1,22 57,4 1,26 54,1 1,28			0,4																																																																																																																																
5-18 13 73 20 73,8 58 69,5 32 72,8 18 35,9 1,24 17 39,1 1,31 8 44,2 1,46 69,9 1,2 68,1 1,22 68,1 1,26 57,4 1,26 54,1 1,28	22 13		0,3																																																																																																																																
5-18 13 73 20 73,8 58 69,5 32 72,8 18 35,9 1,24 17 39,1 1,31 8 44,2 1,46 69,9 1,2 68,1 1,22 68,1 1,26 57,4 1,26 54,1 1,28	15	7	2,5																																																																																																																																
20 73,8 58 69,5 32 72,8 18 35,9 1,24 17 39,1 1,31 8 44,2 1,46 69,9 1,2 68,1 1,22 57,4 1,26 54,1 1,28	16	7	2																																																																																																																																
58 69,5 32 72,8 18 35,9 1,24 17 39,1 1,31 8 44,2 1,46 69,9 1,2 68,1 1,22 68,1 1,22 57,4 1,26 57,4 1,26 54,1 1,28	11	2	1,1																																																																																																																																
32 72,8 18 35,9 1,24 17 39,1 1,31 8 44,2 1,46 69,9 1,2 68,1 1,22 57,4 1,26 54,1 1,28	14		0,3																																																																																																																																
18 35,9 1,24 17 39,1 1,31 8 44,2 1,46 69,9 1,2 68,1 1,22 57,4 1,26 57,4 1,26 54,1 1,28		5	0,2																																																																																																																																
17 39,1 1,31 8 44,2 1,46 69,9 1,2 68,1 1,22 57,4 1,26 54,1 1,28		**	3,2																																																																																																																																
8 44,2 1,46 69,9 1,2 68,1 1,22 57,4 1,26 54,1 1,28		2	2,1																																																																																																																																
69,9 1,2 68,1 1,22 57,4 1,26 54,1 1,28		2	1,9																																																																																																																																
68,1 1,22 57,4 1,26 54,1 1,28 10 4,1	20,02 11,53	3	2,6																																																																																																																																
57,4 1,26 54,1 1,28 10 4,1		2	2,4																																																																																																																																
54,1 1,28		3	2'0																																																																																																																																
10 4,1			2'0																																																																																																																																
			4,9																																																																																																																																
4,4		9'0 8	1																																																																																																																																

	CLH	4 73-106	33	5,1		46	26	0,3	0,5
	CLH	4 106-125	19	10,2		46	27	0,3	0,6
	CCL	4 0-17	17	35,4	1,55	27,21	12,25		3,2
15	CCL	4 17-40	23	36,1	1,22	27,34	12,87		1,6
13	CCL	4 40-66	26	36,3	1,3	28,04	11,85		0,3
	CCL	4 66-97	31	35,8	1,33	29,04	10,42		0,1
	CUC	4 0-20	20	24		36	22	2,1	3,6
26	CUC	4 20-37	17	24,8		29	21	1	1,8
20	CUC	4 37-70	33	26,2		30	23	0,8	1,4
	CUC	4 70-140	70	25,7		29	23	0,5	0,8
	CPA	4 0-21	21	21,7		39	28	2	3,4
24	CPA	4 21-38	17	22		37	25	1,4	2,4
27	CPA	4 38-73	35	21		41	25	0,8	1,4
	CPA	4 73-115	42	21,4				0,7	1,1
	CHP	4 0-19	19	34,8	14 14	22	11	1,6	2,8
29	CHP	4 19-38	19	34,9		22	12	0,4	0,7
25	CHP	4 38-70	32	44,6		21	11	0,2	0,3
	CHP	4 102-120	18	82,4		10	5	0,1	0,1
	STL	4 0-22	22	81,3	1,5	10	5	1,3	2,2
105	STL	4 22-31	9	76,2	1,4	14	6	1,3	1,4
103	STL	4 31-57	26	68,8	1,3	19	7	0,8	1,4
1	STL	4 57-85	28	91,3		6	3	0,1	0,2
	LGE	3 0-18	18	23		37	20	5,8	10
45	LGE	3 18-72	54	24,6		29	20	1	1,6
	LGE	3 72-160	88	24,1		29	20	0,3	0,6
	GYN	5 0-19	19	27,2		28	17	1,3	2,3
	GYN	5 19-37	18	17,4		41	29	0,6	1,1
36	GYN	5 37-63	26	19,8		44	27	0,3	0,6
	GYN	5 63-86	23	18		46	28	0,2	0,3
	GYN	5 86-120	34	35,4		30	22	0,1	0,2
	GNS	4 0-20	20	40,4	1,1	26,03	14,41		3,4
	GNS	4 20-43	23	42,1	1,18	24,55	15,3		1,7
	GNS	4 43-61	18	54,2	1,2	18,78	11,34		1,1
	GNS	4 61-70	9	81,2	1,32	10,02	6,83		0,4

The state of the s											
-11	GLC	3	0-20	1	20	51,9	1,12	24,76	14,15		4
32	GLC	3	20-50		30	58,1	1,26	19,82	11,42		2
	GLC	3	50-65	715	15	81,8	1,38	10,17	6,84		0,4
33	GLS	2	0-12		12	9,6		42	29	2,8	4,8
33	GLS	2	01/12/193	7	25	6,6		44	32	0,9	1,6
	HUQ	5	0-20		20	13,4		33	25	1,4	2,4
	HUQ	5	20-79		59	12,7		34	27	0,7	1,2
39	HUQ	5	79-105		26	27,6		27	21	0,2	0,3
	HUQ	5	105-115		10	32,4		30	19	0,2	0,3
	HUQ	5	115-+	*		27,3		42	25	0,1	0,2
	BUR	5	0-19		19	9		32	19	2	3,4
	BUR	5	19-34		15	8,8		32	21	0,8	1,3
11	BUR	5	34-62		28	6,7		39	22	0,4	0,6
	BUR	5	62-89		27	11,2		36	20	0,2	0,3
	BUR	5	89-111		22	18,5		31	23	0,2	0,3
	LRS	4	0-21		21	32,6	1,14	28,15	14,98	150	3,4
50	LRS	4	21-35		14	42,3	1,15	26,68	17,65		1,6
50	LRS	4	35-71		36	48,7	1,18	20,29	14,09		1,1
	LRS	4	71-96		25	53,1	1,25	27,36	11,76		0,6
	LSV	4	0-23		23	12,8	0,67	107,27	40,49		6,1
51	LSV	4	23-56		33	50,7	0,61	145,97	28,31		2,7
31	LSV	4	56-59		3	10	0,6	103,56	30,19		6,1
	LSV	4	59-97		38	3,8		72,12	38,29		7,2
49	LRM	2	0-22		22	76,8	1,27	16,55	10,39	16.1-3	2,4
72	LRM	2	22-41		19	78,1	1,38	11,96	6,26		0,6
	GRZ	5	0-18		18	19,2		28	17	1,2	2,1
	GRZ		18-35		17	12,3		33	21	0,6	1
35	GRZ		35-68		33	12,5		33	22	0,4	0,6
	GRZ	5	68-103		35	17		34	21	0,3	0,5
	GRZ	5	103-+	*		19,2		31	22	0,2	0,3
	LHM	4	0-15		15	3,5		40	32	2,6	4,4
47	LHM	4	15-46		31	3,5		36	24	0,6	1,1
7/	LHM		46-87		41	3,2		34	29	0,4	0,7
	LHM		87-+	*		40		20	11	0	0

-									
	LMQ	4 0-15	15	47,3	1,35	31	24	4,8	8,3
48	LMQ	4 15-32	17	50,2	1,44	29	14	3,8	6,6
10	LMQ	4 32-47	15	44		26	15	3,2	5,6
	LMQ	4 47-85	38	74,3		24	11	2,5	4,3
	LGD	3 0-12	12	35,5		26	12	1,1	2
44	LGD	3 12-18	6	51,3		20	11	0,4	0,6
	LGD	3 18-41	23	53,8		18	11	0,3	0,6
	LCD	4 0-26	26	7,1		42	27	1,1	1,9
43	LCD	4 26-64	38	9,9		40	25	0,7	1,1
13	LCD	4 64-98	34	7,1		46	28	0,5	0,8
	LCD	4 98-+ *	k.	39,6		22	14	0,1	0,2
	LGS	5 0-18	18	27,5		27	19	2,2	3,7
	LGS	5 18-31	13	32,4		19	13	0,5	0,8
46	LGS	5 31-54	23	29,3		27	18	0,4	0,6
	LGS	5 54-78	24	9,2		27	19	0,2	0,4
	LGS	5 78-96	18	27,5		27	16	0,4	0,6
	LVZ	5 0-18	8	55,8	1,6	21	9	1,1	1,9
	LVZ	5 18-32	14	46,9	1,8	24	9	0,5	0,9
52	LVZ	5 32-43	11	48,1	1,8	22	12	0,4	0,7
	LVZ	5 43-57	14	56,8	1,8	22	12	0,2	0,3
	LVZ	5 57-78	21	55,3	1,8	20	11	0,2	0,3
	MAR	3 0-16	16	50,1		21	10	1,4	2,4
56	MAR	3 16-35	19	50,5		20	10	1,2	2
	MAR	3 35-90	55	61		15	11	0,6	1,1
	MTL	4 0-20	20	53,7	1,69	16,86	7,08	I and	3,1
70	MTL	4 20-45	25	55,1	1,8	14,84	6,74		1
70	MTL	4 45-80	35	62,2	1,82	12,8	6,71		0,5
	MTL	4 80-110	30	66,9		12,15	7,54		0,5
	MLB	4 0-20	20	55,9		22	8	0,7	1,2
62	MLB	4 20-36	16	54,3		21	8	0,2	0,3
02	MLB	4 36-50	14	58,3		20	8	0,2	0,3
	MLB	4 50-70	20	63,1		20	9	0,1	0,2
64	MLL	4 0-17	17	3,5		40	32		4,4
	MLL	4 17-44	27	3,5		36	24		

141	MLL	4	44-75	31	3,2		34	29	PLATE !	0,7
	MLL	4	75-100	25	40		20	11		0
	MAN	5	0-20	20	78		14	8	0,9	1,6
	MAN	5	20-37	17	82,9		8	6	0,3	0,4
55	MAN	5	37-62	25	75,1		14	8	0,3	0,5
	MAN	5	62-94	32	92,1		5	4	0,1	0,2
	MAN	5	94-130	36	78,7		11	6	0,2	0,3
	MRT	3	0-16	16	72,2		13	6	0,6	1
68	MRT	3	16-40	24	58,7		19	8	0,5	0,8
	MRT	3	69-110	41	81,5		9	5	0,1	0,2
	MAC	5	0-11	11	51,7		14	10	0,4	0,6
	MAC	5	01/11/2022	11	54,9		15	11	0,2	0,3
54	MAC	5	22-34	12	24,8		24	16	0,2	0,4
	MAC	5	34-65	31	36,4		17	12	0,3	0,6
	MAC	5	65-108	43	54,3		19	12	0,1	0,1
	MLH	4	0-20	20	43,8	1,16	24,3	12,44		2,5
63	MLH	4	20-50	30	55	1,32	21,28	10,82		1,8
-	MLH	4	50-80	30	52,9	1,3	21,98	10,98		0,7
	MLH	4	80-98	18	53,9		22,35	10,71	4	0,5
	MIR	4	0-18	18	36,4		22	11	1	1,8
61	MIR	4	18-50	32	11,8		44	29	0,3	0,5
01	MIR	4	50-70	20	14,2		39	25	0,2	0,4
	MIR	4	70-90	20	46,6		28	24	0,1	0,1
	NIL	5	0-10	10	47,1		24	10	1,2	2
	NIL	5	01/10/2022	12	44,2		24	10	0,6	1
73	NIL	5	22-28	6	61,4		19	8	0,4	0,6
	NIL	5	28-45	17	53,8		23	8	0,3	1,2
	NIL	5	45-82	37	36,9		26	10	0,7	1,2
	HGS	5	0-18	18	19,6	1,48	30,43	17,29		3,6
	HGS	5	18-35	17	17,9	1,49	28,22	16,94		2,8
38	HGS	5	35-63	28	27,8	1,41	28	17,58		1,2
	HGS	5	63-84	21	27,5	1,3	27,82	17,05		0,9
	HGS	5	84-120	36	26	1,53	28,03	16,27		0,9
74	OLV	4	0-30	30	40,5	1,6	24,75	8,55	1,8	1,8

	OLV	4 30-65	35	28,6	1,42	25,48	10,3	2,1	2,1
	OLV	4 65-97	32	26,1	1,32	26,41	10,31	1,3	1,3
	OLV	4 97-120	23	23,7	1,37	27,12	10,84	1,1	1,1
	PLQ	4 0-28	28	20,9	1,27	34,26	21,34		3,8
81	PLQ	4 28-49	21	15,1	1,33	31,98	20,99		0,8
01	PLQ	4 49-73	24	15,3	1,37	35,86	22,01		0,5
	PLQ	4 73-110	37	16,7		34,93	21,57		0,6
	PTG	5 0-24	24	17,6	1,2	37,09	24,49		3,8
	PTG	5 24-42	18	15	1,13	37,42	23,34		1,6
89	PTG	5 42-58	16	15,3	1,13	38,53	23,69		0,9
	PTG	5 58-76	16	19,9	1,2	37,21	22,05		0,9
	PTG	5 76-100	24	27,1		30,29	16,71		0,4
	PRN	5 0-18	18	23,9		32	20	1,1	1,8
	PRN	5 18-31	13	36,8		25	16	0,3	0,5
88	PRN	5 31-65	34	18,7		35	24	0,4	0,7
	PRN	5 65-93	28	29,3		34	22	0,3	0,5
	PRN	5 93-120	27	43,5		33	22	0,2	0,3
	PMO	5 0-22	22	25,8	1,33	27,02	16,6		3,2
	PMO	5 22-43	21	24,6	1,19	26,05	18,32		2,4
83	PMO	5 43-67	24	41	1,3	26,56	11,41		1,6
	PMO	5 67-93	26	43,3		24,11	9,41		0,9
	PMO	5 93-110	17	62		16,78	6,87		0,7
	PHC	4 0-19	19	32,1		27	15	2,3	4
77	PHC	4 19-60	41	64,3		17	12	0,3	0,6
11	PHC	4 60-91	31	37,6		22	16	0,2	0,4
	PHC	4 91-120	29	71,3		12	7	0,1	0,2
	PCG	4 0-23	23	77,8	1,33	15,01	7,06		2,2
75	PCG	4 23-40	17	72,3	1,57	15,8	7,38		2
13	PCG	4 40-60	20	75,2	1,63	11,67	6,11		0,9
195.4	PCG	4 60-120	60	89		6,98	4,26		0,2
	PIL	4 0-11	11	66,2		12	7	1,9	3,2
78	PIL	4 01/11/1935	24	56,6		12	9	0,3	0,5
70	PIL	4 35-56	21	53,1		12	10	0,3	0,5
	PIL	4 56-86	30	50,6		14	11	0,1	0,2

86 POL		0-40	40	27,9	1 49	24 58	VV CL		W W
					2010	21/20	#/CT		1,4
		3 40-65	25	30,1					
		65-100	35	18,2	1,68	28,4	15,77		0,5
		0-15	15	25,6		44	34	3,4	5,9
		15-56	41	10,4		41	31	1,2	2,2
		06-95	34	10,2		41	59	1,1	1,9
		90-110	20	11,5		43	59	6'0	1,6
		110-150	40	11,7		46	32	6'0	1,6
		61-0	19	58,5	1,6	25	11	1,2	2,1
		19-34	15	64	1,4	27	13	9'0	6'0
		34-48	14	60,1	1,3	27	18	0,4	2'0
		48-55	7	2'69	1,4	24	13	0,2	0,3
		0-10	10	35		26	12	1,8	2,2
		01/10/1933	23	35,2		25	12	6'0	1,6
		33-56	23	42,6		30	16	0,5	6'0
	wit 1	92-95	20	24,1		41	27	0,2	0,4
		* +-92		69		20	16	0,1	0,2
		0-12	12	66,1		13	9	0,4	8,0
		01/12/2024	12	60,4		15	7	0,4	8'0
PUM		24-38	14	51,9		16	6	0,3	0,5
PUM		38-58	20	45,8		16	11	0,3	0,5
	nd)	58-82	24	51,4		13	6	0,1	0,2
PPL	V	0-15	15	12,7		32	21	1,5	2,5
JAd 78		15-55	40	8,1		40	24	0,4	9'0
		1 55-80	25	10,4		50	33	0,2	0,3
1dd	4	* +-08		41,6		99	33	0,1	0,1
PUQ	41	6-0	6	42,4		23	13	1,5	2,6
		01/09/2029	20	40,5		22	10	1,2	2
92 PUQ	3)	29-85	99	37,5		21	10	0	0
PUQ	43	85-113	28	39,2		21	10	0,2	0
PUQ	-	113-145	32	40,2		22	12	0,2	0,3
94 QHE		0-16	16	4,3		73	44	3,2	5,5
OHE	4	16-37	21	3,3		64	46	1,4	2,4
ONE	4	37-90	53	3,8		65	45	1,1	1,9

	QHE	4	90-+	*		44,5		34	18	0,2	0,3	
	QMS	3	0-18		18	12,2		36	25	3,1	5,3	
96	QMS		18-35		17	10,9		44	30	0,7	1,2	
	QMS		35-60		25	22		40	23	0,4	0,7	
1	QLM	5	0-19		19	62,2	1,7	12	6	1,9	0,9	
	QLM		19-35		16	79,1	1,7	9	4	1,4	0,2	
95	QLM		35-57		22	67,1	1,7	- 11	5	2,2	0,2	
	QLM		57-87		30	73,1	1,6	11	5	2,9	0,2	
	QLM		87-113		26	93,4		4	2	0,8	0	
77-41	QNH	5	0-12		12	31		31	15	1,8	3	
	QNH		01/12/2023	3	11	30,9		30	14	1,2	2,1	
97	QNH		23-44		21	36,8		32	22	0,5	0,9	
	QNH	5	44-74		30	28,6		32	21	0,4	0,6	
	QNH		74-110		36	17,1		23	12	0,2	0,4	
	QAL		0-15		15	73,3	11 11 11 11	12	5	0,7	1,2	
	QAL		15-27		12	72,7		11	5	0,3	0,5	
93	QAL		27-39		12	79,1		10	5	0	0	
	QAL		39-57		16	60,6		17	10	0	0	
	QAL	5	57-85		28	48		22	14	0	0	
10	RNG	4	0-19		19	35,2	1,47	24,2	9,79	F 2	3,8	
100	RNG	4	19-61		42	51,4	1,61	20,94	8,97		2,2	
100	RNG	4	61-90		29	49,1	1,31	16,15	8,5		0,7	
	RNG	4	90-145		55	43,3		19,81	9,03		0,8	
	RAN	5	0-10		10	36		23	13	1,1	1,8	
	RAN		10-24		14	39,9		24	13	1	1,8	
99	RAN		24-40		16	79,5		61	4	0,1	0,2	
	RAN	5	40-110		70	46,7		21	11	0,4	0,7	
	RAN		110-125		15	91,5		3	2	0	0,1	
Life	SPA	5	0-15		15	42,7		21	10	1,2	2	
	SPA	5	15-34		19	42,3		22	11	1,2	2	
103	SPA	5	34-60		26	35		24	14	0,7	1,2	
	SPA	5	60-93		33	41,7		22	11	0,4	0,7	
	SPA	5	93-+	*		44,2		21	12	0,2	0,3	
106	SVT	5	0-17		17	30,2	1,72	34,67	19,96		5,8	

10											
	SVT	5	17-35	18	29	1,59	33,64	19,95	Here	4,8	
	SVT	5	35-60	25	26,2	1,57	37,16	23,79		2,7	
	SVT	5	60-90	30	24,7	1,54	35,51	23,2		2	
	SVT	5	90-125	35	26,2		36,2	23,96		2	
	TLH	4	0-15	15	42,2		24	15	1,46	2,51	
112	TLH	4	15-50	35	34,3		26	15	1,08	1,86	
112	TLH	4	50-72	22	26,8		26	26	1,23	2,12	
	TLH	4	72-110	38	38		26	26	0,71	1,22	
	TAH	5	0-10	10	74,5	1,7	11	5		1,6	
	TAH	5	01/10/2022	12	70,7	1,76	11	6		0,8	
107	TAH	5	22-26	4	69,4		12	6		0,3	
	TAH	5	26-55	29	42,5	2,03	29	19		0,6	
	TAH	5	55-70	15	45,5	1,91	29	19		0,4	
	TEN	3	0-18	18	19,6		38	19	3,2	5,5	
109	TEN	3	18-40	22	18,1		33	18	2,1	3,6	
	TEN	3	40-55	15	31,6		30	22	0,7	1,2	
	TIN	5	0-17	17	64,9		16	6	0,7	1,1	
	TIN		17-28	11	67,3		16	7	0,4	0,7	
111	TIN	5	28-37	9	85,7		8	5	0,1	0,2	
	TIN		37-66	29	70,4		13	8	0,3	0,6	
	TIN	5	66-133	67	87,4		6	4	0,1	0,1	
	TOC	3	0-14	14	53,3		26	12	1	1,6	
113	TOC		14-29	15	47,7		25	14	0,5	0,9	
	TOC		29-42	13	50		38	26	0,2	0,4	
	TRH		0-20	20	28,5	1,37	30,15	30,87		3,4	
115	TRH		20-55	35	26,9	1,45	30,87	21,04		1,1	
115	TRH		55-72	17	23,2	1,46	32,61	22,89		0,9	
	TRH		72-120	48	27,2		31,61	20,92		0,6	
	YQL		0-26	26	35,2		28	12	1,9	3,3	
	YQL		26-48	22	43,1		20	8	0,2	0,6	
119	YQL		48-80	32	41		20	10	0,3	0,5	
	YQL		80-117	37	41,7		21	10	0,2	0,3	
	YQL		117-130	13	42,6		21	12	0,1	0,2	
120	ZMR		0-16	16	31,1	1,44	27,83	14,4	7.17	4,3	
							4.5				

3,1

13,64

26,35

1,58

31,8

16

	16-32	32-51
O DE CHILE ON PARA LA JON AGRARIA	3	3
GOBIERN	ZMR	ZMR

Anexo 4: Información de las series de suelos de la VII Región

Identificador	Serie	Nº Estrato	Estrato (cm)	Prof (cm)	Fracción de Arena	DENSIDAD APARENTE g/cm3	HUMEDAD RETENIDA 33 kPa %	HUMEDAD RETENIDA 1500 kPa %	CO %	MO %	relación C/N	alores inciales de agua	nitrogeno mineral inicia
	3	ACH	0 - 21	21	29,2	1,5	32	14	2,5	4,3	1000		
1	3	ACH	21 - 60	39	30,7	1,6	25	13	0,9	1,6			
	3	ACH	60 - 115	55	40,9	1,7	23	12	0,4	0,7			
	3	AYT	0 - 15	15	16		34	21	2,52	4,34			
3	3	AYT	15 - 60	45	18,9		29	21	1,54	2,65			
	3	AYT	60 - 110	50	23		31	27	0,64	1,1			
	4	BRA	0 - 17	17	40,8	123	35	18	5,2				
5	4	BRA	17 - 48	31	48,2		35	17	3,1				
3	4	BRA	48 - 82	34	41,6		34	20	1,9				
	4	BRA	82 - 120	38	42,3		46	30	1,1				
	4	BPR	0 - 20	20	25,9	1,24	32,1	11,8	1,59				NAME OF TAXABLE
4	4	BPR	20 - 54	34	37,6	1,15	26,9	10,2	0,85				
4	4	BPR	54 - 90	36	38,1	1,08	29,6	10,8	0,78				
	4	BPR	90 - 120	30	23,5	0,91	29,2	12,4	0,94				
THE TOTAL	3	CBR	0 - 17	17	30,1	1,6	25	15	1,4	2,4	13.71		
10	3	CBR	17 - 52	35	31,5	1,7	23	14	0,7	1,2			
	3	CBR	52 - 80	28	42,3	1,8	23	15	0,4	0,7			
	3	CLB	0 - 18	18	51,2	1,7	20	9	1,3	2,2	Maria III	HE STATE OF	TO SHEET STATE
15	3	CLB	18 - 64	46	31,2	1,7	30	18	0,2	0,3			
	3	CLB	64 - 92	28	31,2	1,7	30	18	0,2	0,3			
6	2	CAM	0 - 12	12	44	1,4	20	10	1,2	2,1		F 5 5 5 5	
0	2	CAM	12 - 22	10	48,2	1	22	11	0,5	0,9			
	5	CMR	0 - 13	13				- 1 - 1 - 1 - 1	0,89		1.00		1 1 1 1 1 1
	5	CMR	13 - 35	22					0,36				
19	5	CMR	35 - 60	25					0,03				
	5	CMR	60 - 95	35									
	5	CMR	95 - 140	45									
	4	CNS	0 - 15	15	38,6	1,29	26,4	14,9	1,47	1412			
24	4	CNS	15 - 60	45	19,8	1,16	32,5	23,4	0,24				
21	4	CNS	60 - 100	40	20,7	1,04	36,8	24,3	0,21				
	4	CNS	100 - 130	30	19,2	0,93	41	28,3	0,2				
20		CNE	0 - 25	25	58,3	g/cm3	83	62	0,5	0,9			

1	
8000	GOBIERNO DE CHILE
1000	FUNDACIÓN PARA LA INNOVACIÓN AGRARIA
-	a a to tricion tricion and

W.										
	6 CNE	25 - 43	18	51		18	11	0,4	0,7	
	6 CNE	43 - 56	13	50,3		19	12	0,3	0,5	
	6 CNE	56 - 75	19	48,8		19	11	0,3	0,5	
	6 CNE	75 - 95	20	63		15	7	0,2	0,3	
	6 CNE	95 - 105	10	55,6		17	10	0,2	0,3	
	3 CMG	0 - 20	20							
18	3 CMG	20 - 64	44							
	3 CMG	64 - 120	56							
	5 CAR	0 - 5	5	68,6		15	7		2,5	
	5 CAR	5 - 18	13	73		16	7		2	
7	5 CAR	18 - 38	20	73,8		11	5		1,1	
	5 CAR	38 - 96	58	69,5		14	5		0,3	
	5 CAR	96 - 128	32	72,8		13	6		0,2	
	4 CBC	0 - 18	18	20,3	1,35	30,2	14,5	3,39		
8	4 CBC	18 - 43	25	19,3	1,32	28	16,1	2		
0	4 CBC	43 - 87	44	17,3	1,1	33	20,5	0,76		
	4 CBC	87 -120	33	15,1	1,07	27,6	18,9	0,41		
	4 COL	0 - 14	14	21		34	20	1,6	2,8	
22	4 COL	14 - 55	41	15,6		38	25	0,5	0,9	
22	4 COL	55 - 64	9	15		45	29	0,3	0,5	
	4 COL	64 - 70	6	68,3		18	9	0,1	0,2	
	5 CME	0 - 6	6	28,6		29	14	2,5	4,3	
	5 CME	6 - 22	16	27		27	15	2	3,4	
17	5 CME	22 - 31	9	28,4		25	15	1,1	1,9	
	5 CME	31 - 75	44	34,7		26	13	0,5	0,9	
	5 CME	75 - 98	23	41		28	13	0,2	0,3	
	3 CVD	0 - 20	20	40				1,1	1,9	
30	3 CVD	20 - 45	25	35,7				0,4	0,7	
	3 CVD	45 - 80	35	36,6				0,4	0,7	
	5 CDL	0 - 15	15	19,1		28	14	1,8	3,1	
	5 CDL	15 - 36	21	7,9		26	17	1	1,7	
11	5 CDL	36 - 45	9	11,5		28	17	0,6	1	
	5 CDL	45 - 75	30	24,3		25	14	0,2	0,3	
	5 CDL	75 - 90	15	37,7		23	15	0,3	0,5	
7-12-13-13	5 CBN	0 - 20	20	13,7		31,1	18	2,4	4,1	
	5 CBN	20 - 35	15	15,2		26,8	18	1,2	2,1	
9	5 CBN	35 - 52	17	8,6		28,2	20,7	0,7	1,2	
	5 CBN	52 - 70	18	18,1		30,3	22,2	0,6	1	
	5 CBN	70 - 90	20	10,6		31,8	22,7	0,5	0,9	
16	5 CLE	0 - 8	8	50	FILLIAND	17	8	1	1,7	
	5 CLE	8 - 25	17	50,7		21	10	0,8	1,4	

	5 CLE	25 - 43	18	50,2		17	9	0,4	0,7		
	5 CLE	43 - 65	22	68,3		10	8	0,2	0,3		
	5 CLE	65 - 115	50	78,1		10	5	0,1	0,2		
	4 CUM	0 - 31	31	20	1,2	32	22	3,3	5,7		
28	4 CUM	31 - 56	25	14,6	1,1	35	25	1,4	2,4		
20	4 CUM	56 - 102	46	16,1	1,2	37	29	0,6	0,6		
	4 CUM	102 - 130	28	20,3	1,6	40	30	0,4	0,4		
29	2 CUN	0 - 20	20	65,8	1,8	14	6	0,6	1		
23	2 CUN	20 - 54	34	43,4	2	31	20	0,3	0,5		
	3 CRT	0 - 22	22	3,5		40	24	1,3	2,2		
27	3 CRT	22 - 55	33	5,8		37	25	0,9	1,6		
	3 CRT	55 - 120	65	5,4		40	27	1,1	1,9		
	5 CRC	0 - 20	20	13,5		45	36	2,9	5		
	5 CRC	20 - 46	26	11,1		56	40	1,5	2,6		
26	5 CRC	46 - 63	17	11,4		58	41	1,3	2,2		
	5 CRC	63 - 95	32	13		60	40	0,9	1,6		
	5 CRC	95 - 100 +	5	10,5		68	52	0,3	0,5		
7.11.42	3 CHA	0 - 20	20	49,28	74-192-11	111111111111111111		2,4	-15		
12	3 CHA	20 - 52	32	40				2,1			
	3 CHA	52 - 90	38	29,64				1			
	4 CHM	0 - 15	15	19,2		34	21	2,4	4,1	F-11 - 13 11	
14	4 CHM	15 - 51	36	18		38	25	0,5	0,9		
14	4 CHM	51 - 72	21	16,3		38	25	0,4	0,7		
	4 CHM	72 - 90	18	19		40	23	0,3	0,5		
	3 CHI	0 - 25	25	28,2	1,6	28	14	2,2	3,8		
	3 CHI	25 - 41	16	20	1,7	28	15	1,2	2,1		
	3 CHI	41 - 55	14	17,4	1,6	30	19	0,5	0,9		
13	4 DNG	0 - 18	18	16,5	1,2	48	28	6	10,3		
	4 DNG	18 - 49	31	12,9	1	66	39	5,3	9,1		
	4 DNG	49 - 85	36	5,9	1	65	40	4,1	7,1		
	4 DNG	85 - 110	25	11,4	1,3	45	25	1,5	2,6		
	4 DMG	0 - 12	12	20,4		30	15	1,2	2,1		
22	4 DMG	12 - 35	23	27,4		26	14	0,7	1,2		
33	4 DMG	35 - 58	23	35,3		24	14	0,5	0,9		
	4 DMG	58 - 100	42	45,6		22	13	0,5	0,9		
	3 DAO	0 - 23	23	42	1,7	24	14	2	3,4		100
31	3 DAO	23 - 55	32	59,3	1,7	24	15	0,5	0,9		
	3 DAO	55 - 80	0	61	1,7	23	14	0,4	0,7		
	3 ELM	0 - 31	31	23,1	-//	38	27	2	3,4		_
34	3 ELM	31 - 46	15	27,9		44	29	0,6	1		
	3 ELM	46 - 60 +	14	52		26	16	0,2	0,3		

1800	
0	
N. A. KED	GOBIERNO DE CHILE FUNDACIÓN PARA LA
1000	INNOVACIÓN AGRARIA
-0	

-									
Teles .	4 LPM	0 - 18	18	57,3		21	9	1,5	2,6
56	4 LPM	18 - 42	24	77,5		11	6	0,3	0,5
30	4 LPM	42 - 63	21	80,9		8	5	0,2	0,3
	4 LPM	63 - 100	37	54,8		22	10	0,5	0,9
	3 LOB	0 - 15	15	25,1	1,7	28 14.0		1,9	3,3
53	3 LOB	15 - 38	23	26,3	1,8	28	14	0,4	0,7
	3 LOB	38 - 80	42	34,3	1,9	22	11	0,3	0,5
	4 LDC	0 - 19	19	58	1,6	17	8	0,9	1,6
40	4 LDC	19 - 47	28	47	1,7	17	11	0,3	0,5
48	4 LDC	47 - 98	51	52,1	1,7	21	14	0,1	0,2
	4 LDC	98 - 120	22	62,7	1,7	13	8	0,1	0,2
	3 LTS	0 - 14	14	33,2	-1/			3,6	0,2
58	3 LTS	14 -50	36	31,7				1	
	3 LTS	50 - 74	24	39,1				0,7	
	4 LIC	0 - 22	22	47,5				0,7	1,2
	4 LIC	22 - 39	17	37,1				0,7	1,2
49	4 LIC	39 - 55	16	44,9				0,6	1
	4 LIC	55 - 110 +	55	23,1				0,5	0,9
	3 LNS	0 - 18	18	47,7	1,5	26	15	3	5,2
51	3 LNS	18 - 32	14	81,9 -	1,5	16	10	1,1	1,9
-	3 LNS	32 -50	18	84,9 -		15	8	0,9	1,6
	4 LIU	0 - 15	15	18,3	1,6	32	22	2,1	3,6
	4 LIU	15 - 46	31	27,9	1,6	27	150	0,6	1
50	4 LIU	46 - 79	33	28,8	1,6	27	16	0,4	0,7
	4 LIU	79 - 110	31	26,3	1,7	27	17	0,4	0,7
	4 LZA	0 - 11	11	48,3	11	23	11		4,3
	4 LZA	11 - 28	17	49,5		20	10	2,5	
61	4 LZA	28 - 50	22			22	14	1,5	2,6
	4 LZA	50 - 80	30	51,6				0,4	0,7
	2 LNT			69,9		17	11	0,3	0,5
52		0 - 22	22	56,8		23	14	3	5,2
	2 LNT	22 - 55	33	66,4		22	15	2,7	4,7
	4 LOS	0 -16	16	29,86				1,6	2,8
54	4 LOS	16 - 50	34	20,71				0,8	1,4
	4 LOS	50 - 80	30	24,26				0,6	1
	4 LOS	80 - 100	20	30,58				0,4	0,7
	4 LCP	0 - 15	15	39,1		31	10	2,1	3,6
47	4 LCP	15 - 39	24	37,9		25	10	0,5	0,9
	4 LCP	39 - 54	15	45,3		22	8	0,2	0,3
	4 LCP	54 - 90	36	36,9		23	14	0,3	0,5
55	5 LPC	0 - 26	26	51,3	2	21	13	1,6	2,8
	5 LPC	26 - 57	31	57	1,6	17	10	0,6	1

1	
0.0	Charles of the last of
COSCED	GOBIERNO DE CHILE FUNDACION PARA LA
90	INNOVACIÓN AGRARIA
0	

	5 LPC	57 - 76	19	70,8	1,6	14	8	0,3	0,5	
	5 LPC	76 - 96	20	70,2	1,7	12	6	0,2	0,3	
	5 LPC	96 - 130	34	86,4	1,4	7	4	0,1	0,2	
57	2 LQS	0 - 19	19	28,19				5,5	9,5	ALE REPORT
,	2 LQS	19 - 42	23	28,65				3,7	6,4	
	5 LVZ	0 - 18	18	55,8	1,6	21	9	1,1	1,9	
	5 LVZ	18 - 32	14	46,9	1,8	24	9	0,5	0,9	
60	5 LVZ	32 - 43	11	48,1	1,8	22	12	0,4	0,7	
	5 LVZ	43 - 57	14	56,8	1,8	22	12	0,2	0,3	
	5 LVZ	57 - 78	21	55,3	1,8	20	11	0,2	0,3	
	5 LUR	0 - 18	18	25,7				1,76	3	
	5 LUR	18 - 43	25	50,5				0,64	1,1	
59	5 LUR	43 - 56	13	20				0,28	0,5	
	5 LUR	56 - 79	23	15,8				0,23	0,4	
	5 LUR	79 - 120	41	77,6				0,05	0,1	
	3 MAR	0 - 16	16	50,1		21	10	1,4	2,4	
63	3 MAR	16 - 35	19	50,5		20	10	1,2	2	
	3 MAR	35 - 90	55	61		15	11	0,6	1,1	
	3 MJA	0 - 19	19	39,1				0,6	1	- Maria - 1-60
67	3 MJA	19 - 56	37	35,6				0,3	0,5	
	3 MJA	56 - 100	44	32,49				0,2	0,3	
	4 MAP	0 - 20	20	5,2		22,8	13,8	2,2	3,8	
62	4 MAP	20 - 44	24	19,2		26,9	18,2	1,2	2,1	
62	4 MAP	44 - 70	26	19,7		33,3	24,7	0,5	0,9	
	4 MAP	70 - 101	31	29,9		34,9	27,2	0,5	0,9	
411	5 MTC	0 - 17	17	29,7						
	5 MTC	17 - 54	37	26,3						
74	5 MTC	54 - 80	26	31,2						
	5 MTC	80 - 105	25	37,2						
	5 MTC	105 - 155	50	40,5						
1111	3 MLE	0 - 14	14	58,7		9141 91-	Grant P.	0,64	1,1	
69	3 MLE	14 - 45	31	47,3				0,1	0,2	
	3 MLE	45 - 90	45	49,1				0,14	0,24	
co	2 MLC	0 - 15	15	33,6	1 / 15	42,6	21,4	6,2	10,7	
68	2 MLC	15 - 32	17	39,3		37,8	23,2	4,8	8,3	
THE PARTY	5 MEL	0 - 16	16	53,4	1,8	24	12	1,1	1,9	
	5 MEL	16 - 43	27	46,2	1,7	29	17	0,6	1	
65	5 MEL	43 - 62	19	79,1	1,7	31	18	0,2	0,3	
	5 MEL	62 - 80	18	54,9	1,7	40	26	0,3	0,5	
	5 MEL	80 - 100 +	20	49	1,6	17	8	0,4	0,7	
64	4 MDR	0 - 13	13	27	-10	24	10	1,45	2,5	

- 2	
Sep-	GOBIERNO DE CHILE FUNDACIÓN PARA LA INNOVACIÓN AGRARIA

	4 MDR	13 - 33	20	18,8		28	22	1,16	2	
	4 MDR	33 - 58	25	16,8		31	24	0,7	1,2	
	4 MDR	58 - 75	17	13,5		33	26	0,46	0,8	
	3 MRF	0 - 23	23	50,8	1,7	22	9	0,7	1,2	
72	3 MRF	23 - 57	34	47,7	1,7	22	9	0,5	0,9	
	3 MRF	57 - 75	18	46,7	1,7	25	12	0,3	0,5	
	3 MRM	0 - 25	25	22,1	1,2	37,2	20	2,38		
73	3 MRM	25 - 52	27	19,8	1,06	35,8	20,1	1,28		
	3 MRM	52 - 100	48	21,2	0,95	37,6	32,6	0,92		
	5 MNT	0 - 14	14	53,7	1,9	18	10	0,9	1,6	
	5 MNT	14 - 46	32	40,5	1,8	20	14	0,4	0,7	
70	5 MNT	46 - 62	16	39,3	1,8	29	21	0,3	0,5	
	5 MNT	62 - 81	19	23,9	2	31	22	0,2	0,3	
	5 MNT	81 - 100	19	34,2	1,6	25	18	0,2	0,3	
	5 MOY	0 - 5	5					1,65	2,8	
	5 MOY	5 - 26	21					0,93	1,6	
71	5 MOY	26 - 72	46					0,53	0,9	
	5 MOY	72 - 87	15					0,27	0,5	
	5 MOY	87 - 107	20					0,16	0,3	
	5 NIL	0 - 10	10	47,1		24	10	1,2	2	
	5 NIL	10 - 22	12	44,2		24	10	0,6	1	
75	5 NIL	22 - 28	6	61,4		19	8	0,4	0,6	
	5 NIL	28 - 45	17	53,8		23	8	0,3	1,2	
	5 NIL	45 - 82	37	36,9		26	10	0,7	1,2	
	4 NNH	0 - 17	17	21,7	1,43	31,1	20,1	1,53	2,63	SHARLES AND THE PERSON OF THE
76	4 NNH	17 - 53	36	21,1	1,4	28,5	18,7	0,81	1,24	
76	4 NNH	53 - 65	12	18,1	1,41	28,6	18	0,57	0,98	
	4 NNH	65 - 95	30	14,8	1,38	30,6	18,2	0,6	1,03	
	3 PAL	0 - 18	18	20,4	1,8	31	19	1,1	1,9	
79	3 PAL	18 - 60	42	15,5	1,9	34	22	0,5	0,9	
	3 PAL	60 - 95	35	14,9	1,9	35	21	0,4	0,7	
	4 PQB	0 - 19	19	24,6		20	10	1,5	2,6	Fig. 1. Sept. 1. Sept
00	4 PQB	19 - 30	11	23,8		21	10	1,1	1,9	
90	4 PQB	30 - 66	36	16,6		25	15	0,5	0,9	
	4 PQB	66 - 101	35	13,9		35	22	0,4	0,7	
7. K 10.	3 PAN	0 - 15	15	28,8	1,5	37	20	3,5	6	RIES THE BUILDING TO THE
80	3 PAN	15 - 50	35	29,4	1,7	30	18	1,1	1,9	
	3 PAN	50 - 85	35	26,1	2	31	21	0,4	0,7	
10-02	3 PAG	0 15	15	20/2	-			0,1	0//	
78	3 PAG	15 - 63	48							
	3 PAG	63 - 70	7							

22	33	35	15	34	41	22	25	31	44	13	19	38	30	7	20	23	17	26	22	14	21	23	17	18	13	24		29 - 52 23	14	12	16	28	22	42	11	24	21	30
41,64	,64		0,3 1,7																		5,5	5,8	8,1	9,4	5,3	9,3				6'6	9'9	2,7	5,3	5,1	66,2	9'9	3,1	9'0
			19	23	24	24	11	12	19	25	23	39	37	13,1	13,1	25,1	35	40	44	30	31	34	34	35	31	25				30	26	33	29	7	12	12	12	14
			12	17	18	16	9	7	12	14	14	26	25	7,4	7,4	9'6	23	28	31	17	18	20	20	22	15	13				15	17	16	13	5	7	6	10	11
			1,1	0,5	0,2	0,1	2'0	0,4	0,4	1	0,4	6,0	0,3	0,54	0,54	1,17	2,6		0,4	1,6	1,2	9'0	6,4	8'0	0,3	0				1,9	1,3	2'0	0,4	0,2	1,9	0,3	0,3	0,1
2,9	1,2	8'0	1,9	6'0	0,3	0,2	1,2	0,7	0,7	1,7	7,0	7,0	0,5				4,5	1,7	0,7	2,8	2,1	1	0,7	1,4	0,5	0				3,3	2,2	1,2	0,7	0,3	3,2	0,5	0,5	0,2

-	
1	GOBIERNO DE CHILE FUNDACIÓN PARA LA
Sec	INNOVACIÓN AGRARIA

	3 PUT	0 - 18	18	47,6	1,5	29	15	2,1	3,6	
94	3 PUT	18 - 45	27	50,8	1,5	29	16	1	1,7	
	3 PUT	45 - 60	15	64,5	1,5	25	14	0,5	0,9	
	3 QMS	0 - 18	18	12,2		36	25	3,1	5,3	
99	3 QMS	18 - 35	17	10,9		44	30	0,7	1,2	
	3 QMS	35 - 60	25	22		40	23	0,4	0,7	
	3 QLA	0-9	9	19,3						
97	3 QLA	9 - 15	6	10,8						
	3 QLA	15 - 55	40	13,2						
	3 QEP	0 - 9	9	26,2	1,6	29	18	2	3,4	PER PROPERTY SERVICE
96	3 QEP	9 - 53	44	22,2	1,9	28	20	0,4	0,7	
	3 QEP	53 - 80	27	21,9	1,9	31	21	0,4	0,7	
100 to 100	5 QTQ	0 - 10	10	34,9		31	16	3,4	5,8	
	5 QTQ	10 - 23	13	35,2		27	16	2,5	4,3	
100	5 QTQ	23 - 45	22	38,1		25	15	1,6	2,8	
	5 QTQ	45 - 77	32	36		29	16	1	1,7	
	5 QTQ	77 - 120	43	34,2		31	19	0,8	1,4	
	4 QCH	0 - 10	10	10,8		% %		3,7	6,4	
or	4 QCH	10 - 36	26	9,4		35	24	1,5	2,6	
95	4 QCH	36 - 60	24	13,6		33	23	0,9	1,6	
	4 QCH	60 - 90	30	13,7		39	29	0,6	1	
HITTE I	5 QUM	0 - 13	13	28,9	1,5	31,27	15,64	1,93	3,32	A CONTRACTOR OF THE PARTY OF TH
	5 QUM	13 - 37	24	24,4	1,63	29,08	18,39	0,58	1	
101	5 QUM	37 - 65	28	21,2	1,6	31,1	20,68	0,4	0,69	
	5 QUM	65 - 100	35	19	1,7	39,91	25,99	0,45	0,77	
	5 QUM	100 - 120	20	18,5	1,65	26,14	10,26	0,44	0,76	
	4 QLY	0 - 12	12	59,3		13	5	0,6	1	
98	4 QLY	12 - 23	11	50,9		17	9	0,6	1	
96	4 QLY	23 - 29	6	45,1		21	12	0,4	0,7	
	4 QLY	29 - 45	16	46,7		23	14	0,4	0,7	
	5 RAD	0 - 21	21	27,6				5,6	9,7	
	5 RAD	21 - 43	22	22,3				4,7	8,1	
102	5 RAD	43 - 57	14	21,9				3,8	6,6	
	5 RAD	57 - 79	22	32,1				0,9	1,6	
	5 RAD	79 - 120	41	40,2				0,9	1,6	
HILL HE	3 RAR	0 - 16	16	29	1,6	35	21	1,8	3,1	
103	3 RAR	16 - 44	28	33,9	1,6	36	22	0,7	1,2	
	3 RAR	44 - 90	46	25,3	1,6	38	22	0,5	0,9	
105	4 RQN	0 - 20	20	41,9	1,4	24	15	1,9	3,2	
	4 RQN	20 - 59	39	42,3	1,6	22	14	0,6	1	
	4 RQN	59 - 87	28	52,1	1,4	18	12	0,3	0,5	

- Sin	
deco	GOBIERNO DE CHILE
500	FUNDACIÓN PARA LA INNOVACIÓN AGRARIA

	4 RQN	87 - 120	33	73,4	1,4	10	7	0,1	0,2	
104	2 RML	0 - 22	22	56,1				3,2	5,5	
101	2 RML	22 - 38	16	57,6				3,1	5,3	
	3 SJV	0 - 20	20	78,3	1,6	15	6	1	1,7	
107	3 SJV	20 - 46	26	85,4 -		9	5	0,2	0,3	
	3 SJV	46 - 110	64	91 -		8	4	0,1	0,2	
	3 SRF	0 - 18	18	42	1,7	19	11	1,7	2,9	
109	3 SRF	18 - 55	37	38	1,7	20	15	0,6	1	
	3 SRF	55 - 90	35	41,8	1,7	20	10	0,2	0,3	
	4 STR	0 - 23	23	42,1		30	15	2,1	3,6	
110	4 STR	23 - 50	27	37,8		30	19	1,7	2,9	
110	4 STR	50 - 78	28	24,8		32	19	0,7	1,2	
	4 STR	78 - 105	27	47,2		28	16	0,6	1	
	3 TAL	0 - 16	16	36,7	1,7	20	11	1,2	2,1	
113	3 TAL	16 - 70	54	34,1	1,5	25	20	0,3	0,5	
	3 TAL	70 - 100	30	55,6	1,6	22	15	0,2	0,3	
	4 TLH	0 - 15	15	42,2		24	15	1,46	2,51	
110	4 TLH	15 - 50	35	34,3		26	15	1,08	1,86	
118	4 TLH	50 - 72	22	26,8		26	26	1,23	2,12	
	4 TLH	72 - 110	38	38		26	26	0,71	1,22	
	5 TAG	0 - 10	10	35		19	11	2,5	4,3	
	5 TAG	10 - 26	16	36,6		17	10	1,9	3,3	
112	5 TAG	26 - 37	11	30,2		17	11	0,9	1,6	
	5 TAG	37 - 64	27	22,9		18	13	0,7	1,2	
	5 TAG	64 - 107	43	14,3		20	16	0,4	0,7	
	3 TEN	0 - 18	18	19,6		38	19	3,2	5,5	
115	3 TEN	18 - 40	22	18,1		33	18	2,1	3,6	
	3 TEN	40 - 55	15	31,6		30	22	0,7	1,2	
	4 TNL	0 - 10	10	28,8		24	15	1,6	2,8	
440	4 TNL	10 - 35	25	31,6		29	17	1,1	1,9	
119	4 TNL	35 - 68	33	32,4		28	19	0,5	0,9	
	4 TNL	68 - 80	12	41		35	21	0,3	0,5	
	4 TOT	0 - 20	20	67,1				0,31	0,5	
	4 TOT	20 - 43	23	52,3				0,22	0,4	
120	4 TOT	43 - 65	22	58,1				0,22	0,4	
	4 TOT	65 - 100	35	62,4				0,18	0,3	
	3 TGL	0 - 17	17	18,6	1,01	92,6	49,7	5,49	9,44	
117	3 TGL	17 - 75	58	12,4	0,95	47,4	26,8	1,18	2,03	
	3 TGL	75 - 120	45	19,8	0,81	44,4	26,4	0,85	1,46	
122	4 TRE	0 - 16	16	25	0,01	35	17		3,8	
	7 117	0 10	10	23		22	1/	2,2	3,0	

80	
0.0	
A SERVICE OF THE PERSON NAMED IN	GOBIERNO DE CHILE
Che	FUNDACIÓN PARA LA INNOVACIÓN AGRARIA
45	

0										
	4 TRE	28 - 45	17	17,3		37	26	1	1,7	
	4 TRE	45 - 120	75	16,7		38	28	0,9	1,6	
	3 TCO	0 - 17	17	15,1				1,9	3,3	
114	3 TCO	17 - 32	15	12,8				0,8	1,4	
	3 TCO	32 - 58	26	21,4				0,3	0,5	
	5 TRL	0 - 17	17	36,7	1,46	21,54	13,96	1,25	2,15	
	5 TRL	17 - 44	27	22,7	1,45	26,3	19,64	0,77	1,32	
123	5 TRL	44 - 66	22	18,2	1,54	29,19	22,1	0,6	1,03	
	5 TRL	66 - 105	39	19,2	1,51	28,84	21,77	0,25	0,43	
	5 TRL	105 - 140	35	18,2	1,55	28,57	20,96	0,3	0,52	
	4 TTC	0 - 19	19	30,1	1,5	27	13	1,4	2,4	TABLE STORES OF STREET
124	4 TTC	19 - 63	44	24,9	1,6	26	14	0,8	1,4	
127	4 TTC	63 - 95	32	32,7	1,6	28	16	0,6	1	
	4 TTC	95 - 110	15	45,9	1,8	25	25	0,5	0,9	
	3 UNV	0 - 8	8					77.7		
125	3 UNV	8 - 31	23							
	3 UNV	31 - 73	42							
126	2 VAQ	0 - 11	11	51,2	1,7	20	8	1,2	2,1	
120	2 VAQ	11 - 24	13	48,8	1,6	20	9	0,3	0,5	
	3 VIC	0 - 15	15	25,2	1,7	30	17	0,6	1	
127	3 VIC	15 - 35	20	21,8	1,9	33	20	0,4	0,7	
	3 VIC	35 - 50	15	26,6	1,9	41	23	0,2	0,3	
	3 VRQ	0 - 17	17	53,9				1,1	1,9	
128	3 VRQ	17 - 45	28	36,8				0,4	0,7	
	3 VRQ	45 - 68	23	30,6				0,2	0,3	
	4 YAC	0 - 15	15	65,4		16	10	1,2	2,1	
129	4 YAC	15 - 42	27	68,2		15	10	0,7	1,2	
125	4 YAC	42 - 70	28	66,6		16	9	0,4	0,7	
	4 YAC	70 - 100	30	66,5		16	10	0,3	0,5	
	5 YQL	0 - 26	26	35,2		28	12	1,9	3,3	
	5 YQL	26 - 48	22	43,1		20	8	0,2	0,6	
130	5 YQL	48 - 80	32	41		20	10	0,3	0,5	
	5 YQL	80 - 117	37	41,7		21	10	0,2	0,3	
	5 YQL	117 - 130	13	42,6	30 0 00	21	12	0,1	0,2	
17-17-5 A	4 ZPR	0 - 10	10	13,1		42	36	4	6,9	
131	4 ZPR	10 - 32	22	22,8		37	25	0,6	1	
131	4 ZPR	32 - 60	28	33,9		31	23	0,5	0,9	
	4 ZPR	60 - 100	40	34,5		34	23	0,4	0,7	

Anexo 5: Información de las series de suelos de la VIII Región

Identificador	Serie	Nº Estrato	Estrato (cm)	Prof (cm)	Fracción de Arena	DENSIDAD APARENTE g/cm3	HUMEDAD RETENIDA 33 kPa %	HUMEDAD RETENIDA 1500 kPa %	CO %	MO %	relación C/N	Valores inciales de agua	nitrogeno mineral inicial
	5	ANL	0 - 23	23	16,1		36	16	2,6	4,5			
	5	ANL	23 - 47	24	27		31	9	0,6	1			
1	5	ANL	47 - 64	17	58,1		22	9	0,5	0,9			
	5	ANL	64 - 124	60	34,5		29	17	1	1,7			
	5	ANL	124 - 140	16	54		28	15	0,4	0,7	2.7.4		
	4	ATL	0 - 26	26	7,9	1	32,7	22,7	2,06				
4	4	ATL	26 - 65	39	8,9	1,01	32,2	26,1	0,82				
	4	ATL	65 - 115	50	8,9	1,05	35,2	29,5	0,46				
	4	ATL	115 - 140	25	59,9	0,82	59,4	38,4	0,05				
	4	ANT	0 - 15	15	69,7	1,38	11,9	5,8	2,47				NEED TO S
2	4	ANT	15 - 35	20	91,8	1,59	8,8	4,7	0,88				
	4	ANT	35 - 45	10	98	1,67	5,8	2,3	0,32				
	4	ANT	45 - 75	30	98,9	1,62	5,8	2,3	0,16				
	6	ARN	0 - 17	17	95,6	1,53	6,8	2,9	0,99				- F. J.
	6	ARN	17 - 36	19	100	1,53	4,1	2,1	0,11				
3	6	ARN	36 - 56	20	99,6	1,51	3,7	2,1	0,16				
,	6	ARN	56 - 80	24	99,4	1,52	2,9	2,6	0,24				
	6	ARN	80 - 100	20	99,3	1,62	3,5	2,6	0,11				
	6	ARN	100 - 150	50	98,6	1,69	3,4	2,3	0,07				
	6	AYN	0 - 17	17	10	0,8	64,7	33,7	9,2	15,8			
	6	AYN	17 - 40	23	8,9	0,9	65,4	36,3	7	12			
5	6	AYN	40 - 50	10	12,9	0,9	64,2	36,5	5,8	10			
	6	AYN	50 - 60	10	8	0,9	61,5	35,6	4,5	7,7			
	6	AYN	60 - 105	45	9,2	0,9	57,9	34,9	2,7	4,6			
	6	AYN	105 - 140	35	15	1	56,3	40,2	1,6	2,7			
6	4	BDC	0 - 15	15	24		21,92	13,26	2,22	3,82		HE LINE	
		BDC	15 - 41	26	31		21,93	14,31	0,62	1,07			

	4 BDC	41 - 62	21	23		24,06	16,08	0,36	0,62
	4 BDC	62 - 68	6	29,3				0,38	0,65
	4 BPR	0 - 20	20	25,9	1,24	32,1	11,8	1,59	
8	4 BPR	20 - 54	34	37,6	1,15	26,9	10,2	0,85	
	4 BPR	54 - 90	36	38,1	1,08	29,6	10,8	0,78	
i male	4 BPR	90 - 120	30	23,5	0,91	29,2	12,4	0,94	
	4 BNS	0 - 17	17	28,9	1,3	30,19	20,24	2,55	4,39
7	4 BNS	17 - 32	15	22,9	1,51	24,98	19,59	1,01	1,74
	4 BNS	32 - 65	33	40,8	1,65	25,64	18,71	0,54	0,93
	4 BNS	65 - 72	7	45,7	1,87	23,82	15,8	0,42	0,72
	6 CAB	0 - 13	13	44,8	1,13	23,7	13,6	0,92	
	6 CAB	13 - 27	14	36,4	1,09	23,9	13,3	0,73	
9	6 CAB	27 - 46	19	30,6	1,04	23,8	14,2	0,71	
	6 CAB	46 - 67	21	46,4	1,21	24,6	13,5	0,55	
	6 CAB	67 - 103	36	46,8	1,08	22,1	13,1	0,43	
	6 CAB	103 - 145	42	56,8	1,11	24,4	13,3	0,47	
	7 CAH	0 - 10	10	37,8	1,24	25,8	9,8	2,63	
	7 CAH	10 - 24	14	45,7	1,19	25,6	9,1	2,17	
	7 CAH	24 - 40	16	34,1	1,03	25,2	8,8	1,41	
10	7 CAH	40 - 60	20	35	1,13	25,9	9,9	0,84	
	7 CAH	60 - 72	12	23,4	1	30,6	20,6	0,91	
	7 CAH	72 - 96	24	23,4	1	30,6	20,6	0,91	
	7 CAH	96 - 116	20	30,7	1,08	29,7	20,3	0,41	
	5 CMR	0 - 13	13					0,89	
	5 CMR	13 - 35	22					0,36	
17	5 CMR	35 - 60	25					0,03	
	5 CMR	60 - 95	35						
	5 CMR	95 - 140	45						The state of the state of the state of
	6 CND	0 - 7	7	23	1,02	33,3	15,6	3,69	
	6 CND	7 - 22	15	23	1,02	33,3	15,6	3,69	
19	6 CND	22 - 39	17	20,9	0,84	49,9	17,1	3,33	
-	6 CND	39 - 62	23	18,8	0,88	49	18,2	2,59	
	6 CND	62 - 78	16	10,4	0,97	33,5	19,8	1,35	
	6 CND	78 - 112	34	12,4	1,16	34,8	19,6	1,07	

1	
Such	GOBIERNO DE CHILE
100	FUNDACIÓN PARA LA INNOVACIÓN AGRARIA
-	A CONTRACTOR OF THE PARTY OF TH

	4 CNS	0 - 15	15	38,6	1,29	26,4	14,9	1,47	
20	4 CNS	15 - 60	45	19,8	1,16	32,5	23,4	0,24	
20	4 CNS	60 - 100	40	20,7	1,04	36,8	24,3	0,21	
	4 CNS	100 - 130	30	19,2	0,93	41	28,3	0,2	
	3 CMG	0 - 20	20	64,8	1,52	22,3	12,3	2,18	
16	3 CMG	20 - 64	44	63,5	1,15	21,5	11,3	0,59	
	3 CMG	64 - 120	56	72,1	1,14	20,6	10,7	0,43	
	3 CMY	0 - 18	18	11,1	1,41	28	20		4,8
18	3 CMY	18 - 34	16	21,9	1,47	27	22		2,3
	3 CMY	34 - 47	13	19,2		27	22		1,3
	5 СТО	0 - 17	17	15,9	1,4	41	26	2,7	4,6
	5 CTO	17 - 28	11	12,7	1,42	41	27	2,1	3,7
28	5 СТО	28 - 57	29	20,5	1,55	37	26	1,4	2,4
	5 СТО	57 - 80	23	14,9	1,62	41	26	1,3	2,2
	5 СТО	80 - 125	45	18	1,68	34	25	1	1,7
	4 CBC	0 - 18	18	20,3	1,35	30,2	14,5	3,39	
11	4 CBC	18 - 43	25	19,3	1,32	28	16,1	2	
11	4 CBC	43 - 87	44	17,3	1,1	33	20,5	0,76	
	4 CBC	87 -120	33	15,1	1,07	27,6	18,9	0,41	
	8 CGE	0 - 7	7	74,1	1,21	13	8	0,9	1,6
	8 CGE	7 - 18	11	71,5	1,21	13	8	0,9	1,6
	8 CGE	18 - 30	12	75,5	0,78	30	13	0,9	1,6
14	8 CGE	30 - 45	15	58,2	1,09	17	8	0,5	0,8
14	8 CGE	45 - 60	15	87,5	1,25	10	5	0,3	0,5
	8 CGE	60 - 72	12	88	1,42	5	4	0,1	0,2
	8 CGE	72 - 86	14	92,3	1,47	5	3	0,1	0,2
	8 CGE	86 - 105	19	72,5	1,36	19	9	0,2	0,3
	5 COT	0 - 16	16	60	1,38	23	10	2	3,4
	5 COT	16 - 36	20	37,6	1,45	21	14	1,63	2,8
22	5 COT	36 - 65	29	36,4	1,6	20	14	1,22	2,1
	5 COT	65 - 115	50	52,1	1,67	22	16	0,64	1,1
	5 COT	115 - 170	55	49,8	1,57	33	18	0,46	0,8
					1,44	32,3	21,16		
15	6 CLL	0 - 16	16	15,9	1.44	32.3	21.16	1,84	3,16

9										
	6 CLL	37 - 70	33	11,3	1,54	28,78	25,05	0,5	0,86	
	6 CLL	70 - 113	43	11,7	1,47	24,65	26,08	0,47	0,81	
	6 CLL	113 - 130	17	12,6	1,53	33,97	26,25	0,47	0,81	
	6 CLL	130 - 140	10	14,6	1,53	34,86	25,72	0,33	0,57	
	5 CPL	0 - 15	15	16,1	1,14	32,2	20,3	3,68		
	5 CPL	15 - 35	20	13,2	1,16	30,7	20,6	2,31		
24	5 CPL	35 - 47	12	14,3	1,11	29,8	20,6	1,72		
	5 CPL	47 - 84	37	9,8	1,03	31,6	25,7	1,03		
	5 CPL	84 - 150	66	21,5	0,91	36,3	28,3	0,66		
	6 CFA	0 - 25	25	67,4	1,29	14,27	6,77	0,64	1,1	
	6 CFA	25 - 42	17	77,8	1,35	8,72	5,33	0,17	0,29	
13	6 CFA	42 - 54	12	74,1	1,37	9,89	5,73	0,28	0,48	
13	6 CFA	54 - 70	16	84,4	1,39	3,52	2,61	0,06	0,1	
	6 CFA	70 - 76	6	31,5	1,4	28,08	10,37	0,52	0,89	
	6 CFA	76 - 125	49	81,6	1,41	8,47	5,61	0,12	0,21	
444	5 COR	0 - 15	15	89,4	1,5	11,5	5,5	1,83		177
	5 COR	15 - 28	13	94,9	1,66		.,2	1,07		
21	5 COR	28 - 43	15	95	1,6	9,5	5,1	0,94		
	5 COR	43 - 87	44	98,2	1,61	5,6	1,5	0,41		
	5 COR	87 - 108	21	99,9	1,58	4,2	1,1	0,13		
	5 COY	0 - 20	20	17,1	0,99	37	27	4,3	7,4	
	5 COY	20 - 40	20	9,7	1,05	37	29	3,2	5,5	
23	5 COY	40 - 66	26	14,3	1,07	34	30	1,5	2,6	
	5 COY	66 - 90	24	21,1	1,09	34	31	1,2	2,1	
	5 COY	90 - 115	25	24,4 -		36	34	0,8	1,4	
29	2 CUL	0 - 22	22	35,4	-51-51	28	14	1,1	1,9	
29	2 CUL	22 - 76	54	32,9		29	14	0,5	0,8	
	4 CCO	0 - 35	35	12,7	1,32	27	18	1,2	2	
12	4 CCO	35 - 70	35	9,3	1,43	33	24	0,5	0,8	
12	4 CCO	70 - 93	23	10,7	1,31	37	27	0,3	0,5	
AL.	4 CCO	93 - 120	27	9,7 -		36	25	0,2	0,3	
32	7 CHY	0 - 10	10	85,6	1,39	14	6	1,8	3,1	
	7 CHY	10 - 20	10	88,6	1,3	13	5	1,9	1,9	
	7 CHY	20 - 60	40	91,1	1,34	12	3	0,3	0,3	

-	
Section	GOBIERNO DE CHILE
1000	FUNDACIÓN PARA LA INNOVACIÓN AGRARIA

	7 CHY	60 - 84	24	52,9	1,13	33	12	3,3	3,3	
	7 CHY	84 - 104	20	63,9	1,17	27	12	2,9	2,9	
	7 CHY	104 - 124	20	50,7	1,18	41	15	3,3	3,3	
	7 CHY	124 - 160	36	53,7	1,1	32	10	1	1	
	3 CYL	0 - 15	15	22,2	0,9	42,7	29,2	5	8,6	
30	3 CYL	15 - 35	20	30,2	0,9	52,2	29,5	4	6,9	
	3 CYL	35 - 43	8	60	1,17	58,9	40,1	3,7	6,4	
	5 CHN	0 - 20	20							
	5 CHN	20 - 43	23	60,5		13,3	5,67	0,33	0,57	
31	5 CHN	43 - 75	32	60,8		13,05	5,84	0,19	0,33	
	5 CHN	75 - 110	35	59,7				0,19	0,33	
	5 CHN	110 - 145	35	60,7		13,95	6,91	0,15	0,26	
	3 DDC	0 - 18	18	35,5	1,55	25,51	15,62	1,98	3,41	
33	3 DDC	18 - 40	22	35,8	1,58	23,12	15,09	1,33	2,29	
	3 DDC	40 - 90	50	51,4	1,58	21	12,94	0,48	0,83	
34	2 DUQ	0 - 20	20	88,7	1,35	15	6	1,2	2,1	
J 1	2 DUQ	20 - 85	65	96,4	1,47	4	3	0,1	0,2	
	6 EMZ	0 - 8	8	82,1	1,19	15,6	7,6	2,05		
	6 EMZ	8 - 22	14	62,8	1,22	24,9	11,3	1,2		
35	6 EMZ	22 - 30	8	84,7	1,53	9,8	4,1	0,41		
55	6 EMZ	30 - 43	13	53,4	1	28,9	12,9	0,65		
	6 EMZ	43 - 63	20	80,4	1,18	13,9	6,6	0,84		
	6 EMZ	63 - 85	22	63,2	1,21	24,7	11,7	1,65		
	4 GAL	0 - 14	14	33,6	1,48	28	19	3,4	5,9	
36	4 GAL	14 - 36	22	32,2	1,42	28	21	2,2	3,8	
50	4 GAL	36 - 54	18	31,4	1,31	29	22	0,99	1,7	
	4 GAL	54 - 90	36	47,6	1,6	27	18	0,23	0,4	
	4 HUP	0 - 20	20					1,2	The U.S.	
38	4 HUP	20 - 35	15					0,9		
30	4 HUP	35 - 66	31					0,5		
	4 HUP	66 - 95	29					0,4		
37	5 HNT	0 - 19	19	37,8	1,33	25	17	1,92	3,3	
	5 HNT	19 - 42	23	31,1	1,4	29	21	0,67	1,15	
	5 HNT	42 - 71	29	42,4	1,4	25	19	0,16	0,28	

	5 HNT	71 - 90	19	42,4	1,42	28	19	0,15	0,26	
	5 HNT	90 - 125	35	44,7	1,44	26	16	0,12	0,21	
	3 LQT	0 - 27	27	97,5	1,53	7,8	5,3	1,58		
47	3 LQT	27 - 42	15	97,3	1,4	6,5	4,4	1,06		
	3 LQT	42 - 100	58	100	1,45	3,5	2,9	0,19		
	4 LAT	0 - 19	19	21,1	0,94	58,8	25	6,39		
40	4 LAT	19 - 25	6	23,1	0,88	48,9	26,4	3,07		
	4 LAT	25 - 43	18	25,1	0,83	58,9	25,8	2,33		
	4 LAT	43 - 90	47	25,4	1,01	30,7	23,8	1,29		
	5 LCC	0 - 16	16	50,6		22,63	14,15	0,76	1,31	
	5 LCC	16 - 34	18	48,4		21,36	13,48	0,33	0,57	
41	5 LCC	34 - 63	29	47,9		20,39	13,43	0,37	0,64	
	5 LCC	63 - 95	32	41,3		22,8	14,91	0,28	0,48	
1.60	5 LCC	95 - 155	60	28,2		30,21	19,66	0,42	0,72	
	3 LPU	0 - 16	16	33,4	1,32	30,9	23,7	2,93		
46	3 LPU	16 - 48	32	50,2	1,3	24,6	20,4	0,9		
	3 LPU	48 - 120	72	47,8	0,92	24,5	19,8	0,76		
	5 LVG	0 - 16	16	26,3	0,92	39	21	4,3	7,4	
	5 LVG	16 - 40	24	28,1	0,95	40	21	1,9	3,3	
49	5 LVG	40 - 80	40	26,7	0,93	41	17	1,3	2,2	
	5 LVG	80 - 110	30	46,2	1,1	41	20	3,8	6,6	
	5 LVG	110 - 120	10	15,2 -		65	43	3,5	6	
	4 LOS	0 - 16	16	29,86				1,6	2,8	
45	4 LOS	16 - 50	34	20,71				0,8	1,4	
15	4 LOS	50 - 80	30	24,26				0,6	1	
	4 LOS	80 - 100	20	30,58				0,4	0,7	
	4 LOM	0 - 7	7	8,1	1,19	40	22	3,5	6	11.5
44	4 LOM	7 - 28	21	9,8	1,18	36	19	1,5	2,6	
	4 LOM	28 - 42	14	11,5	1,31	41	31	0,9	1,6	
	4 LOM	42 - 100	58	10,6	1,3	47	39	0,8	1,4	
	3 SCS	0 - 16	16	31,4	1,36	27,8	13,8	1,58		- 17
84	3 SCS	16 - 45	29	32,9	1,35	22	11,7	0,77		
Ext la	3 SCS	45 - 100	55	31,2	1,28	22,1	12,9	0,4		
48	3 LTI	0 - 20	20	75,4		18	7	2,1	3,6	

	3 LTI	20 - 85	65	89,6		9	4	0,23	0,4	
	3 LTI	85 - 150	65	84		9	3	0,12	0,2	
	6 LHY	0 - 18	18	81,1		6,59	3,66	0,4	0,69	
	6 LHY	18 - 45	27	79,9		7,29	4,47	0,27	0,46	
43	6 LHY	45 - 87	42	78,6		7,73	4,81	0,2	0,34	
13	6 LHY	87 - 100	13	76,4		7,66	4,7	0,09	0,15	
	6 LHY	100 - 120	20	71,7		5,99	3,91	0,08	0,14	
	6 LHY	120 - 150	30	78		7,91	4,88	0,44	0,76	
	6 LHN	0 - 19	19	42,9	1,45	22,16	12,88	0,51	0,88	
	6 LHN	19 - 45	26	27,8	1,47	26,15	17,06	0,45	0,77	
42	6 LHN	45 - 75	30	24,3	1,43	31,27	18,4	0,5	0,86	
16	6 LHN	75 - 95	20	34,7	1,42	43,12	28,05	12,98	0,21	
	6 LHN	95 - 120	25	29,3	1,4	50,17	32,89	15,61	0,15	
	6 LHN	120 - 150	30	16,9	1,44	53,56	33,43	13,3	0,21	
	5 MCP	0 - 26	26	68	1,17	16,07	9,4	1,2	2,1	
	5 MCP	26 - 43	17	67,8	1,2	17,13	9,41	0,6	1	
51	5 MCP	43 - 83	40	64,9	1,25	19,5	10,07	0,8	1,4	
	5 MCP	83 - 105	22	67,2	1,32	19,7	9,22	0,6	1	
	5 MCP	105 - 120	15	77	1,4	11,39	6,47	0,4	0,7	
56	2 MQL	0 - 15	15	70	1,26	19,4	9,2	2,8		
30	2 MQL	15 - 35	20	86,8	1,52	8	5,7	1,54		
	3 MLE	0 - 14	14	58,7				0,64	1,1	
55	3 MLE	14 - 45	31	47,3				0,1	0,2	
	3 MLE	45 - 90	45	49,1				0,14	0,24	
	5 MYO	0 - 15	15	16,2	0,83	66	31	7,7	13,2	
	5 MYO	15 - 30	15	12,8	0,86	73	40	4,7	7,7	
58	5 MYO	30 - 48	18	12,7	0,98	64	41	2,7	4,7	
	5 MYO	48 - 90	42	12,4	0,14	69	44	1,4	2,4	
	5 MYO	90 - 120	30	13	1,18	55	43	1	1,7	
	5 MBU	0 - 18	18	16,5				2,7		
	5 MBU	18 - 33	15	13,4				1,3		
50	5 MBU	33 - 46	13	11,8				0,6		
	5 MBU	46 - 60	14	24,2				0,3		
	5 MBU	60 - 80	20	30,2				0,2		

0										
	4 MDR	0 - 13	13	27	HACILIZA	24	10	1,45	2,5	
52	4 MDR	13 - 33	20	18,8		28	22	1,16	2	
32	4 MDR	33 - 58	25	16,8		31	24	0,7	1,2	
	4 MDR	58 - 75	17	13,5		33	26	0,46	0,8	
	3 MRM	0 - 25	25	22,1	1,2	37,2	20	2,38	5, 1-11	
57	3 MRM	25 - 52	27	19,8	1,06	35,8	20,1	1,28		
Jan 19	3 MRM	52 - 100	48	21,2	0,95	37,6	32,6	0,92		
	3 NEG	0 - 23	23	46,8	1,2	29	15	2,2	3,8	
61	3 NEG	23 - 68	45	46,6	1,13	31	16	0,7	1,2	
4-11	3 NEG	68 - 120	52	50	1,28	31	13	0,4	0,7	
	5 NBL	0 - 13	13	11,8 -		33	23	3,6	6,2	
	5 NBL	13 - 38	25	10,7	1,48	35	26	2,2	3,8	
60	5 NBL	38 - 63	25	10,1	1,6	36	28	1,3	2,2	
	5 NBL	63 - 87	24	8,7	1,67	39	30	1,1	1,9	
	5 NBL	87 - 140	53	9,4	1,7	37	28	0,9	1,6	
	4 NNH	0 - 17	17	21,7	1,43	31,1	20,1	1,53	2,63	
64	4 NNH	17 - 53	36	21,1	1,4	28,5	18,7	0,81	1,24	
04	4 NNH	53 - 65	12	18,1	1,41	28,6	18	0,57	0,98	
	4 NNH	65 - 95	30	14,8	1,38	30,6	18,2	0,6	1,03	
	4 NIH	0 - 26	26	48,7	1,07	29	17	4	6,9	
62	4 NIH	26 - 42	16	37,8	1,11	30	19	1,8	3,1	
02	4 NIH	42 - 80	38	20,5	1,21	54	26	0,7	1,2	
	4 NIH	80 - 110	30	10,7	1,14	34	11	0,2	0,3	
	4 NIN	0 - 15	15	42,5	1,52	24,24	15,51	1,51	2,6	
62	4 NIN	15 - 54	39	32,3	1,59	29,39	21,44	0,72	1,24	
63	4 NIN	54 - 70	16	40,9	1,5	25,01	17,84	0,37	0,64	
	4 NIN	70 - 105	35	40,1	1,42	28,52	20,03	0,13	0,22	
67	2 PCV	0 - 32	32	25,3	0,95	47,7	25,4	5,44		
0/	2 PCV	32 - 120	88	17,3	0,74	53,8	37,8	1,22		
	5 PLH	0 - 18	18	40,2	1,34	35	21	2,2	3,8	
	5 PLH	18 - 43	25	39,8	1,33	35	25	0,9	1,6	
70	5 PLH	43 - 79	36	40,2	1,32	39	25	0,5	0,9	
	5 PLH	79 -104	25	43,2	1,28	37	22	0,6	1,1	
	5 PLH	104 - 120	16	58,9 -		33	22	0,3	0,5	

67										
	4 PAJ	0 - 15	15	53	1,63	17,8	9,5	1,03	777 1	
66	4 PAJ	15 - 45	30	36,8	1,43	29,7	14,7	0,48		
00	4 PAJ	45 - 75	30	47,8	1,37	28,3	13,1	0,18		
	4 PAJ	75 - 100	25	44,1	1,31	36,8	16,7	0,13		
	4 PRL	0 - 15	15	40,3	1,7	19	12	1,1	1,9	
73	4 PRL	15 - 49	34	29,8	1,6	23	17	0,5	0,9	
/3	4 PRL	49 - 90	41	33,5	1,4	24	18	0,2	0,3	
	4 PRL	90 - 112 +	22	38,3	1,6	24	16	0,1	0,2	
	3 PED	0 - 18	18	83,2	1,46	13	4	2,25		
68	3 PED	18 - 30	12	99,5	1,62	3,4	1,9	0,28		
	3 PED	30 - 50	20	100	1,44	1,8	1,4	0,1		
	3 PEQ	0 - 7	7	80,3	1,51	13,1	7,4	0,54		
69	3 PEQ	7 - 27	20	80,3	1,51	13,1	7,4	0,54		
	3 PEQ	27 - 50	23	60,3	1,29	25,1	9,6	1,17		
	3 PSE	0 - 11	11	63,9	1,26	20,82	9,67	1,84	3,16	
75	3 PSE	11 - 22	11	62,7	1,24	20,45	10,91	1,27	2,18	
	3 PSE	22 - 46	24	61,8	1,2	21,4	11,48	1,03	1,77	
	4 PSA	0 - 30	30	16,5	0,67	53	37,2	7,57		
74	4 PSA	30 - 50	20	18,6	0,77	46	42,3	2,68		
74	4 PSA	50 - 120	70	20,3	0,88	54,7	48,5	1,49		
	4 PSA	120 - 150	30	61,3	1,26	24,9	13,7	0,51		
	3 QLA	0 - 9	9	19,3					la dell'in	
77	3 QLA	9 - 15	6	10,8						
	3 QLA	15 - 55	40	13,2						
	5 QUM	0 - 13	13	28,9	1,5	31,27	15,64	1,93	3,32	
	5 QUM	13 - 37	24	24,4	1,63	29,08	18,39	0,58	1	
79	5 QUM	37 - 65	28	21,2	1,6	31,1	20,68	0,4	0,69	
	5 QUM	65 - 100	35	19	1,7	39,91	25,99	0,45	0,77	
	5 QUM	100 - 120	20	18,5	1,65	26,14	10,26	0,44	0,76	
	4 QLN	0 - 16	16	83,2	1,5	11	6	3	3,1	
78	4 QLN	16 - 35	19	83,7	1,51	10	6	0,87	1,5	
70	4 QLN	35 - 58	23	82,1	1,53	9	6	0,7	1,2	
	4 QLN	58 - 100	42	94,2	1,52	5	3	0,06	0,1	
76	5 QHL	0 - 16	16	38,04	1,33	22		1,2		

100	
A	CONTRALIC DE CITIL
C 50 50 50	GOBIERNO DE CHILE FUNDACIÓN PARA LA
CEC	INNOVACIÓN AGRARIA
4	

5 5 6 6 6 6 6 6 6 4 81 4 4		16 - 47 47 - 70 70 - 90 90 - 120 0 - 10 10 - 23 23 - 30 30 - 50 50 - 83 83 - 120 0 - 25	31 23 20 30 10 13 7 20 33 37	25,21 25,83 27,11 24,72 11,3 12,9 8,9 13,9 8,1	1,3 1,32 1,38 1,36 0,7 0,8 0,74 0,76	23,9 23,9 17 31 54,6 54,3 48,5	12,4 12,5 9 16,1 30,3 29,2	0,9 0,5 0,3 0,3 5,38 6,79	1,6 0,8 0,5 0,5	
5 5 6 6 6 6 6 6 6 4 81 4 4	QHL QUP QUP QUP QUP QUP QUP QUP RAP RAP	70 - 90 90 - 120 0 - 10 10 - 23 23 - 30 30 - 50 50 - 83 83 - 120	20 30 10 13 7 20 33	27,11 24,72 11,3 12,9 8,9 13,9 8,1	1,38 1,36 0,7 0,8 0,74	17 31 54,6 54,3	9 16,1 30,3 29,2	0,3 0,3 5,38	0,5	
5 6 6 6 6 6 6 4 81 4 4	QHL QUP QUP QUP QUP QUP QUP RAP RAP	90 - 120 0 - 10 10 - 23 23 - 30 30 - 50 50 - 83 83 - 120	30 10 13 7 20 33	24,72 11,3 12,9 8,9 13,9 8,1	1,36 0,7 0,8 0,74	31 54,6 54,3	16,1 30,3 29,2	0,3 5,38		
80 6 6 6 6 6 6 4 81 4 4	QUP QUP QUP QUP QUP QUP RAP	0 - 10 10 - 23 23 - 30 30 - 50 50 - 83 83 - 120	10 13 7 20 33	11,3 12,9 8,9 13,9 8,1	0,7 0,8 0,74	54,6 54,3	30,3 29,2	5,38	0,5	
80 6 6 6 6 4 81 4 4	QUP QUP QUP QUP QUP RAP	10 - 23 23 - 30 30 - 50 50 - 83 83 - 120	13 7 20 33	12,9 8,9 13,9 8,1	0,8 0,74	54,3	29,2			
80 6 6 6 6 4 4 4 4 4	QUP QUP QUP QUP RAP RAP	23 - 30 30 - 50 50 - 83 83 - 120	7 20 33	8,9 13,9 8,1	0,74			6,79		
6 6 6 4 81 4 4	QUP QUP QUP RAP RAP	30 - 50 50 - 83 83 - 120	20 33	13,9 8,1		48,5				
81 4 4	QUP QUP RAP RAP	50 - 83 83 - 120	33	8,1	0,76		34,4	3,7		
81 4 4 4	QUP RAP RAP	83 - 120				41,9	30,8	2,6		
81 4 4 4	RAP RAP		37		0,73	48,5	36,4	1,75		
81 4 4 4	RAP	0 - 25		12,6	0,68	46,7	37,9	1,52		
4 4			25	55,6	1,27	21,4	8,7	2,73		
4 4	RAP	25 - 41	16	54,6	1,03	22,2	9,4	2,12		
		41 - 64	23	52,5	1,2	22,1	9,2	1,67		
4	RAP	64 - 110	46	64,1	1,38	22	8	1,34		
	REN	0 - 23	23	42,9	1,17	15	7	1,3	2	
82 4	REN	23 -43	20	59,7	1,13	9	4	0,5	0,9	
4	REN	43 - 68	25	68,7	1,17	7	4	0,3	0,5	
4	REN	68 - 90	22	69	1,15	13	9	0,6	1	
3	SJP	0 - 10	10	18	1,24	31,58	17,24	1,99	3,43	
86 3	SJP	10 - 16	6	22	1,14	29,23	18,67	0,98	1,69	
3	SJP	16 - 32	16	17,1	1,6	35,59	25,42	0,42	0,72	
7	SBA	0 - 17	17	14	0,94	59,46	26,39	3,6	6,19	
7	SBA	17 - 28	11	11,9	0,79	67,09	35,67	3,07	5,28	
7	SBA	28 - 43	15	12,7	0,71	61,61	38,6	2,67	4,59	
83 7	SBA	43 - 67	24	10,2	0,98	54,99	37,15	4	6,88	
7	SBA	67 - 98	31	9	0,94	55,45	38,47	0,98	1,69	
7	SBA	98 - 120	22	10,3	0,89	57,52	40,65	0,68	1,17	
7	SBA	120 - 145	25	9,9	0,85	61,27	42,33	2,05	3,53	
4	STC	0 - 13	13	39,9		27	16	3,2	5,5	
87 4	STC	13 - 25	12	35,2		36	22	0,9	1,6	
4	STC	25 - 53	28	32,2		37	23	0,45	0,8	
4	STC	53 - 89	36	31,7		36	24	0,25	0,4	
85 6	SFE	0 - 6	6	38,2	1,09	26,3	14,1	1,82	E - 150	
6		6 - 20	14	38,2	1,09	26,3	14,1	1,82		

200	
000	GOBIERNO DE CHILE
60	INNOVACION AGRARIA

	6 SFE	20 - 40	20	37,2	1,16	29	16	0,67		
	6 SFE	40 - 65	25	37,2	1,16	29	16	0,67		
	6 SFE	65 - 76	11	40,6	1,74	29,4	14,8	0,17		
	6 SFE	76 - 100	24	40,6	1,74	29,4	14,8	0,17		
	6 STT	0 - 11	11	91,5	1,44	9,9	8	1,35		
	6 STT	11 - 30	19	92,3	1,47	8,5	5,4	1,14		
89	6 STT	30 - 40	10	97,3	1,58	4,1	3,2	0,42		
05	6 STT	40 - 70	30	100	1,6	2,6	2	0,04		
	6 STT	70 - 90	20	99,3	1,58	2,6	2,1	0,01		
	6 STT	90 - 150	60	98,7 -		3,5	2,2	0,07		
	4 TQP	0 - 17	17	32	1,38	29,7	21,1	1,85	3,2	
100	4 TQP	17 - 30	13	26,5	1,42	25,5	18,2	1,62	2,8	
100	4 TQP	30 - 52	22	23,7	1,53	29,9	23	1,1	1,9	
	4 TQP	52 - 70	18	39	1,36			0,35	0,6	
	6 TIJ	0 - 13	13	56,8	1,33	24,6	11,1	3,44		
	6 TIJ	13 - 32	19	50,2	0,85	22,5	10,3	2,06		
95	6 TIJ	32 - 50	18	34,9	0,92	38,5	17,9	3,03		
93	6 TIJ	50 - 75	25	17,8	1,03	41,6	21	3,27		
	6 TIJ	75 - 118	43	10,7	0,82	35,3	21,9	1,21		
	6 TIJ	118 - 138	20	20,8	1,13	43,1	22	2,61		
	6 TQL	0 - 16	16	42,9	1,5	20,36	13,31	0,87	1,5	
	6 TQL	16 - 30	14	37,9	1,54	20,17	14,54	0,41	0,71	
99	6 TQL	30 - 61	31	31,5	1,52	22,22	15,85	0,27	0,46	
99	6 TQL	61 - 74	13	31,7	1,59	22,26	15,42	0,4	0,69	
	6 TQL	74 - 95	21	37,4	1,61	20,6	12,86	0,37	0,64	
	6 TQL	95 - 120	25	20,2	1,6	28,88	12,11	0,63	1,08	
	5 TOM	0 - 18	18	12,5	1,29	33,8	17	1,9		
	5 TOM	18 - 47	29	14,6	1,07	29,3	16,8	0,54		
97	5 TOM	47 - 85	38	11,6	1,11	32,2	18,8	0,85		
	5 TOM	85 - 115	30	14,8	1,1	32	18,4	0,82		
	5 TOM	115 - 150	35	19,4	1,18	33,2	18,3	0,85		
98	4 TOT	0 - 20	20	67,1				0,31	0,5	
	4 TOT	20 - 43	23	52,3				0,22	0,4	
			-	- Calo				o june	9/1	

	4 TOT	65 - 100	35	62,4				0,18	0,3	
-944	5 TSV	0 - 12	12	30	1,28	39	22	5,1	8,8	
	5 TSV	12 - 24	12	25,6	1,3	44	24	2	3,4	
103	5 TSV	24 - 46	22	24,3	1,32	38	26	1,7	2,9	
	5 TSV	46 - 75	29	33	1,27	35	24	1,2	2,9	
	5 TSV	75 - 110	35	41,3	1,21	37	27	0,6	1	
	3 TGL	0 - 17	17	18,6	1,01	92,6	49,7	5,49		
94	3 TGL	17 - 75	58	12,4	0,95	47,4	26,8	1,18		
	3 TGL	75 - 120	45	19,8	0,81	44,4	26,4	0,85		
	6 TES	0 - 13	13	31,6		29	18	2,56	4,4	
	6 TES	13 - 31	18	31		27	21	1,74	3	
03	6 TES	31 - 52	21	34,5		32	25	1,1	1,9	
92	6 TES	52 - 74	22	21,5		34	27	0,7	1,2	
	6 TES	74 - 100	26	21,2		35	27	0,58	1	
	6 TES	100 - 120	20	25,1		37	25	0,41	0,7	
	5 TRL	0 - 17	17	36,7	1,46	21,54	13,96	1,25	2,15	
	5 TRL	17 - 44	27	22,7	1,45	26,3	19,64	0,77	1,32	
101	5 TRL	44 - 66	22	18,2	1,54	29,19	22,1	0,6	1,03	
	5 TRL	66 - 105	39	19,2	1,51	28,84	21,77	0,25	0,43	
	5 TRL	105 - 140	35	18,2	1,55	28,57	20,96	0,3	0,52	
	5 TRU	0 - 15	15	13,4	0,82	64,2	28,2	6,18		
	5 TRU	15 - 32	17	9,9	0,84	61,1	30,3	2,9		
102	5 TRU	32 - 57	25	7,9	0,77	61	32,7	4,91		
	5 TRU	57 - 96	39	12,9	0,81	58	32,4	3,26		
	5 TRU	96 - 116	20	19,5	0,92	50,9	31,2	1,68		
	3 VIC	0 - 15	15	25,2	1,7	30	17	0,6	1	
104	3 VIC	15 - 35	20	21,8	1,9	33	20	0,4	0,7	
	3 VIC	35 - 50	15	26,6	1,9	41	23	0,2	0,3	Marine Taller
	3 VRQ	0 - 17	17	53,9				1,1	1,9	
105	3 VRQ	17 - 45	28	36,8				0,4	0,7	
	3 VRQ	45 - 68	23	30,6				0,2	0,3	
106	5 YUN	0 - 28	28	24,5	0,82	58,1	27,3	5,75		
	5 YUN	28 - 41	13	3	0,75	61,3	33,4	4,27		
	5 YUN	41 -67	26	19,8	0,78	55,2	33,3	2,93		

	27	31
	67 - 94	94 - 125
GOBIERNO DE CHILE FINDACION PARA LA INNOVACIÓN AGIGARIA	S YUN	S YUN

1,78

31,3

48,9

0,86

8,2

INFORME PROYECTO:

"Zonificación por Rendimiento y Calidad del Trigo Candeal entre la RM y La VIII Región"

Análisis Topoclimático.

FABRICIO CANESSA M. RAUL VALENZUELA R. LUIS MORALES S.

Recopilación de datos de estadísticas climátológicas desde estudios existentes, procesamiento de estadística climática y generación de base de datos numérica de clima

Introducción

La información meteorológica de terreno recopilada por las estaciones que existen en el país es un insumo fundamental para el estudio, análisis y modelamiento espacial del clima. Específicamente para el proceso de detección de áreas en las cuales las caracteristicas climáticas de interés agrícola permitan un desarrollo potencial de Trigo Candeal (*Tritricum durum*).

En Chile, existen del orden de 40 estaciones en promedio por región, de las cuales permanecen activas solo una fracción. La gran mayoría de las estaciones meteorológicas pertenecen y son administradas por el estado a través de la Dirección General de Aguas (DGA) y la Dirección Meteorológica de Chile (DMC). Estas estaciones difieren en varios aspectos, tales como: Numero de años con registros, metodologías de registro, variables climáticas registradas, periodos de registro, entre otras. Por ello es necesario realizar análisis de consistencia de datos y corrección de los mismos a las estaciones seleccionadas para llevar a cabo los procesos de espacialización requeridos en este proyecto.

Se recolectaron para la zona de estudio 482 estaciones meteorológicas bajo criterios de un funcionamiento continuo superior a 10 años (OMM) y de consistencia de datos. Las series de tiempo varían entre los años 1920 y 2006. Además de la recopilación de estadísticas meteorológicas de estaciones se llevó a cabo una recopilación de cartografía climática analógica consistente en mapas de isolíneas de diversas variables tales como: Humedad relativa, Temperaturas, Precipitaciones, Radiación Solar, cobertura nubosa, entre otras.

Específicamente se obtuvieron promedios climatológicos para variables agrupadas según su carácter térmico, hídrico o energético, estos promedios corresponden al mes promedio de una variable en el periodo de tiempo que la estación en cuestión a recolectado datos. Las variables recolectadas corresponden a: Temperaturas medias anuales y mensuales, Temperaturas medias extremas mensuales, Precipitación media anual y mensual, Cobertura nubosa, Evapotranspiración, Radiación Solar, Presión y Velocidad y dirección de Viento.

Método

La metodología empleada para realizar la recopilación y generar la base de datos estadística climatológica para el área de estudio comprendida entre las Regiones V y VIII, se baso en la utilización de 482 estaciones meteorológicas. A estas se les realizaron análisis de consistencia de datos y fueron clasificadas según su ubicación (región de pertenencia), organismo administrador y variables climáticas recolectadas, además de periodo de funcionamiento.

Los datos recolectados fueron organizados, a través de un software desarrollado para tal efecto, en planillas de cálculo en Excel las cuales agrupan las estaciones por región y por variable permitiendo un fácil acceso a los datos recolectados por cada estación. Posteriormente se procedió a realizar el cálculo de los promedios climatológicos para cada variable y estación obteniendo finalmente una base de datos climatológica para el área de estudio.

Posteriormente a las estaciones recopiladas y utilizadas en la generación de la base de datos se las transformo a un archivo vectorial de puntos en ArcView de modo de obtener la ubicación espacial de las diversas estaciones en cada región junto a los atributos de cada estación en imágenes digitales.

Resultados

En la Figura 1 se presentan las bases de datos que se generaron para las 482 estaciones meteorológicas utilizadas que se encuentran en el área de estudio y zonas contiguas.

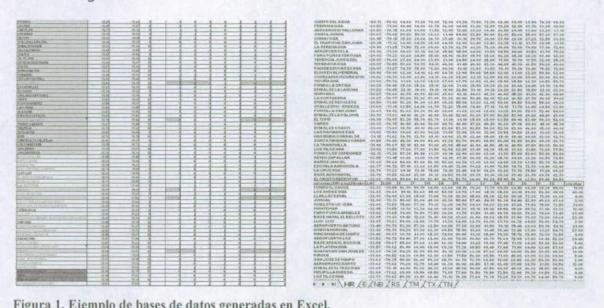


Figura 1. Ejemplo de bases de datos generadas en Excel.

Recopilación de información de datos de altitud generación de los modelos digitales de elevaciones (MDE).

Introducción

El MDE es un elemento fundamental para la espacialización de las variables climáticas cuando se utilizan métodos topoclimáticos. Cualquier error que contenga el modelo de elevaciones se propagará en las etapas siguientes. Por este motivo, minimizar los errores del modelo conducirá únicamente a obtener resultados más exactos. De esta manera se procedió a generar un MDE correspondiente a la R. de Valparaíso, R. Metropolitana de Santiago, R. del L. Gral. B. O'Higgins, R. del Maule y R. del Bío-Bío, que luego de obtener los primeros resultados de espacialización evidenciaron algunos errores producto de la concatenación de imágenes, los cuales fueron posteriormente corregidos. Así mismo se decidió minimizar aquellos píxeles que presentaron valores nulos (igual a cero) en toda el área de estudio, los que son producidos por áreas planas o por la presencia de cuerpos de agua.

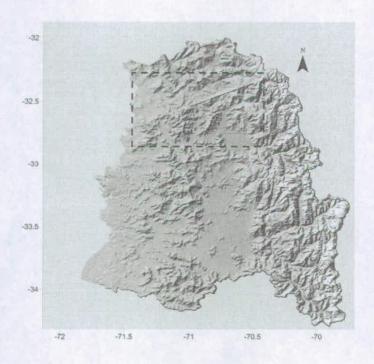
Metodología

La construcción del MDE correspondiente al área VRM comenzó descargando desde el sitio de ESDI¹ las imágenes del área de estudio capturadas desde el Shuttle Radar Topography Mission (SRTM), escogiendo las imágenes:

- Path 233 Row 82
- Path 233 Row 83

Ambas imágenes son descargadas en formato TIFF, para luego ser convertidas a formato raster (IDRISI). Una vez en formato raster, las imágenes son reclasificadas, eliminando todos los valores negativos. Posteriormente son concatenadas de manera automática según las coordenadas lat/lon de ambas imágenes, manteniendo transparente las áreas traslapadas.

Una vez concatenadas correctamente se corrigieron los valores nulos. El procedimiento para eliminar las áreas con valores de altitud nulos fue común a toda el área de estudio. Se examinó la escena de cada región por separado (VRM, VI, VII y VIII) para buscar las áreas con gran concentración de valores nulos y crear una subescena de valores nulos. Para completar los valores nulos se realizó una interpolación lineal de la subescena. Luego que cada subescena fue interpolada, estas se concatenaron a la imagen original, produciendo una imagen


¹ Earth Science Data Interface: http://glcfapp.umiacs.umd.edu:8080/esdi/index.jsp

de la escena completa pero con todos sus valores de altitud. Finalmente para eliminar el ruido producido por la interpolación, la escena fue suavizada con un filtro de media con kernel de 7 x 7 píxeles.

Resultados

Como se observa en la Figura 2a, el área que contiene el error en el MDE corresponde a una especie de línea que divide parte del sector norte de la Región de Valparaíso, mientras que la Figura 2b muestra la misma área corregida y con los valores nulos interpolados.

(a)

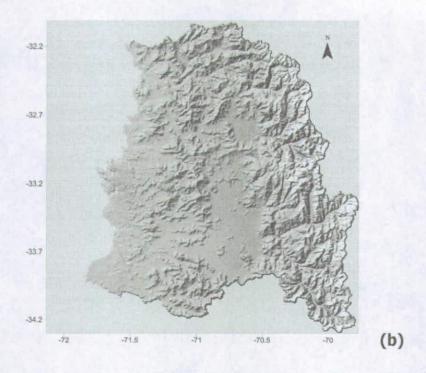


Figura 2. MDE de la Región de Valparaíso y la Región Metropolitana señalando (en recuadro) el área del error (a) y la misma imagen corregida (b)

Por otro lado, un ejemplo de subescena extraída del MDE de la Región Metropolitana de Santiago con valores nulos (izquierda) y con valores corregidos (derecha) se muestra en la Figura 3.

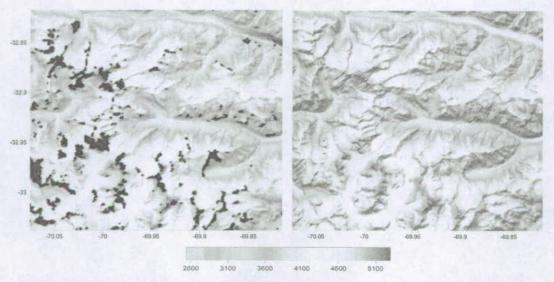


Figura 3. Subescena de la Región Metropolitana mostrando a la izquierda una subescena del MDE con valores nulos y a la derecha el MDE con valores interpolados. Las unidades de la escala corresponden a metros

Como se puede observar en la figura anterior, las áreas con valores nulos (de color negro) son significativas. Considerando cada Región bajo estudio (una sola región para Valparaíso y Metropolitana) se extrajo alrededor de 10 subescenas como la mostrada en la Figura 3 (izquierda), logrando corregir prácticamente la escena completa. Por otro lado, el resultado de la interpolación, observado en la imagen de la derecha en la Figura 3, se puede considerar satisfactorio dado el mínimo ruido generado. Aun así, luego de reconstruir la escena completa se aplicó el filtro de paso bajo para eliminar estas imperfecciones, logrando obtener los MDE finales. A continuación se presentan los MDE corregidos correspondientes la Región del Libertador Gral. B. O'higgins (Figura 4), Maule (Figura 5) y Bío-Bío (Figura 6).

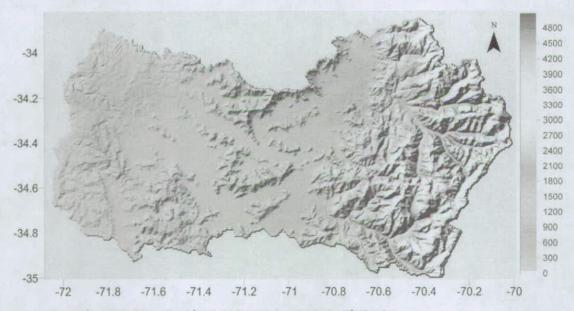


Figura 4. MDE de la Región del Libertador Gral. B. O'Higgins

Figura 5. MDE de la Región del Maule

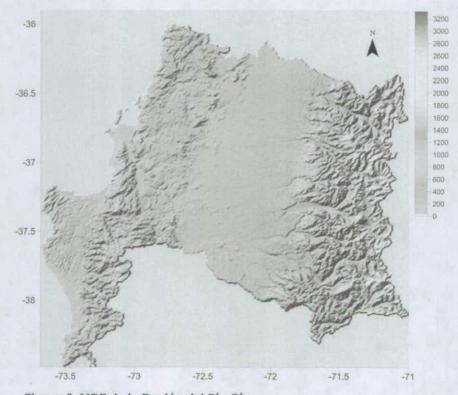


Figura 6. MDE de la Región del Bío-Bío

Cuantificación de relaciones topoclimáticas para las variables climatológicas mediante estadística multivariante y generación de la cartografía digital de las variables climatológica

Introducción

La necesidad de mejores métodos de espacialización de variables continúas en el espacio es cada vez mas creciente. En función de esto, particularmente, en relación a variables climáticas, existen un sin numero de métodos de interpolación estocásticos o estadísticos cuyos resultados son variables, tanto desde el punto de vista de los errores cuadráticos medios (RMSE) como de la explicabilidad física de los resultados (Qiyao et al., 1991; Fotheringham et al., 2000; Canessa, 2006; Morales et al., 2006)

En particular, para el análisis de aptitud agroclimática de un área determinada, es fundamental cuantificar de manera apropiada las interacciones que se producen entre la topografía y variables térmicas y energéticas. Desde este punto de vista, el enfoque topoclimático correspondiente a la detección de patrones locales en el clima, en función de la identificación de climas locales, entendiendo a estos como objetos geográficos (Radosz and Kaminski, 2003) se basa en la elaboración de modelos matemáticos multiregresivos los cuales cuantifican las relaciones existentes entre el comportamiento espacial de una variable climática y factores propios de la topografía, como la exposición, pendiente, altura, ubicación, además de variables como el NDVI.

El Índice de Diferencia de Vegetación Normalizado (NDVI) es un insumo necesario para la elaboración de relaciones topoclimáticas multivariantes, principalmente para modelar la variación espacial de parámetros térmicos y de humedad relativa. Entre otras fuentes, éste índice se puede obtener desde el sensor NOAA-AVHRR, dependiente de la NASA.

El sensor AVHRR (*Advanced Very High Resolution Radiometer*) corresponde a un scanner que posee una franja de barrido de 2700 Km, lo que supone un ancho de 27,2º de longitud en el ecuador, lo que es mayor a los 25,3º de separación entre pasos sucesivos orbítales lo que produce una superposición de las observaciones en los extremos. Debido a que los satélites NOAA operan de a pares, se llega a conseguir una resolución temporal sobre una zona geográfica no superior a 6 horas, lo que no se logro en todas las versiones (Fusco and Muirhead, 1987).

Respecto a su resolución temporal, cabe destacar que si bien su resolución espacial no es la mejor, en comparación al satélite Landsat, por ejemplo, su ventaja para estudios topoclimáticos, radica en su superioridad en resolución

temporal (Ihl, 1991). Este sensor posee una resolución espacial nominal de 1,1 Km al nadir (perpendicular a la superficie terrestre) y una resolución radiométrica de 10 bytes.

Además de esta base de datos, es posible obtener el NDVI (Índice de vegetación normalizado) calculado a bordo del satélite, la temperatura de brillo para los mismos días en que se encuentran disponibles las imágenes y los datos necesarios para corregir y georreferenciar las observaciones satelitales.

Específicamente, existen disponibles imágenes con resolución de 1 Km a partir del 1 de Abril de 1992, estas imágenes son procesadas cada 10 días, por lo que para cada mes existen 3 imágenes disponibles a través de la Web de EROS² dependiente del gobierno de Estados Unidos. Estas imágenes corresponden a los días 1, 11 y 21 de cada mes.

A continuación se presenta la metodología y los resultados del modelo topoclimático para el total de regiones que abarca el área de estudio, es decir, los modelos obtenidos para la Región de Valparaíso, Metropolitana, del Libertador Gral. B. O'Higgins, del Maule y del Bío-Bío.

Metodología

Imagenes de Índice de vegetación Normalizado (NDVI)

La metodología empleada para obtener el NDVI medio mensual para el área de estudio comprendida entre las Regiones V y VIII , se basó en la utilización de 92 imágenes del satélite NOAA-AVHRR en formato raster y con resolución espacial de 1 Km para el periodo comprendido entre los años 1992 y 1996 debido a la disponibilidad de la información.

Estas imágenes fueron obtenidas de la Web de EROS, para las bandas espectrales del satélite correspondientes a la 1 y 2. Dado que las imágenes son enviadas a las estaciones de recepción en un formato escalado (Scaled) para reducir su tamaño en *bytes* fue necesario proceder a corregir las imágenes según la Ecuación 1 y Ecuación 2 de escalamiento y corrección, dados los parámetros de corrección entregados por la fuente, los que se aprecian en el Anexo 1.

SCALED = (ACTUAL + SHIFT) * SCALE + OFFSET

Ecuación 1

² Earth Resources Observation and Science [en línea] http://eros.usgs.gov/ [consulta 8 Agosto]

$$ACTUAL = \frac{(SCALED - OFFSET)}{(SCALE - SHIFT)}$$
 Ecuación 2

Donde SCALED corresponde al valor escalado en niveles digitales que traen las imágenes, ACTUAL al valor real dependiente de la banda o canal del instrumento, SHIFT a un valor de corrección al igual que OFFSET y SCALE, valores que se presentan en el Anexo 1.

El formato numérico en que vienen las imágenes de las distintas bandas escaladas corresponde a Integer por lo que mediante un programa o macro diseñado en IDRISI se reclasificaron y convirtieron las 184 imágenes de las bandas 1 y 2 (Channels 1 y 2) a datos numéricos de tipo Real, recuperando la fracción decimal en los valores reales.

Se diseñó un programa en código VisualBasic 6.0 Professional a fin de realizar la corrección de las 184 imágenes según las ecuaciones 1 y 2. De esta forma se obtuvieron las imágenes para cada banda con sus valores reales.

Posteriormente se diseñó un nuevo programa en VisualBasic 6.0 Professional a fin de calcular el NDVI con cada par de imágenes, para cada fecha según la Ecuación 3.

$$NDVI \ (NOAA) = \frac{\left(CHANNEL \ 2 - CHANNEL \ 1\right)}{\left(CHANNEL \ 2 + CHANNEL \ 1\right)}$$
 Ecuación 3

Donde CHANNEL 1 y 2 corresponden a las bandas 1 y 2 del instrumento que son las reflectividades en las longitudes de onda del Infrarrojo cercano y el rojo visible.

De esta forma se obtuvieron 3 imágenes de NDVI para cada mes entre los años 1992 a 1996, las que mediante el empleo de un nuevo programa en código VisualBasic Professional 6.0 se promediaron, obteniendo 1 imagen de NDVI medio para cada mes.

Posteriormente las imágenes se resamplearon con la resolución original de 1 Km y se proyectaron en el sistema de coordenadas de Latitud y Longitud, mediante el modulo RESAMPLE de IDRISI usando los puntos de control que se indican en la tabla 3.

Tabla 1. Puntos de control utilizados para el remuestreo.

Punto de control	Coordenadas planas X	Coordenadas planas Y	Latitud sur	Longitud oeste
1	400.207792	1532.253659	-41.806965	-73.930462
2	363.306226	2043.208371	-37.163838	-73.581954
3	325.402597	1007.765854	-46.669354	-75.921964
4	455.984817	2922.774054	-29.208057	-71.468426
5	449.361664	2811.213577	-30.261007	-71.650958
6	422.800825	1742.082438	-39.828669	-73.403846
7	490.204443	2431.245218	-33.714684	-71.707122
8	385.246753	1374.907317	-43.249780	-74.339316

Mediante el empleo de un archivo vectorial con el área de estudio comprendida entre las regiones V y VIII, previa rasterización (transformación de archivos de vectores a grillas o raster) del mismo, se creó una macro en IDRISI, a través del modulo MACRO COMMAND, para obtener, mediante álgebra de imágenes, las imágenes de NDVI medio mensual en el área de estudio con una resolución de 1 Km Finalmente, a través de un segundo resampleo, se generaron las imágenes de NDVI medio mensual para el área de estudio, a una escala de trabajo 1:90.000.

Topoclimatología

Para el análisis de aptitud agroclimática de un área determinada es fundamental cuantificar de manera apropiada las interacciones que se producen entre la topografía y variables térmicas y energéticas. Desde este punto de vista, el enfoque topoclimático permite la detección de climas locales basados en la elaboración de modelos matemáticos multiregresivos que cuantifican las relaciones existentes entre el comportamiento espacial de una variable climática y factores propios de la topografía, como la exposición, pendiente, altura, ubicación, entre otras. Estas relaciones quedan determinadas por la ecuación topoclimática global siguiente:

$$F(x_1, x_2, ..., x_n) = \stackrel{\circ}{a} a_j \times_{k_1}^{m_1} \times_{k_2}^{m_2} \times ... \times_{k_n}^{m_n}$$
 Ecuación 4

Donde $F(x_1, x_2,, x_n)$ representa a una variable climatológica a estimar en un período de tiempo cualquiera, x es una variable descriptora fisiográfica que puede ser latitud, longitud, altitud, distancia litoral, pendiente, entre otras y a_j los coeficientes a determinar.

Con esta forma global se realizó la regresión múltiple utilizando el software estadístico StathGraphics Plus 5.1 a través del ajuste de regresiones multivariadas descritas por la Ecuación 4, con un modelo de regresión múltiple de pasos hacia delante. Se encontró así una ecuación topoclimática para cada variable climatológica mencionada y para cada región administrativa. La división

administrativa se utilizó para calcular cada ecuación topoclimática debido a que el método de espacialización utilizado presenta mejores resultados desde el punto de vista de la interpolación espacial en áreas relativamente pequeñas. La única variable que no fue estimada mediante topoclimatología debido a la escasez de información en la región es la humedad relativa de la R. del L. B. O'Higgins. En su lugar, la especialización fue realizada por una interpolación de isolíneas. Para las demás variables climatológicas y el resto de las regiones, se calcularon las matrices de datos en formato raster (IDRISI) para cada período de tiempo (Enero y Julio) utilizando las ecuaciones topoclimáticas. Estas son imágenes que representan la variabilidad espacial de la variable climatológica en las regiones de estudio. El estado real de la superficie fue incluido dentro de los parámetros a ser relacionados, mediante índices radiométricos calculados a través de imágenes de satélite, específicamente con el NDVI promedio para los meses extremos del año, Enero y Julio, lo cual aporta a la estimación el factor vegetación actual de la zona, sustrayéndole a la estimación algún grado de potencialidad, para ser referida igualmente a condiciones actuales. Las variables descriptoras y las cuantificadas para este estudio se muestran en la Tabla 2.

Tabla 2. Variables climatológicas utilizadas en el estudio para realizar la clasificación climática mediante análisis cluster

Nombre Variable	Sigla	Unidad
Descriptora	72 mily	
Distancia al litoral	dlit	km
Latitud	lat	grados
Longitud	lon	grados
Altitud	alt	m
Distancia a la red hídrica	drh	km
NDVI del mes de Enero	ndvie	
NDVI del mes de Julio	ndij	
Estimada		
Temperatura media máxima de Enero	txe	oC
Temperatura media máxima de Julio	tne	oC.
Temperatura media mínima de Enero	txj	°C
Temperatura media mínima de Julio	tnj	°C
Humedad Relativa media de Enero	hre	%
Humedad Relativa media de Julio	hrj	%
Precipitación Media Anual	ppa	mm
Radiación Solar Global media de Enero*	rsje	MJ/m²/dí
Radiación Solar Global media de Julio*	rsgj	MJ/m²/dí

Evapotranspiración media de Enero*	etpe	mm/m ²
Evapotranspiración media de Julio*	etpj	mm/m ²

^{*;} estimadas con modelamiento numérico.

Resultados y Análisis

Se obtuvo como resultado las imágenes de los NDVI medios mensuales para la zona comprendida entre la IV Región de Coquimbo y la VIII Región del Bío Bío a la resolución por defecto del instrumento es decir a 1km, las que se presentan en la Figura 7.

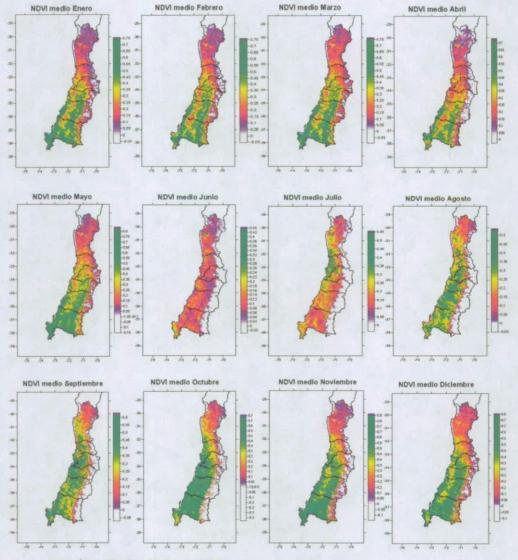


Figura 7. Imágenes de NDVI resultado.

También se obtuvieron estas imágenes a una resolución de trabajo de 90 metros mediante la técnica de resampleo descrita en la metodología, empleando el principio de ergodicidad. Estas imágenes se presentan en la Figura 8.

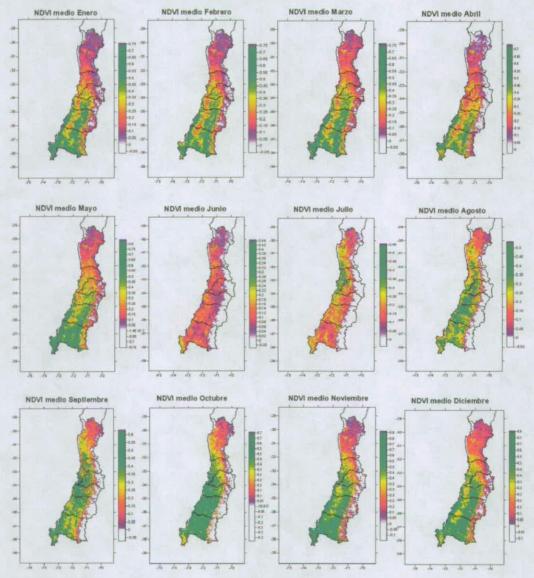


Figura 8. Imágenes de NDVI remuestreadas a 90 mts.

A continuación se presentan las ecuaciones topoclimáticas para la Región de Valparaíso y Metropolitana (Tabla 3), Región del L. Gral. B. O'Higgins (Tabla 4), Región del Maule (Tabla 5) y Región del Bío-Bío (Tabla 6).

Tabla 3. Ecuaciones de espacialización topoclimática para las Regiones deValparíso y Metropolitana

Región	Ecuación	R ²
V-RM	ppa= -1.92606*dlit + 138.857*lat + 71.2421*ndvij - 0.0000302222*alt^2 + 0.349904*drh^2 + 4.56254*lat^2 + 0.00212204*alt*dlit - 0.00347206*alt*drh	98,6%
V-RM	hre = $-0.301212*dlit - 3.37292*lat + 0.494909*lon + 5.40591E-7*alt^2 + 0.000902563*dlit^2 + 0.0000712406*lon*alt$	99.7%
V-RM	$hrj = 1.22595*alt + 0.398688*drh - 2.54627*lat + 0.00000392704*alt^2 - 0.00892966*lat*alt + 0.0213755*lon*alt - 0.000312302*dlit*alt$	99.4%
V-RM	tne = -3.50013E-7*alt^2 + 0.00239744*lon^2 + 0.0000351612*lat*alt	99.4%
V-RM	$tnj = 0.157804*drh + 2.42053*lon - 0.37991*ndvij - 6.00501E-7*alt^2 - 0.0102114*drh^2 + 0.0350906*lon^2$	91.2%
V-RM	$txj = -0.00327782*alt + 0.0462902*dlit - 0.126025*drh - 0.000126275*dlit^2 - 0.04073*lat^2 + 0.0118251*lon^2$	99.0%
V-RM	$txe = 0.0382922*dlit - 4.19716*lon + 0.539285*ndvien -0.00490705*drh^2 - 0.0536957*lon^2 + 0.00000278708*alt*expo -0.0000435865*alt*dlit$	93.2%

Tabla 4. Ecuaciones de espacialización topoclimática para la Región del L. B. O'Higgins

Región	Ecuación	R ²
VI	ppa = 263647.0 + 16160.7*lat + 0.0169699*dlit^2 + 237.594*lat^2 + 2.27958*lon^2 + 0.000647331*alt*dlit	89,1%
VI	tne = $32.2292 + 0.221314*drh + 5.35661E-7*alt^2 - 0.00849611*drh^2 - 0.0173072*lat^2 - 0.0000219264*alt*dlit$	79,6%
VI	$\begin{array}{llllllllllllllllllllllllllllllllllll$	92,6%
VI	txe = 408.731 + 0.118318*drh - 1.19672*lat - 0.000579034*dlit^2 - 0.0820745*lon^2 - 0.0000178902*alt*dlit	89,6%
VI	$txj = -4288.1 + 0.0438267*alt - 251.685*lat + 4.54723*ndij - 0.00315601*drh^2 - 3.68098*lat^2 + 0.00134351*alt*lat$	88,9%

Tabla 5. Ecuaciones de espacialización topoclimática para la Región del Maule

Región	Ecuación	R ²
VII	ppa = 6931.18 - 3.83115*alt - 356.353*lat + 263.331*lon - 0.129949*lat*alt - 0.000129412*alt^2	90,3%
VII	hre = 14.9256 - 0.13456*dlit - 1.47466*lat + 11.0236*ndvie - 0.00000216785*alt^2 + 0.0000316475*dlit*alt	91,6%
VII	$hrj = 86.7475 - 0.0337276*dlkm + 9.21586*ndvie + 0.000381791*lat*alt + 0.00000428503*alt^2 - 0.0000427449*dlkm*alt$	92,6%
VII	tne = 1.02786*lat - 0.670468*lon - 0.00051991*lat*alt + 0.000290139*lon*alt - 0.0000219776*drh*alt	98,9%
VII	tnj = -0.0286359*dlkm - 0.143274*lat + 3.28617*ndvie - 0.00000130773*alt^2 + 0.0000164731*dlkm*alt + 0.0000337494*drhkm*alt	90,0%
VII	txe = 453.115 - 0.448953*alt + 5.87704*lon - 4.8098*ndvie - 0.00618181*lon*alt + 0.00000177614*alt^2 - 0.0000537755*drhkm*alt	85,6%
VII	$txj = 98.276 - 0.0336585*dlkm + 1.15706*lon + 1.64644*ndvie + 0.0000722871*lat*alt + 3.85657E-7*alt^2 - 0.0000388811*drhkm*alt$	95,2%

Tabla 6. Ecuaciones de espacialización topoclimática para la Región del Bío-Bío

Región	Ecuación	R ²
VIII	ppa = -162639.0 + 0.980553*alt + 20.3741*pend + 125.012*lat^2 + 29.8096*lon^2 - 247.17*dlit^2 - 0.0228064*lat^2*lon^2	79,7%
VIII	hre = -832.66 - 12.4006*lon + 0.0108522*alt - 0.00000595492*alt^2	89,5%
VIII	hrj = -32042.4 - 899.642*lon - 0.192673*pend - 0.587057*lat^2 - 6.29211*lon^2 + 0.000108659*lat^2*lon^2 + 4.12873*dlit^2 - 0.00000223931*alt^2	85,5%
VIII	tne = -310.23 - 17.8081*lat - 0.00268663*alt - 0.245924*lat^2 - 0.891776*dlit^2	91,4%
VIII	tnj = 5.64318 - 2.64562*dlit + 0.0126053*pend - 8.52172E-7*alt^2 + 0.00185689*alt*dlit + 0.548155*ndvij^2	77,9%
VIII	$txe = -9820.26 - 274.301*lon - 0.0192193*lat*lon - 1.90014*lon^2 - 0.746687*dlit^2 - 0.00000159411*alt^2$	78,9%
VIII	txj = 20.7625 - 2.16673*dlit - 0.00522134*lat^2 - 6.12144E-7*alt^2	87,6%

En general, teniendo en cuenta los factores utilizados para describir espacialmente cada variable climática, todos los mapas reproducen satisfactoriamente el comportamiento espacial de cada variable. A continuación se analizaran los resultados obtenidos para cada variable de forma espacializada.

Región de Valparaíso y Región Metropolitana

Humedad Relativa Media Mensual

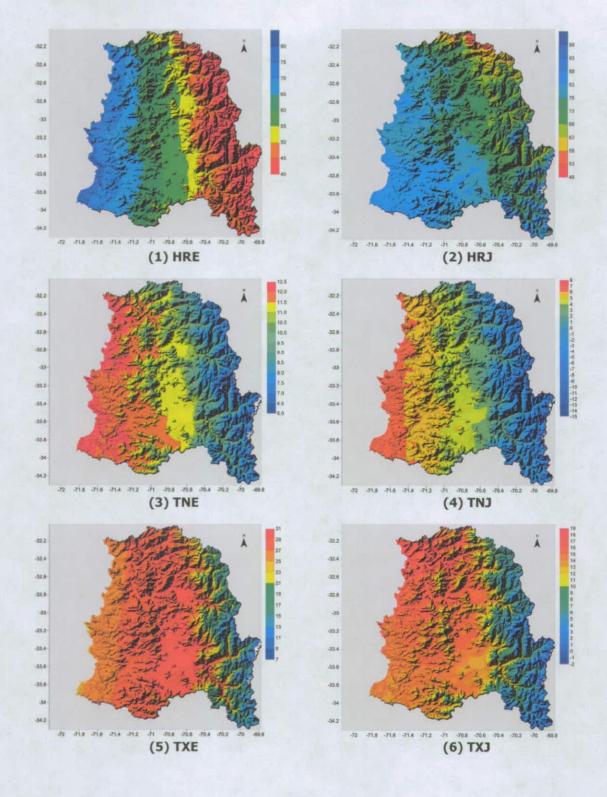
Para el mes de Enero (Figura 9.1) la humedad relativa se observa altamente dependiente de la distancia al litoral. La máxima humedad relativa cercana a la costa se explica porque en el mes de Enero la temperatura del aire es menor a la de los valles interiores, a la vez que el océano aporta gran cantidad de humedad al aire, lo que produce una mayor saturación de un volumen de aire dado. Por otro lado, los menores valores de humedad relativa hacia el valle central se deben a la mayor temperatura que alcanza el aire y el menor aporte de humedad, siendo fuentes el suelo y la vegetación. Hacia la cordillera se alcanzan los mínimos valores de humedad relativa principalmente por el menor aporte de humedad del mes estival para esta zona, siendo la vegetación la fuente más importante.

En el mes de Julio (Figura 9.2) la situación adquiere una mayor influencia latitudinal. Los mayores valores de humedad relativa se alcanzan hacia el sector sur de ambas regiones, es decir, donde se encuentran las mayores precipitaciones. Al ser la época de lluvias, el aporte de humedad desde la superficie tiende a ser homogéneo, no obstante la influencia marítima sigue marcando su influencia mostrando un ligero gradiente oeste-este. De la misma forma, el mínimo valor de humedad relativa se alcanza hacia el sector norte de la Región de Valparaíso, sector que presenta menores precipitaciones y de vegetación con características mesófitas, lo que indica un menor aporte de humedad al aire.

Temperatura Media Minima Mensual

En este caso, tanto la temperatura media mínima de Enero (Figura 9.3) como la de Julio (Figura 9.4) se ven fuertemente influenciadas por la distancia al litoral, es decir, por la conocida influencia oceánica. Mientras que en la franja costera se alcanza una temperatura de aproximadamente 12,5 °C en el mes de Enero, en el mes de Julio se alcanza un valor alrededor de 6,5 °C. Así mismo, el valle central presenta una temperatura de alrededor de 11°C en Enero y 4°C en Julio. Como es lógico, las temperaturas mínimas en ambos períodos se observan hacia la cordillera por efecto de la altitud, alcanzando una mínima de 6°C en Enero y de -15°C en Julio.

Temperatura Media Máxima Mensual


En el mes de Enero (Figura 9.5) se observa claramente la influencia oceánica. La temperatura media máxima es menor en la franja costera que en el interior, debido a que el océano impide una gran oscilación de las temperaturas en éste sector. Por el contrario, al estar el valle central más alejado del mar, las temperaturas máximas durante el mes de Enero oscilarán en mayor magnitud, lo que entrega en definitiva una temperatura media máxima de Enero mayor que en la costa.

En el mes de Julio (Figura 9.6) la temperatura se ve dependiente de la latitud en vez del océano. Las mayores temperaturas se alcanzan hacia el sector norte de la Región de Valparaíso, evidenciando un gradiente a medida que se avanza a mayores latitudes.

Precipitación Media Anual

La precipitación media anual (Figura 9.7) muestra el conocido gradiente latitudinal de la precipitación producido por el Anticiclón del Pacífico. De esta manera se observan menores valores de precipitación hacia el norte de la Región de Valparaíso (200 mm) con un gradiente hacia el sur de ambas regiones que alcanza aproximadamente los 800 mm. También la altitud es un factor que determina la magnitud de la precipitación, mostrando los máximos valores hacia la Cordillera de los Andes con valores alrededor de los 1200 mm de precipitación media anual.

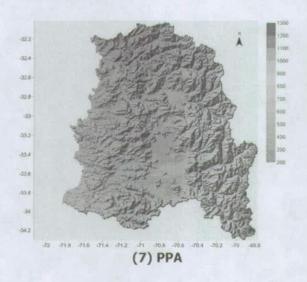


Figura 9. Resultado de la espacialización de las variables climáticas en la Región de Valparaíso y la Región Metropolitana: humedad relativa media de Enero (1) y Julio (2) en %, temperatura media mínima de Enero (3) y de Julio (4) en °C, temperatura media máxima de Enero (5) y Julio (6) en °C y precipitación media anual (7) en mm.

Región del Libertador Gral. B. O'Higgins

Humedad Relativa Media Mensual

Se observa una marcada influencia oceánica para los valores medios mensuales de Enero (Figura 10.1). El gradiente de humedad se desplaza desde un 85% en la franja costera hasta un 40% en la Cordillera de los Andes. El valle central muestra valores entre 55% y 65%.

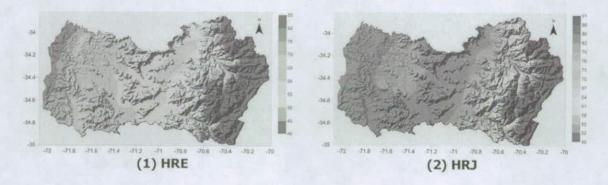
Al ser un mes con presencia de precipitaciones, el mes de Julio se ve menos influenciado por el Océano Pacífico (Figura 10.2). De esta forma, el territorio muestra una distribución más homogénea desde la costa hacia el valle central, con valores que oscilan entre un 90 a 79 % (respectivamente). Hacia la Cordillera de los Andes se observan nuevamente los valores más bajos alrededor de un 50% de humedad relativa media mensual.

Temperatura Media Minima Mensual

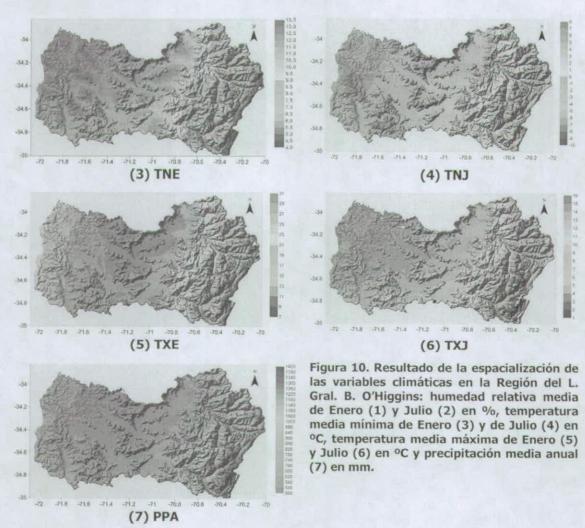
Para esta variable se observan islas de calor asociadas a accidentes montañosos en el mes de Enero (Figura 10.3), cuya temperatura alcanzan los 13°C. Las máximas temperaturas se observan hacia el sector costero con 13.5°C. En los sectores bajos del Valle Central se presentan temperaturas de aproximadamente 11°C. Hacia la Cordillera de los Andes se observan temperaturas que van desde los 9°C en el piedmont hasta los 4°C en la alta montaña.

En el mes de Julio (Figura 10.4) la temperatura máxima alcanza los 8°C, principalmente en las montañas del Valle Central y la Cordillera de la Costa. Los

valles muestran temperaturas entre los 2 y 5°C, mientras que la Cordillera de los Andes muestra las menores temperaturas, que van desde los 2°C en el piedmont hasta los -10°C en la alta montaña.


Temperatura Media Máxima Mensual

En el mes de Enero (Figura 10.5) se observa claramente la influencia oceánica, manteniendo una temperatura media máxima de entre 23 a 27°C hacia la costa, mientras que en la depresión intermedia las temperaturas oscilan entre los 27 a 30°C, disminuyendo gradualmente hacia mayores latitudes. El efecto de la altitud se observa en la Cordillera de los Andes, mostrando temperaturas que van desde los 20°C aproximadamente a la altura del piedmont, hasta alrededor de los 7°C en las altas cumbres.


El mes de Julio (Figura 10.6) muestra una distribución espacial de la temperatura más homogénea, con un gradiente de temperatura que disminuye de norte a sur. Las temperaturas más altas se producen hacia el noroeste de la región, con valores que oscilan alrededor de los 16°C. Hacia el este las temperaturas disminuyen por efecto de la altitud, alcanzando temperaturas de entre 1 a 10°C. Hacia el sur los valores disminuyen por efecto de la latitud, observándose un gradiente menos pronunciado que el producido por la altitud presentando valores entre 12 y 14°C.

Precipitación Media Anual

El gradiente observado de norte a sur se relaciona con la disminución de la influencia del anticiclón del pacífico (Figura 10.7). De esta forma en el sector norte de la región encontramos precipitaciones medias anuales que van desde los 500 a los 620 mm. Más hacia el sur los valores aumentan hasta aproximadamente los 820 mm, mientras que hacia la Cordillera de los Andes los valores van desde los 900 hasta los 1400 mm.

Región del Maule

Humedad Relativa Media Mensual

Al igual que en las otras regiones, la humedad relativa de Enero (Figura 11.1) se ve altamente influenciada por la presencia del Océano Pacífico y la distancia a éste. Acá se alcanza una humedad relativa media mensual de 76% aproximadamente para el sector costero. Luego, la Depresión Intermedia muestra valores entre un 58 y un 64%. Siguiendo hacia el este, la humedad desciende del 58% hasta un 37% hacia las altas cumbres de la Cordillera de los Andes.

El mes de Julio (Figura 11.2) evidencia ahora el aporte de humedad producto de la estación, dada la distribución homogénea de la variable en este mes. Así observamos que la humedad relativa entre la costa y la depresión intermedia oscila

entre un 97 a 78% respectivamente. Desde el piedmont, la humedad decrece desde aproximadamente un 78% hasta un 46% en la alta cordillera.

Temperatura Media Mínima Mensual

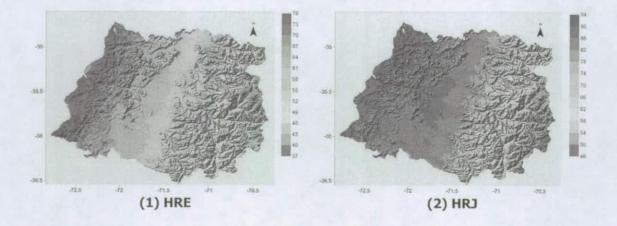
Los valores mínimos de temperatura en el mes de Enero (Figura 11.3) se ven influenciados mayormente por la distancia al litoral y la altitud y en menor medida por la latitud. De esta manera el gradiente más evidente se produce de oeste a este, con temperaturas alrededor de los 12°C en la costa hasta los 10°C en la depresión intermedia. Luego desde el piedmont las temperaturas comienzan a disminuir por efecto de la altitud hasta los 4°C. Se observa también una pequeña área correspondiente a la Cordillera de la Costa y el borde costero en el sector noroeste de la región, que presenta temperaturas mayores que el resto del borde costero con valores alrededor de los 13°C influenciados por la latitud. Así mismo, en la mitad sur de la Cordillera de la Costa se observa un área con valores alrededor de los 10 a 11°C y en menor medida entre 9 y 10°C, afectados ambos sectores por la mayor altitud.

Para el mes invernal la temperatura media mínima es más homogénea (Figura 11.4). Entre el borde costero y la Cordillera de la Costa se presentan temperaturas entre 8 y 5°C, respectivamente, siendo los menores valores de la Cordillera de la Costa explicados por la altitud. Luego en la Depresión Intermedia se presentan valores entre 3 y 5°C, menores que en la costa por estar más alejados del océano. Más hacia el este, la Cordillera de los Andes presenta temperaturas medias mínimas que van desde los 3 hasta los -6°C en las altas cumbres.

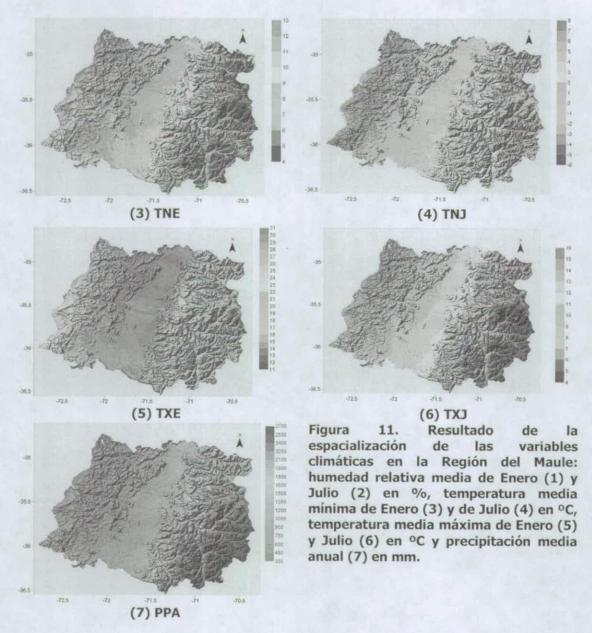
Temperatura Media Máxima Mensual

Al estar en latitudes más cercanas al polo, el efecto que tiene el océano en la regulación térmica del Continente para el mes de Enero deja de ser tan clara, adquiriendo una mayor relevancia esta función en el mes de Julio, volviéndose más evidente en el gradiente térmico.

El mes estival (Figura 11.5) presenta una temperatura media máxima alrededor de los 30°C prácticamente en toda la zona norte de la Depresión Intermedia y algunos valles en la Cordillera de la Costa. Avanzando hacia el sur la temperatura media máxima desciende hasta los 28°C aproximadamente, situación que se presenta a lo ancho de la depresión intermedia. Hacia el sector norte de la Cordillera de la Costa tenemos una situación similar a la anterior, con temperaturas sobre los 28°C, disminuyendo hasta cerca de 23°C hacia mayores latitudes. La Cordillera de los Andes muestra una situación análoga a las otras regiones, con disminución de la temperatura por efecto de la altura. Así, en la precordillera las



temperaturas se encuentran cerca de los 22°C, llegando a los 11°C en la alta cordillera.


Como se mencionó al comienzo, el mes de Julio (Figura 11.6) muestra un gradiente longitudinal más evidente que las regiones anteriores. El sector costero muestras las temperaturas más altas al ser regulado por la inercia térmica del Océano Pacífico, mostrando una temperatura media máxima de aproximadamente 16°C. A su vez, la Cordillera de la Costa muestra temperaturas que van desde los 16°C, en las proximidades del océano, hasta cerca de los 13°C hacia el interior. Por su parte, la Depresión Intermedia evidencia un gradiente desde los los 13°C hasta los 11°C en las proximidades de la Cordillera de los Andes. Ya en la precordillera la temperatura desciende por debajo de los 11°C, alcanzando temperaturas del orden de los 4°C hacia la alta cordillera.

Precipitación Media Anual

El gradiente de precipitación observado en las regiones anteriores se hace menos evidente debido a una influencia más débil del Anticiclón del Pacífico y a la cercanía con la Baja Polar (Figura 11.7). De esta manera ahora se puede observar más bien un gradiente longitudinal, determinado mayormente por la cercanía al mar. En el sector costero se observa una precipitación media anual de aproximadamente 300 mm, mayormente en hacia el norte de la Región, mientras que más al sur la precipitación bordea los 1000 mm anuales. Avanzando hacia el Valle Central el gradiente va desde los 1000 hasta cerca de los 1500 mm. Finalmente el gradiente en la Cordillera de los Andes va desde los 1650 mm en la precordillera hasta los 2700 mm de precipitación media anual en la alta cordillera.

Región del Bío-Bío

Humedad Relativa Media Mensual

El gradiente se presenta más acentuado en el mes de Enero (Figura 12.1), donde la humedad relativa media mensual máxima se presenta hacia el sector costero desde la localidad de Punta Lavapié hacia el sur, con un valor de 85% de humedad. Hacia el Este, la Cordillera de la Costa muestra valores desde un 80 a un 70% de humedad relativa, para disminuir desde un 70 a un 60%

aproximadamente en el Valle Central. Luego en la Cordillera de los Andes se observan valores entre un 60%, en la precordillera, hasta un 40% en las altas cumbres, siendo común una humedad de 50 a 55%.

En Julio (Figura 12.2) se observa una variación similar, siendo distinta la magnitud de los valores. Desde la franja litoral, abarcando toda la Cordillera de la Costa, se observan valores desde un 90 a un 85% aproximadamente. Luego para el Valle Central la humedad relativa recorre un gradiente Oste-Este desde un 85 hasta un 80%, en el norte de ésta región, y hasta un 82% en la parte sur. La precordillera muestra una humedad relativa de entre un 76 a un 80%. Ya a mayor altura se alcanza una humedad de entre 60 a 76%.

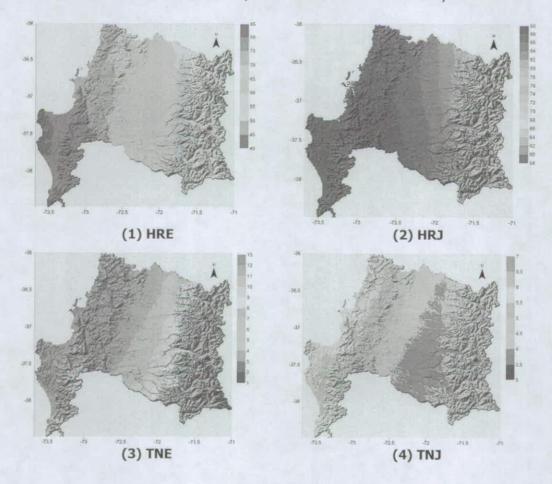
Temperatura Media Minima Mensual

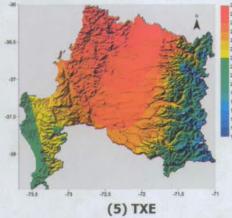
La temperatura media mínima en Enero (Figura 12.3) muestra valores entre los 11 y 13°C en la franja litoral y la cordillera costera, excepto en la Cordillera de Nahuelbuta donde la influencia de la altitud hace disminuir la temperatura media mínima hasta aproximadamente los 8°C. El Valle Central, al estar más alejado de la costa disminuye su temperatura, observando valores entre los 8 y 11°C. La Cordillera de los Andes presenta una temperaturas medias mínimas que van desde los 8°C, en la precordillera, hasta 1°C en las altas cumbres.

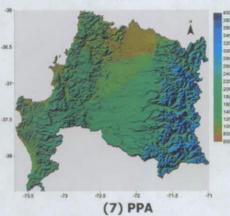
En Julio (Figura 12.4)se observa claramente la franja costera influenciada por la presencia del Océano Pacífico, que mantiene una temperatura media mínima más elevada que el resto del territorio con valores desde 5.5°C en la mayor parte de la costa hasta 7 °C en sectores específicos. La parte Este de la Cordillera de la Costa muetra temperaturas de aproximadamente 5°C, valor que disminuye hacia el Valle Central, donde se alcanza una temperatura de 4°C, mientras que la temperatura mínima se alcanza hacia la Cordillera de los Andes con 3°C.

Temperatura Media Máxima Mensual

En Enero (Figura 12.5) se observa una variación latitudinal de la variable debido la lejanía del Ecuador y a la proximidad con el Polo. En el sector costero, abarcando la franja litoral y la cordillera, el gradiente Norte-Sur va desde una temperatura media máxima de 29°C hasta los 21°C, mientras que en el Valle Central el gradiente va desde los 29°C hasta los 24°C. A diferencia de los sectores señalados, la Cordillera de los Andes muestra una influencia altitudinal, presentando temperaturas entre los 23 y 14°C, desde la precordillera hasta las altas cumbres respectivamente.


En Julio (Figura 12.6) el Océano Pacífico es el regulador térmico, por lo que la variable se distribuye en función de la distancia a la franja litoral. La franja litoral y


la mitad Oeste de la cordillera costera muestran temperaturas medias entre los 13 y 14°C. Desde la mitad Este de la cordillera costera hasta la precordillera andina la temperatura media muestra un gradiente que va desde los 13 a los 10°C respectivamente. Ya por efecto de la altura, la Cordillera de los Andes presenta valores desde los 10 hasta los 4°C.


Precipitación Media Anual

La distribución de esta variable se muestra principalmente en función de la altitud y la latitud (Figura 12.7). El gradiente latitudinal se muestra una gran diferencia en el Valle Central, con precipitaciones que van desde los 600 (en el norte) hasta los 1600 mm de precipitación media anual. Menos evidente se muestra el gradiente en la cordillera costera, con precipitaciones que van desde los 1400 hasta los 2000 mm, excepto en las altas cumbres de la Cordillera de Nahuelbuta donde se presentan valores alrededor de los 2500 mm. La Cordillera de los Andes exhibe una influencia netamente altitudinal, con valores entre los 2400 y 3800 mm.

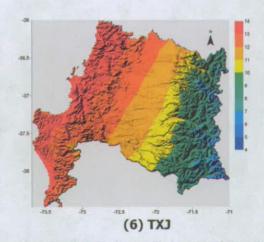


Figura 12. Resultado de la espacialización de las variables climáticas en la Región del Bío-Bío: humedad relativa media de Enero (1) y Julio (2) en %, temperatura media mínima de Enero (3) y de Julio (4) en °C, temperatura media máxima de Enero (5) y Julio (6) en °C y precipitación media anual (7) en mm.

Espacialización de la Radiación Solar Global y Evapotranspiración Potencial

Introducción

Estas dos variables de importancia en la estudio del comportamiento de cultivos se encuentran escasamente evaluadas por estaciones meteorológicas a nivel nacional. Por este motivo se decidió modelar los valores de radiación solar global mediante un modelo propuesto por la USDA de EE. UU. y los de evapotranspiración potencial a través de la ecuación de Priestley y Taylor. Esto permitirá disponer de mayor información para delimitar zonas en que las variables agroclimáticas tengan un comportamiento homogéneo.

Metodología

El modelo elaborado por USDA, originalmente escrito en lenguaje Fortran, permite la estimación de radiación solar global de manera puntual. Éste modelo fue reescrito en lenguaje Visual Basic y modificado de tal forma que incluyera rutinas para especializar esta variable y al mismo tiempo que fuese capaz de incluir otras rutinas que aportaran más exactitud a la estimación, como lo es el cálculo de la nubosidad media mensual.

La nubosidad media mensual fue calculada a partir del Lugar de Presión Máxima o LPM, definido como la latitud del lugar a la cual el Anticiclón del Pacífico produce la presión media mensual máxima sobre el continente, variable que ha demostrado ser capaz de describir el comportamiento meteorológico en Chile central (Saavedra et al., 2002).

En términos generales, los cálculos utilizados para estimar la radiación solar global corresponden a:

- Distancia Tierra-Sol
- Declinación solar
- Angulo horario
- Corrección por pendiente y exposición
- Corrección por espesor óptico (altitud)
- Duración del día
- Transmisividad de la atmósfera (nubosidad)
- Radiación solar potencial
- · Radiación solar directa y difusa

Para la estimación de la evapotranspiración potencial se incluyó en el mismo programa una rutina que estimara este valor a partir de la ecuación de Priestley y Taylor utilizando la expresión siguiente (Canessa, 2006):

$$ETP = \frac{30,6 \times Rn \times \lambda}{\lambda + 0,68}$$
 Ecuación 5

Donde *ETP* es la evapotranspiración potencial en mm/día, Rn es la radiación solar neta en MJ/m²/día y λ es un coeficiente que depende de la temperatura.

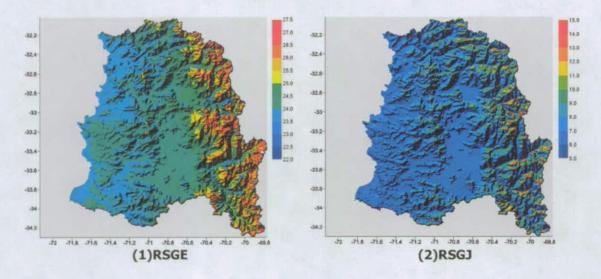
El coeficiente λ se puede estimar a partir de la siguiente ecuación:

$$\lambda = e^{\left[21,3 - \left(\frac{5304}{KT}\right)\right]} \times \left(\frac{5304}{KT^2}\right)$$
 Ecuación 6

Donde KT es la temperatura media diaria en Kelvin y e corresponde a la constante de Euler.

Con las ecuaciones anteriores se construyó un programa que permitiese determinar la radiación solar global media mensual y evapotranspiración potencial media mensual a partir de una simulación a escala diaria, de tal manera de calcular el promedio de los días correspondientes. Por lo mismo, en la rutina de estimación de la evapotranspiración se utilizó la imagen de temperatura media máxima y media mínima de enero y Julio para simular el comportamiento medio diario de la temperatura utilizando la ecuación sinusoidal de Charles-Edwards (1982).

Resultados y Análisis


Región de Valparaíso y Metropolitana

Como se observa en la Figura 13.1 y Figura 13.2, la radiación solar global media mensual (RSG) responde claramente a los factores fisiográficos. En el mes de Enero la variable se distribuye siguiendo el comportamiento altitudinal, es decir, se observa una mayor radiación solar a mayor altitud. También en algunas áreas se observa la influencia de la exposición. La mayor radiación solar global alcanzada se presenta hacia la Cordillera de los Andes, con un valor máximo de 27,5 MJ/m²/día. En el Valle Central se observan valores de radiación entre 24,0 y 24,5 MJ/m²/día, mientras que hacia la costa los valores rodean los 24,0 MJ/m²/día. En el mes de Julio la distribución de la radiación solar muestra una mayor importancia de la exposición para su distribución. Esto se explica porque en este mes la declinación

solar es mínima y por tanto sólo las laderas de exposición norte serán capaces de captar la mayor cantidad de radiación, principalmente la de origen directo. De esta manera los valores máximos de radiación se dan hacia la Cordillera de los Andes alcanzando aproximadamente 14 MJ/m²/día. Prácticamente todas las laderas de exposición norte muestran valores entre los 7 y 13 MJ/m²/día, mientras que los valles y las laderas de exposición sur alcanzan valores entre 5 y 7 MJ/m²/día.

Las Figura 13.3 y Figura 13.4 muestran los resultados del cálculo espacial de evapotranspiración potencial media mensual (ETP). Al estar en función de la radiación solar su distribución espacio-temporal es muy similar a ésta, siendo su comportamiento explicado por causas análogas. En el mes de Enero se observa una ETP máxima de 13 mm/día en el área que cubre el Valle del Maipo. En general los sectores de valle muestran valores de ETP entre 12 y 13 mm/día para toda el área. Las áreas montañosas, al estar sometidas a menores temperaturas, muestran una ETP alrededor de los 11 mm/día. Las altas cumbres de la Cordillera de los Andes por su parte alcanzan una ETP entre 9 y 11 mm/día. En el mes de Julio la máxima ETP se muestra en laderas de exposición norte, alcanzando valores entre 4,4 y 6,0 mm/día. Los distintos valles presentan una ETP entre los 2,8 y 4,4 mm/día, mientras que las altas cumbres de la Cordillera de los Andes y las exposiciones sur alcanzan magnitudes entre 0,4 y 2,8 mm/día.

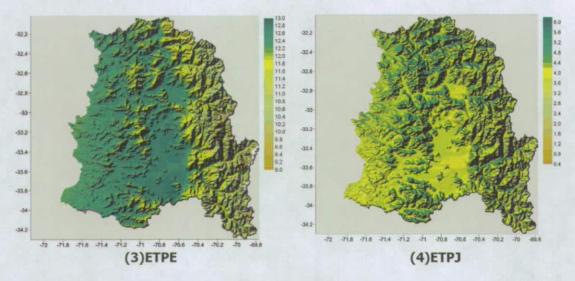


Figura 13. Imagen de radiación solar global de Enero (1) y Julio (2) e imagen de evapotranspiración potencial de Enero (3) y Julio (4) para la Región de Valparaíso y Región Metropolitana.

Región del L. Gral. B. O'Higgins

En la Figura 14.1 se observa la imagen de radiación solar global media mensual del mes de Enero. El valor máximo de radiación alcanza los 27 MJ/m²/día hacia lo alto de la Cordillera de los Andes, donde en términos generales se observan los mayores valores de radiación entre los 24,5 y 27 MJ/m²/día. El Valle Central y la parte norte de la Cordillera de la Costa muestran valores entre los 23,5 y los 24,5 MJ/m²/día. Los valores mínimos se alcanzan en determinadas laderas de los Andes con magnitudes entre los 21 y los 23,5 MJ/m²/día. En el mes de Julio (Figura 14.2) la radiación decrece drásticamente, logrando un máximo hacia lo alto de la Cordillera de los Andes de 15 MJ/m²/día, principalmente en laderas de exposición norte. A menores alturas del mismo cordón montañoso, y en algunas elevaciones del Valle Central, la radiación solar oscila entre los 8 y 9 MJ/m²/día. Prácticamente en todo el Valle junto con la Cordillera de la Costa, la radiación toma valores entre los 4 y 7 MJ/m²/día. Los valores mínimos se obtienen en laderas de exposición sur con magnitudes de 2 y 4 MJ/m²/día.

La evapotranspiración potencial media del mes de Enero (Figura 14.3) muestra sus máxima magnitud en el Valle Central y la mitad Este de la Cordillera de la Costa con valores entre los 12,5 y 13,5 mm/día. La mitad Oeste de la misma cordillera, junto con la franja costera y el pidmont andino muestran valores entre los 12 y 12,5 mm/día. Por su parte, la Cordillera de los Andes muestra un gradiente altitudinal, desde los 10 a 12 mm/día en la precordillera hasta los 7 a 10 mm/día hacia las altas cumbres. Por el contrario, en el mes de Julio (Figura 14.4) la

máxima evapotranspiración se observa en las alturas con exposición Norte, cuyos valores oscilan entre los 4,5 a 6 mm/día. El Valle Centra y la Cordillera de Costa muestran magnitudes entre los 3,5 y 4,5, mientras que las alturas con exposición distinta a la Norte poseen una evapotranspiración entre los 0,5 y los 3,5 mm/día.

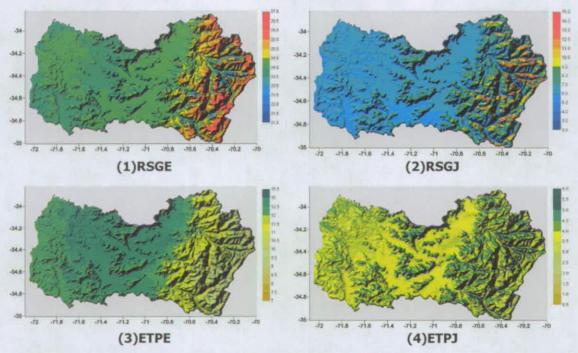


Figura 14. Imagen de radiación solar global de Enero (1) y Julio (2) e imagen de evapotranspiración potencial de Enero (3) y Julio (4) para la Región del L. Gral. B. O'Higgins.

Región del Maule

En Enero se puede observar (Figura 15.1) que la radiación solar global alcanza su máximo valor entre los 25 y 27 MJ/m²/día hacia la Cordillera de los Andes. Desde los valles formados en la misma cordillera hasta el Valle Central la radiación oscila entre los 24 y 25 MJ/m²/día. La franja costera por su parte muestra alcanza una radiación solar global de aproximadamente 23,5 MJ/m²/día. Al igual que en las regiones anteriores el mes de Julio (Figura 15.2) se ve altamente influenciado por la exposición. El valor máximo de radiación solar, 13 MJ/m2/día, se observa en algunos sectores altos de la Cordillera de los Andes. En general para esta región, los valores de radiación solar global van desde los 5 a los 8 en la mayor parte del territorio, desde el Valle Central hasta la Costa.

La evapotranspiración de Enero (Figura 15.3) sigue más bien un patrón térmico observado en el Valle Central, donde se alcanza un valor máximo de entre 12,5 y 13 mm/día. En el extremo sur del Valle Central y en las alturas de la Cordillera de

la Costa se observa una evapotranspiración con valores entre 12 y 12,5 mm/día, mientras que en la Cordillera de los Andes se presentan magnitudes desde 12 mm/día (piedmont) hasta 9,5 mm/día en la gran parte de las cumbres. En Julio (Figura 15.4) se vuelve a observa la influencia de la exposición Norte debido a la mayor radiación para este mes. Los valores máximos en esta ladera oscilan entre los 4 y 6 mm/día. El Valle Central junto con la Cordillera de la Costa alcanza una evapotranspiración del orden los 3,5 mm/día, mientras que el extremo sur del Valle desciende hasta los 2,5 mm/día.

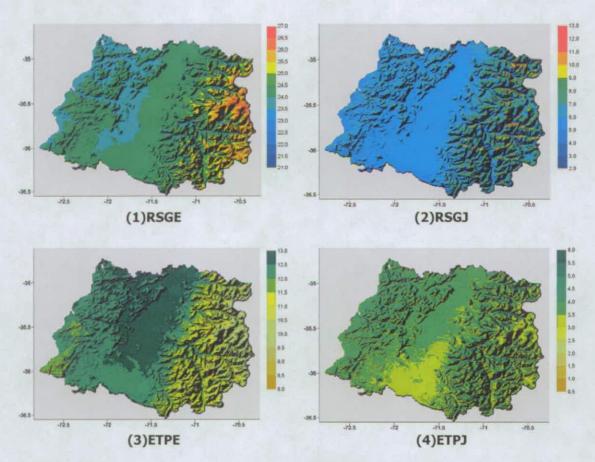
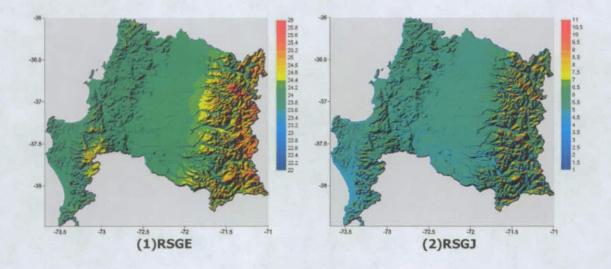


Figura 15. Imagen de radiación solar global de Enero (1) y Julio (2) e imagen de evapotranspiración potencial de Enero (3) y Julio (4) para la Región del Maule.


Región del Bío-Bío

La Figura 16.1 muestra la radiación solar global media de Enero. Se observa que la mayor parte del Valle Central y la Cordillera de la Costa presenta valores entre los 23,8 y 24,3 MJ/m²/día, exceptuando la Cordillera de Nahuelbuta que muestra valores entre los 24,4 y 24,8 MJ/m²/día. Hacia la Cordillera de los Andes la

magnitud de la radiación aumenta por efecto de la altura. La precordillera muestra valores desde los 24,4 MJ/m²/día y a medida que se asciende, el gradiente aumenta hasta los 26 MJ/m²/día en las mayores cumbres. Por otra parte, la radiación solar global de Julio (Figura 16.2) se presenta en la mayor parte de la región con valores cercanos a los 5 MJ/m²/día. La máxima radiación de este mes se alcanza en las cumbres con exposición Norte de la Cordillera de los Andes, con un valor cercano a los 10,5 MJ/m²/día.

La evapotranspiración media de Enero (Figura 16.3) muestra un gradiente Norte-Sur, influenciado por la distribución de la temperatura media mensual (ver Figura 12.5) y que afecta el Valle Central y el cordón costero. Así, la máxima evapotranspiración se observa hacia el norte de la región con valores entre 12,6 y 13 mm/día. Más al sur los valores descienden hasta los 12 mm/día. La Cordillera de Nahuelbuta muestra valores del orden de los 11 mm/día, al igual que la precordillera andina. Desde la precordillera hacia las mayores alturas se observa un gradiente altitudinal, alcanzando un mínimo de evapotranspiración del orden de los 9 a 10 mm/día. En el mes de Julio (Figura 16.4) el comportamiento es más homogéno, observando prácticamente en todo el territorio valores del orden de los 3 mm/día, exceptuando el cordón montañoso costero, con valores entre los 3,5 y y 5 mm/día, y el cordón andino, con valores entre 4 y 5,5 mm/día preponderantemente en las exposiciones Norte.

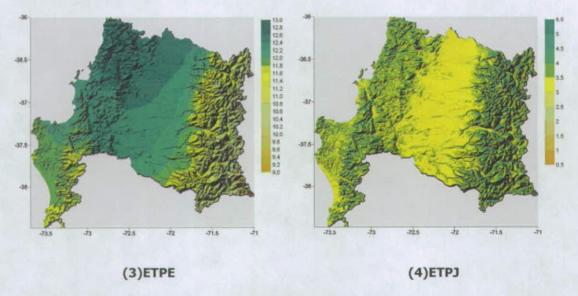


Figura 16. Imagen de radiación solar global de Enero (1) y Julio (2) e imagen de evapotranspiración potencial de Enero (3) y Julio (4) para la Región del Bío-Bío.

Análisis multivariante de datos de clima para generación de distritos agrotopoclimáticos e integración de la cartografía digital climática en un sistema de información geográfico (ArcView).

Introducción

La zonificación agrotopoclimática consiste en la estratificación del territorio en áreas más pequeñas con niveles de homogeneidad conocidos. Su caracterización esta fundamentalmente basada en aspectos físicos, como son el clima y sus factores determinantes (Qiyao et al., 1991). Para que esta zonificación sea relevante fue necesario contar con una cartografía base digital, lo suficientemente simple y general, con el detalle necesario en resolución espacial (1:90.000) de las variables climáticas importantes en la delimitación de zonas agrotopoclimáticas, las cuales fueron presentadas anteriormente.

La caracterización y discriminación climática realizada en este proyecto se llevó a cabo mediante un análisis multivariante del tipo análisis de cluster *k-means*. Este análisis es un método estadístico multivariante de clasificación automática de datos en grupos homogéneos previamente desconocidos.

Metodología

El análisis cluster *k-means* permite obtener grupos de objetos espacialmente distribuidos que, por una parte, al pertenecer al mismo grupo son lo mas semejantes entre si y, por otro lado, los de grupos diferentes se comportan de manera muy distinta respecto de las variables analizadas.

Esta técnica es llamada de tipo exploratorio, debido a que en la mayoría de los casos no se utilizan modelos o patrones estadísticos predeterminados para llevar a cabo el proceso de clasificación. La técnica empleada es considerada adecuada para extraer información desde un conjunto de datos sin imponer restricciones previas en forma de modelos estadísticos, al menos de forma explícita, y debido a ello, es muy útil como una técnica para la elaboración de hipótesis, respecto del funcionamiento y dinámica del problema abordado sin la condicionante previa de utilizar teorías o patrones preestablecidos (Cunillera and Llasat, 1997; Gong and Richman, 1995).

Es importante mencionar que el conocimiento del analista acerca del problema tratado, será fundamental al momento de la interpretación de los resultados, decidiendo la significancia y validez de los mismos en función de parámetros

entregados por la técnica así como su conocimiento previo de la zona geográfica en cuestión.

Esta técnica comienza al establecer las variables y los objetos a clasificar. De forma general la matriz de datos sobre la que se realizan los cálculos se puede escribir de la forma siguiente:

$$\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} & \mathbf{L} & x_{1n} \\ x_{21} & x_{22} & & x_{2n} \\ \mathbf{M} & \mathbf{M} & \mathbf{O} & \mathbf{M} \\ x_{p1} & x_{p2} & \mathbf{L} & x_{pn} \end{bmatrix}$$

La matriz X se conforma entonces por n variables y p observaciones. De esta forma cada objeto a clasificar estará conformado por las n variables agroclimáticas. En este estudio se utilizaron 11 variables que corresponden a cada una de las variables estimadas previamente (Tabla 2). Cada una de estas corresponde en sí misma a una matriz, cuyos datos están distribuidos en el espacio geográfico, conformando una imagen. De esta manera, un objeto es un vector constituido por 11 variables climatológicas que pertenecen a la misma ubicación geográfica o píxel (Figura 17).

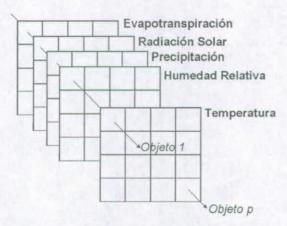


Figura 17. Diagrama de la estructura matricial que posee cada una de las variables agroclimáticas

Para poder crear cada cluster o agrupación se debe por tanto elegir, en un primer paso, cuántos cluster se desean obtener. Dependiendo de esto se construirá un número equivalente de vectores llamados centroides, los cuales se utilizaran como valor central (o medio) del grupo. Así, de cada objeto se medirá su distancia al centroide, lo que indicará si el objeto pertenece o no al grupo que éste representa. De esta forma, al ser menor la distancia establecida entre los objetos y el

centroide, o en otras palabras, al ser los objetos más similares al centroide, el proceso tenderá a agruparlos dentro de un mismo grupo.

Dentro de las mediadas comúnmente utilizadas en estudios de clasificación climática y geofísicos está la distancia Euclidiana, sin embargo para utilizarla las observaciones deben ser estandarizadas de manera de eliminar el efecto de escala producido por la diferencias de escala que presenta cada variable, hecho que influye en el cálculo de la distancia al centroide y por tanto en el resultado final de la clasificación (Gong and Richman, 1995).

Tomando en cuenta que en este estudio las variables a clasificar corresponden a imágenes compuestas por píxeles, la expresión de la distancia Euclideana está dada por:

$$d_{ik} = \left[\sum (X_{in} - C_{kn})^2\right]^{1/2}$$
 Ecuación 7

Donde d_{ik} corresponde a la distancia entre el i-ésimo píxel y el k-ésimo centroide, X_{in} indica el vector $(x_1, x_2, ..., x_n)$ del i-ésimo píxel, C_{kn} indica al vector $(c_1, c_2, ..., c_n)$ del k-ésimo centroide y n es el número de variables agroclimáticas.

El algoritmo comienza entonces calculando la distancia de cada píxel de la imagen a los centroides iniciales, los cuáles son definidos al azar o por el investigador. Los píxeles son asignados de acuerdo a la mínima distancia entre ellos y el centroide. Producto de esto se forman los primeros clusters, que a su vez entregaran un nuevo centroide. Así el algoritmo vuelve a calcular la distancia de cada píxel a cada nuevo centroide para establecer las nuevas agrupaciones según la mínima distancia. Este procedimiento se repite tantas veces hasta que se cumple un criterio de detención (Figura 18).

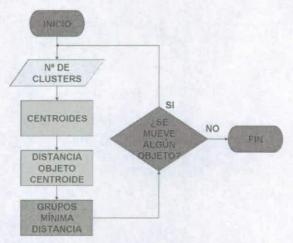


Figura 18. Diagrama de flujo para el algoritmo de cluster.

En esta investigación se realizaron un total de 11 análisis cluster de manera de calibrar los resultados a una distribución espacial y número de zonas previamente conocida, utilizando como referencia el Atlas Agroclimático de Santibáñez y Uribe (1990, 1993). Los parámetros finales utilizados para el análisis cluster de cada región se presentan en la Tabla 7.

Tabla 7. Parámetros utilizados para el análisis cluster de cada región del área de estudio.

Parámetro	Región de Valparaíso y Metropolitana	Región del L. Gral. B. O'Higgins	Región del Maule	Región del Bío-Bío
Normalización de variables	0-300	0-300	0-300	0-300
Nº máximo de clusters	62	40	42	48
Centroide Inicial	Semilla aleatoria	Semilla aleatoria	Semilla aleatoria	Semilla aleatoria
Porcentaje de Migración	10%	10%	10%	10%
Máximo de Iteraciones	15	15	15	15

Además de los parámetros anteriormente considerados, la zonificación fue realizada en dos rangos verticales, desde el nivel del mar hasta los 1500 m.s.n.m y desde los 1500 hasta la altura máxima de la región, esto con el fin de evitar el efecto producido por los accidentes montañosos en la creación de clusters, los cuales tienden a concentrar las agrupaciones producto de la alta variación horizontal y vertical de los elementos climáticos, como temperatura y precipitación. Respecto a esto, Yangcai (1992) realizó una revisión sobre las implicancias que tiene para los estudios agroclimáticos los terrenos montañosos, indicando que las diferencias verticales y horizontales de los elementos climáticos en estas áreas son producto de la altitud, la exposición, configuración cuenca-valle y el tipo vegetacional del paisaje montañoso.

Una vez obtenidos los clusters se aplicaron nueve filtros de forma sucesiva, de tal modo de atenuar el ruido producido en las zonas agroclimáticas adyacentes. Todos los filtros fueron de moda, con un tamaño de kernel progresivo, aplicando tres veces un filtro de 3x3, seguido de tres veces un filtro de 5x5 y posteriormente tres veces un filtro de 7x7.

Resultados

Todas las figuras correspondientes a las zonas agroclimáticas presentan una escala cromática limitada en cuanto a la asignación de colores, observando en algunos casos un mismo color para zonas diferentes.

La Figura 19a muestra la zonificación agroclimática de la Región de Valparaíso y la Región Metropolitana. Es posible observar aquí que dentro de las 33 zonas identificadas hay un grupo de 8 grandes zonas que se distribuyen longitudinalmente. El resto de las zonas se formaron alrededor de los distintos cordones montañosos, hecho que se puede apreciar más claramente en la Figura 19b.

En la Figura 20a se presenta la zonificación agroclimática de la Región del L. Gral. B. O'Higgins con 30 zonas agroclimáticas identificadas. La configuración geográfica de esta región, con menor número de montañas y pendientes más suaves, permite que la mayoría de las zonas identificadas se conformen en las áreas de valle (Figura 20b). La distribución de las zonas obedece tanto a una influencia latitudinal como oceánica, pudiendo ser identificadas 14 grandes zonas. La Tabla 9 muestra los valores del centroide de cada zona agroclimática para esta región.

Los resultados de la Región del Maule se presentan en la Figura 21a, donde se aprecian 38 zonas agoclimáticas. La influencia de las zonas montañosas se aprecia hacia el sector medio y norte del cordón montañoso costero y sobre el cordón andino (Figura 21b). De las 38 zonas configuradas, 5 se encuentran en el Valle Central. El valor de los centroides finales se muestran en la Tabla 10.

La Figura 22a muestra las zonas agroclimáticas de la Región del Bío-Bío. En total se identificaron 39 zonas agroclimáticas de las cuales 7 pertenecen al Valle Central (Figura 22b). La zona costera y andina presenta una concentración de clusters producto de los accidentes montañosos. La Tabla 11 muestra los valores finales de los centroides de cada zona agroclimática configurada en la región.

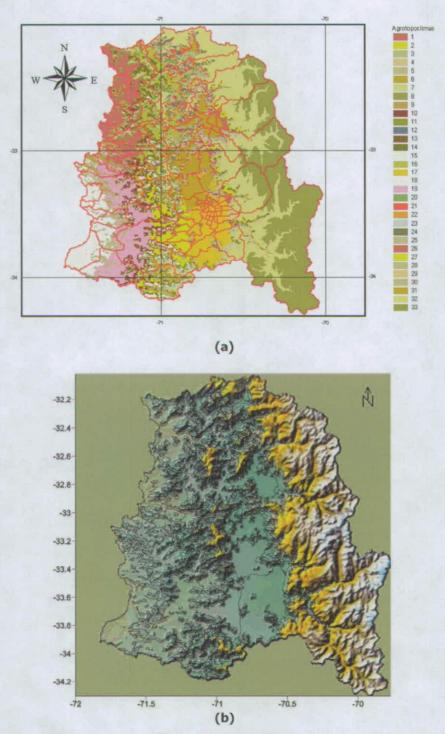


Figura 19. Zonificación agroclimática de la Región de Valparaíso y Región Metropolitana en el plano (a) y sobre el modelo digital de elevaciones (b).

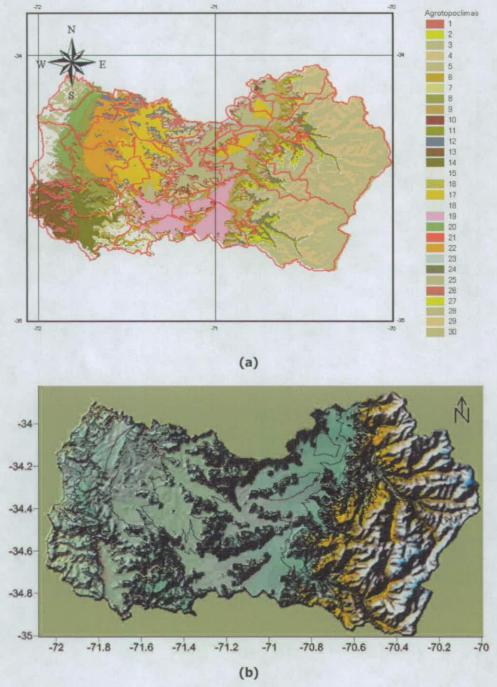


Figura 20. Zonificación agroclimática de la Región del L. Gral. B. O'Higgins en el plano (a) y sobre el modelo digital de elevaciones (b).

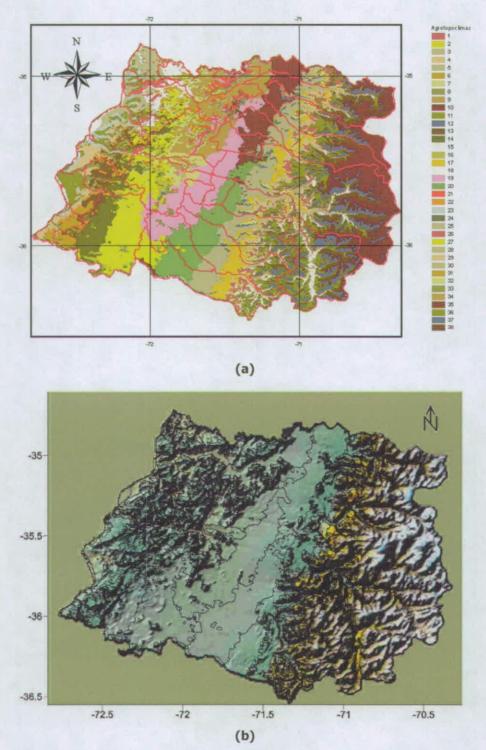


Figura 21. Zonificación agroclimática de la Región del Maule en el plano (a) y sobre el Modelo Digital de Elevaciones (b).

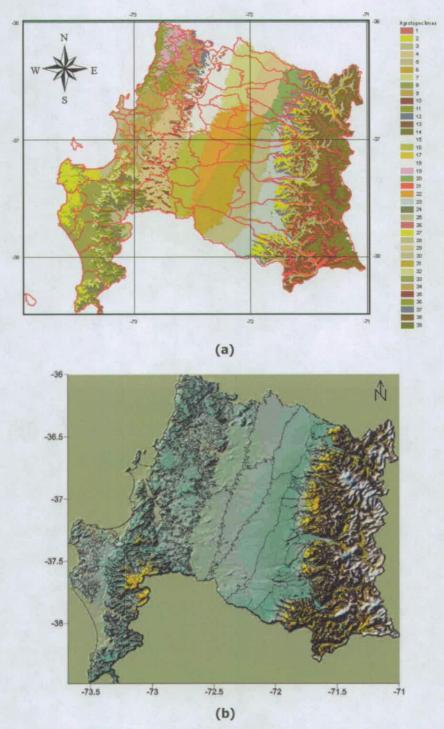


Figura 22. Zonificación agroclimática de la Región del Bío-Bío en el plano (a) y sobre el Modelo Digital de Elevaciones (b).

Tabla 8. Centroides finales de cada zona agroclimatica en la Región de Valparaíso y Metropolitana.

ZONA	ETE	ETJ	HRE	HRJ	RSE	RSJ	PPA	TNE	TNJ	TXE	TXJ
1	12.319	4.130	71.364	82.118	23.759	6.544	334.438	12.069	5.964	26.457	16.716
2	12.327	3.252	52.227	72.136	24.682	5.967	405.496	10.561	3.190	28.333	13.477
3	12.325	4.379	53.386	71.696	24.544	7.895	363.059	10.636	3.518	28.207	13.899
4	12.278	3.892	51.955	75.517	24.570	7.194	500.852	10.449	3.056	28.127	12.013
5	12.350	3.567	72.295	83.911	24.023	5.763	467.031	11.966	6.239	26.260	14.508
6	12.618	3.947	56.490	76.837	24.370	6.710	354.343	11.267	4.151	29.416	15.273
7	12.299	2.938	66.605	79.644	23.904	4.834	333.155	11.728	5.463	27.417	16.064
8	12.395	3.627	68.643	80.325	23.971	5.847	317.172	11.899	5.645	27.046	16.729
9	12.283	4.478	71.664	82.187	23.889	7.205	395.414	11.921	6.175	26.237	15.397
10	12.396	4.458	65.225	82.088	24.001	7.354	434.472	11.612	5.498	27.714	14.272
11	12.332	4.255	59.562	79.671	24.243	7.383	444.014	11.085	4.730	28.043	13.118
12	12.086	2.354	57.251	72.383	24.104	4.189	308.192	10.932	4.221	28.025	14.929
13	12.441	3.365	64.850	82.488	24.071	5.567	433.447	11.668	5.434	27.971	14.445
14	12.226	5.037	65.921	78.519	23.763	8.281	320.732	11.577	5.415	27.319	15.796
15	12.253	3.955	74.862	84.575	23.846	6.317	493.523	12.089	6.507	25.640	14.358
16	12.480	4.144	63.579	78.548	24.072	6.792	306.922	11.652	5.060	28.101	16.468
17	12.703	3.793	56.595	81,383	24.328	6.453	428.541	11.316	4.226	30.041	13.915
18	12.219	4.936	61.840	81.055	23.870	8.383	460.798	11.259	5.084	27.824	13.210
19	12.461	3.960	68.869	83.799	24.040	6.402	457.699	11.907	5.855	27.216	14.617
20	11.902	5.515	58.105	74.011	23.598	9.668	346.508	10.815	4.268	27.583	13.962
21	12.434	3.443	58.788	75.014	24.297	5.877	305.642	11.263	4.491	28.497	15.771
22	12.187	3.443	59.304	79.213	24.347	6.151	448.766	10.852	4.674	27.484	12.452
23	12.042	4.884	54.492	76.409	24.161	8.920	476.829	10.503	3.646	27.460	11.965
24	12.094	2.654	52.318	73.983	24.484	4.975	466.236	10.057	3.076	27.653	12.325
25	12.182	2.313	64.330	80.855	23.767	3.890	398.979	11.564	5.318	27.861	14.703
26	12.409	3.761	53.725	71.540	24.630	6.737	341.511	10.741	3.581	28.513	14.450
27	12.603	3.871	62.271	82.761	24.118	6.382	429.810	11.654	4.991	28.939	14.549
28	12.311	4.694	58.256	73.790	24.142	8.061	309.002	11.088	4.391	28.195	15.280
29	12.287	2.943	56,643	73.209	24.356	5.198	324,543	10.966	4.167	28.305	14.844
30	12.338	2.828	62.096	81.933	24.062	4.804	454.430	11.436	5.131	28.231	13.696
31	8.618	1.375	57.552	74.143	17.350	2.507	413.079	10.904	4.173	25.970	12.774
32	11.514	3.537	47.932	68.619	24.900	7.503	499.789	9.307	0.692	24,435	10.017
33	10.064	2.665	42.823	75.785	25.390	7.432	798.740	7.440	-5.023	15.717	4.411

Tabla 9. Centroides finales de cada zona agroclimatica en la Región del L. Gral. B. O'Higgins

ZONA	ETJ	HRE	HRJ	RSE	RSJ	PPA	TNE	TNJ	TXE	TXJ
1	3.047	59.486	83.263	23.965	5.017	558.219	11.836	4.880	29.332	13.944
2	3.748	52.068	70.405	24.630	6.946	779.229	9.126	3.142	24.332	10.679
3	3.699	59.142	83.155	24.140	6.131	571.791	11.561	4.178	29.163	13.833
4	5.205	59.931	84.166	23.617	8.632	616.079	11.416	5.975	28.670	12.805
5	2.871	54.578	78.072	24.244	5.023	678.667	10.298	4.089	26.834	12.412
6	2.859	61.716	83.509	23.961	4.748	679.495	11.295	5.032	28.413	12.900
7	4.643	61.369	83.653	23.879	7.617	634.339	11.553	5.703	28.675	13.132
8	3.902	64.608	84.470	24.056	6.263	635.996	12.064	5.535	27.347	14.285
9	3.745	56.626	80.597	24.287	6.350	622.385	10.812	4.035	27.875	13.350
10	4.178	59.348	83.531	24.025	6.930	624.388	11.357	4.949	28.762	13.221
11	4.482	55.285	78.760	24.161	7.766	674.227	10.373	4.396	26.944	12.366
12	4.164	60.505	82.090	23.989	6.694	553.083	12.254	5.580	29.018	14.490
13	3.843	73.093	85.000	23.943	6.136	737.203	11.755	5.092	25.599	14.041
14	3.599	66.933	84.730	23.981	5.802	707.639	11.706	4.860	27.483	13.708
15	3.846	63.948	83.350	24.170	6.348	714.382	11.300	5.919	28.246	12.448
16	4.468	51.979	69.967	24.284	8.376	800.112	8.895	2.977	23.730	10.151
17	3.739	60.397	80.922	24.032	6.075	562.322	11.999	4.422	29.212	14.323
18	3.749	77.224	85.000	24.008	5.955	655.266	12.305	5.659	25.381	14.906
19	3.591	59.587	82.866	24.098	5.964	674.267	11.291	4.011	28.750	13.059
20	3.930	71.568	85.000	24.111	6.299	626.390	12.276	6.073	26.516	14.419
21	3.824	53.928	75.889	24.463	6.770	699.546	9.904	4.076	26.018	12.097
22	3.760	60.360	81.710	24.045	6.023	580.039	12.296	5.278	28.197	14.732
23	1.871	58.910	83.157	21,693	3.166	599.917	11.448	5.143	28.914	13.240
24	2.460	46.481	63.734	22.024	4.527	685.240	8.284	2.915	22.009	9.845
25	4.165	77.188	85.000	23.978	6.622	627.011	12.474	5.931	25.850	14.807
26	3.298	72.082	85.000	23.986	5.277	699.757	11.862	5.369	25.978	14.238
27	5.039	53.910	75.963	23,942	9.042	710.151	9.727	4.080	25.639	11.428
28	3.135	39.966	50.217	25.540	8.159	1211.646	5.953	-3.745	11.954	3.813
29	1.839	42.771	55.751	23.917	4.112	963.668	7.430	-0.174	18.437	7.280
30	4.024	45.920	59.678	24.682	8.675	918.310	7.850	0.746	19.988	7.869

Tabla 10. Centroides finales de cada zona agroclimatica en la Región del Maule.

_											
ZONA	ETE	ETJ	HRE	HRJ	RSE	RSJ	PPA	TNE	TNJ	TXE	TXJ
1	12.416	3.240	68,630	87.780	23.940	5.060	593.834	11.789	5.904	27.121	14.478
2	12.382	3.812	65.867	85.037	24.064	6.083	779.535	11.138	5.291	27.257	13.492
3	12.445	3.780	70.731	89.995	23.908	5.793	459.369	12.028	6.380	26.812	15.183
4	12.017	3.870	73.093	88.863	24.086	5.960	732.559	10.948	6.801	24.061	14.490
5	11.319	4.654	53.520	66.492	24.069	8.699	1749.842	8.182	2.978	24.132	8.717
6	12.443	4.228	65.823	85.758	23.937	6.715	692.689	11.450	5.330	27.876	13.802
7	11.769	2.308	56.166	73.025	24.093	4.104	1481.771	9.117	3.567	26.027	10.097
8	12.014	3.253	72.171	87.995	24.068	5.052	775.985	10.899	6.689	24.377	14.233
9	12.709	3.651	61.853	85.530	23.996	5.867	730.415	11.593	4.656	29.730	13.357
10	12.652	3.572	58.691	82.440	24.133	5.926	914.594	11.067	4.182	29.712	12.320
11	12.192	3.647	71.676	89.140	23.996	5.608	614.141	11.482	6.430	25.051	14.689
12	12.265	2.726	58.224	79.263	24.057	4.612	1166.325	10.249	3.929	28.059	11.415
13	12.053	3.654	70.814	86.282	24.205	5.753	870.543	10.600	6.447	24.731	13.773
14	12.211	3.361	67.635	85.248	24.072	5.320	868.289	10.909	5.508	26.005	13.442
15	12.584	3.732	67.013	87.697	23.922	5.818	529.466	12.122	5.526	28.081	14.470
16	12.212	3.904	65.552	83.146	24.142	6.312	946.515	10.534	5.293	26.472	12.857
17	12.074	3.364	57.446	75.809	24.386	5.832	1427.093	9.298	3.873	26.603	10.516
18	11.502	3.504	51.559	63.367	24.662	6.657	1980.572	7.793	2.899	24.183	7.867
19	12.565	3.523	61.832	85.437	24.019	5.662	873.247	11.176	4.502	28.733	12.909
20	12.497	3.441	60.606	84.512	24.053	5.576	1020.967	10.806	4.194	28.466	12.331
21	12.418	4.273	61.584	82.412	23.943	7.020	855.045	10.932	4.618	28.668	12.764
22	11.976	4.187	71.694	86.649	24.133	6.559	878.672	10.553	6.616	24.389	13.866
23	12.153	4.211	72.277	89.185	23.971	6.482	617.827	11.356	6.666	25.081	14.789
24	6.106	0.805	58.369	74.539	12.950	1.500	1297.946	9.748	3.838	25.836	10.857
25	12.393	4.195	69.838	88.627	23.917	6.503	547.437	11.800	6.194	26.864	14.786
26	11.638	3.026	55.206	69.227	24.554	5.556	1666.283	8.421	3.353	24.514	9.281
27	12.392	3.475	64.327	85.064	24.031	5.531	886.588	11.045	4.698	27.280	13.064
28	12.060	4.210	57.646	76.527	24.180	7.291	1288.660	9.633	3.896	26.889	10.890
29	11.691	3.964	55.752	70.365	24.498	7.213	1597.672	8.622	3.440	24.714	9.568
30	12.416	3.465	58.255	80.590	24.196	5.804	1172.133	10.300	3.905	28.370	11.513
31	11.908	3.665	72.088	85.342	24.308	5.793	1036.497	10.127	6.795	23.998	13.428
32	12.591	3.447	63.802	86.371	23.964	5.480	726.732	11.557	4.886	28.749	13.582
33	12.415	2.858	63.231	83.999	23.920	4.623	816.037	11.191	4.838	28.301	13.122
34			52.278		24.366		1960.773	7.786	3.055	24.093	7.988
35			43.089				2238.365	5.342	-0.647	16.368	5.607
36	11.055	3.183	50.197	59.822	25.016	6.420	2111.233	6.868	2.304	21.563	7.104
37			47.572	56.672	23.603		2210.354	6.216	1.430	19.743	6.395
38	10.508	4.260	47.174	56.803	24.617	8.995	2148.674	6.209	1.088	19.682	6.455

Tabla 11. Centroides finales de cada zona agroclimatica en la Región del Bío-Bío.

ZONAS	ETE	ETJ	HRE	HRJ	RSE	RSJ	PPA	TNE	TNJ	TXE	TXJ
1	12.474	3.799	68.891	86.358	24.048	5.946	1267.364	11.324	5.351	27.855	13.023
2	11.836	3.392	80.230	87.793	23.837	5.095	1246.501	11.373	5.851	22.727	13.279
3	12.104	3.181	63.441	85.497	24.149	5.158	1423.749	9.702	3.790	26.029	10.863
4	12.309	3.437	71.586	87.840	24.045	5.325	1375.657	11.217	5.131	26.396	12.732
5	12.179	3.403	74.005	89.350	23.729	5.165	1054.067	11.892	5.629	25.648	13.475
6	9.697	1.405	60.528	76.311	21.432	2.465	2340.178	6.902	4.394	23.032	9.573
7	12.519	3.385	62.341	84.787	24.034	5.432	924.748	11.251	4.266	28.166	12.199
8	11.737	3.263	78.759	89.092	23.836	4.944	1164.861	11.295	5.445	22.946	13.099
9	12.505	3.336	68.868	87.140	23.999	5.181	1136.161	11.606	5.384	27.897	13.209
10	12.231	2.873	71.046	87.175	23.926	4.458	1419.126	11.201	5.169	26.453	12.655
11	12.306	3.622	71.220	87.985	23.713	5.556	1105.980	11.790	5.922	27.501	13.706
12	11.372	2.223	60.377	77.988	23.983	3.789	2020.379	7.761	4.236	24.543	9.958
13	10.879	4.195	58.416	75.221	24.313	7.337	2699.031	5.431	4.312	21.528	8.563
14	11.727	4.274	78.864	86.776	23.991	6.628	1905.833	9.934	5.486	23.514	12.515
15	12.587	3.475	63.054	85.083	24.018	5.531	866.307	11.428	4.552	28.634	12.593
16	12.333	3.279	68.179	88.195	23.972	5.119	1227.903	11.229	4.425	26.557	12.167
17	11.267	4.321	58.864	74.004	24.217	7.511	2340.818	6.921	4.380	23.526	9.606
18	12.522	3.390	65.625	86.587	23.976	5.323	1035.344	11.553	4.683	27.945	12.605
19	12.427	3.521	71.810	86.705	24.204	5.540	1389.642	10.992	5.882	27.822	13.520
20	12.158	3.315	60.295	80.058	24.271	5.500	1346.443	9.571	4.149	26.783	11.099
21	10.500	2.103	57.176	75.398	24.233	3.757	2613.572	4.952	4.282	20.855	8.246
22	12.382	3.297	64.886	86.547	24.027	5.238	1169.341	11.003	4.157	27.157	11.878
23	11.880	3.123	62.337	83.513	24.289	5.167	1656.930	8.670	3.838	25.251	10.306
24	11.750	3.224	79.050	87.358	24.232	5.040	1851.611	9.872	5.366	23.336	12.503
25	11.519	3.386	78.691	86.533	24.359	5.514	2193.617	8.911	5.073	22.933	11.899
26	11.877	3.811	60.138	77.618	24.362	6.439	1746.356	8.523	4.300	25.664	10.544
27	11.584	3.411	60.956	78.966	24.496	5.820	2086.894	7.459	4.147	24.186	9.802
28	12.358	4.269	72.446	86.442	23.964	6.595	1422.276	11.235	6.072	27.336	13.551
29	12.392	3.360	60.620	82.850	24.103	5.453	1010.489	10.599	4.015	27.642	11.641
30	11.101	2.874	58.220	74.776	24.482	5.067	2383.804	6.319	4.250	22.695	9.153
31	12.239	3.221	64.623	86.495	24.051	5.149	1295.722	10.449	3.939	26.511	11.376
32	11.948	3.757	78.198	87.420	24.066	5.735	1621.504	10.670	5.684	23.912	12.923
33	12.304	2.872	72.237	86.759	23.885	4.428	1351.204	11.452	6.010	27.176	13.534
34	12.300	3.548	73.874	87.836	24.016	5.433	1352.883	11.421	5.815	26.250	13.379
35	10.770	3.130	56.556	75.436	24.744	5.590	2523.987	4.871	4.205	20.693	8.194
36	11.702	2.513	78.080	87.029	23.782	3.848	1671.347	10.584	5.603	23.562	12.747
37	12.569	3.557	67.070	86.928	24.008	5.562	1020.530	11.617	5.107	28.302	13.068
38	10.582	3.175	53.237	69.159	24.733	5.871	2823.058	4.823	4.315	20.097	8.164
39	9.653	3.189	47.353	66.044	24.305	6.108	3204.572	2.964	4.371	16.548	6,695

Conclusiones

Se ha construido una zonificación agroclimática para el área de estudio con resultados satisfactorios y del orden de lo esperado.

Estos resultados han sido generados incluyendo la información espacial de las zonas en formato shape (ArcView) junto con la base de datos de los centroides finales asociadas a cada zona.

El comportamiento medio mensual de cada variable climatológica especializada se ajusta al conocimiento climático que se posee.

La influencia de los accidentes montañosos en la fuerte variación horizontal de las variables climáticas quedó evidenciada en los resultados de cada región. Éste aspecto hace recomendar que, si es posible prescindir de las áreas montañosas para el cultivo de Trigo candeal, estas áreas deben ser substraídas de la base de datos en ArcView para posteriores análisis que incluyan el suelo como otro factor de entrada al modelo de rendimiento y calidad del trigo.

Bibliografía

CANESSA, F. 2006. Zonificación de los recursos climáticos de la IV Región, usando imágenes NOAA-AVHRR y topoclimatología. Tesis de Grado. Facultad de Cs. Agronómicas. Universidad de Chile.

CUNILLERA, J. AND M. C. LLASAT. 1997. Application of remote sensing and multivariate analysis to the agroclimatic characterization of a mediterranean region. *Theor. Appl. Climatol.* 57: 197-208.

CHARLES-EDWARDS, D. 1982. Physiological determinants of crop growth. Academic Press. New York. 477pp.

FOTHERINGHAM, A., BRUNDSON, C. y CHARLTON, M. 2000. Quantitative Geography. London. SAGE Publications. 270 pp.

FUSCO L. AND K. MUIRHEAD. 1987. AVHRR Data Services in Europe - The Earthnet Approach, ESA Bulletin(49): 9-19.

GONG, X. AND M. RICHMAN. 1995. On the application of cluster analysis to growing season precipitation data in North America east of the rockies. *J. Climatol.* 8: 897-931.

IHL T., M. 1991. Cambios climáticos y patrones locales de los climas del norte chico usando imágenes NOAA/AVHRR. Tesis (Magíster en Geografía). Santiago, Chile. Universidad de Chile, Facultad de Arquitectura y Urbanismo, 1991. 227p.

MORALES, L; CANESSA, F; MATTAR, C; ORREGO, R; MATUS, F. 2006. Characterization and edafic and climatic zonfication in the Region of Coquimbo, Chile. Journal of soil science and plant nutrition. 6: 52-74.

PEREZ, C. 2004. Técnicas de análisis multivariante de datos, Aplicaciones con SPSS. Madrid, Pearson Educación. 672 pp.

RADOSZ, J. and A. KAMINSKI. 2003. Topoclimatic mapping on 1:50.000 scale. The map sheet of Bytom. *In*: Fifth International Conference on Urban Climate ICUC-5. 1-5 September 2003. Lodz. Poland.

QIYAO, L., Y. JINGMING AND F. BAOPU. 1991. A method of agrotopoclimatic division and its practice in China. *International Journal of Climatology*. 11: 86-96.

SAAVEDRA, N., E. MÜLLER AND J. FOPPIANO. 2002. Monthly mean rainfall frequency model for the central chilean coast: Some climatic inferences. *International Journal of Climatology*. 22: 1495 - 1509.

SANTIBAÑEZ, F. y URIBE, J. 1990. Atlas agroclimático de Chile. Regiones V y Metropolitana. Fondo Nacional de Desarrollo Científico y Tecnológico. 65 pp.

SANTIBAÑEZ, F. y URIBE, J. 1993. Atlas agroclimático de Chile. Regiones Sexta, Séptima, Octava y Noventa. Fondo Nacional de Desarrollo Científico y Tecnológico. 99 pp.

YANGCAI, Z. 1992. Agroclimatic study of mountains regions and its progress in China. *Advances in Atmospheric Science* 9(1): 37-45.

ANEXOS

Anexo 1. Valores para la corrección de imágenes de NDVI

Datos	Uni.	Q- bits	G- min	G- max	Offset	Scale	B- min	B- max	Mask	Shift
NDVI		8	-1	1	10	1	10	210	A	0
Satélite Cenit	degrees	8	0	180	10	1	10	190	В	90
Solar Cenit	degrees	8	0	180	10	1	10	190	В	0
Azimut	degrees	8	0	360	10	1	10	190	В	180
Reflectancia Ch1	%	16	0	100	10	10	10	1010	A	.0
Reflectancia Ch2	%	16	0	100	10	10	10	1010	A	0
Btemp Ch3	Kelvin	16	160	340	10	5.602	10	1018	В	-160
Btemp Ch4	Kelvin	16	160	340	10	5.602	10	1018	В	-160
Btemp Ch5	Kelvin	16	160	340	10	5.602	10	1018	В	-160
Date	Index	8	1	245	10	1	11	255	В	-

Fuente: EROS Center.

Siglas:

Q-bits: Cuantificación en Bits G-min: Mínimo geofísico G-max: Máximo geofísico

B-min: Mínimo binario en el mínimo geofísico B-max: Máximo binario en el máximo geofísico

A: "0" sin datos sobre tierra, "1" océano, "2" interrupción de la proyección Goode's, "3" Angulo solar cenit mayor a 80°.

B: "0" sin datos sobre tierra, "1" océano, "2" interrupción de la proyección Goode's.

Importante es mencionar que se debe tener especial cuidado en el proceso de correción de las imágenes con las mascaras que representan áreas sin información por lo que las mascaras fueron reclasificadas a valores fuera del rango de la variable.

0 - - 999

1 >- 1000

2 > -2000

3→-3000

INFORME PROYECTO:

"Zonificación Por Rendimiento y Calidad del Trigo Candeal entre la RM y La VIII Región"

Distritos Edafoclimáticos entre la RM y VIII Región.

JOSÉ NEIRA R. LUIS MORALES S. FRANCISCO LANG T. GIORGIO CASTELLARO G.

INTRODUCCIÓN

Una zonificación edafoclimática corresponde a la detección de áreas geográficas homogéneas en sus características climáticas y edáficas (Morales *et al*, 2006). Tanto a nivel mundial (Köppen ,1948; Thornthwaite, 1948; Bagnouls y Gaussen, 1957) como a nivel nacional Di Castri y Hayek, 1975; FAO, 1985; Novoa *et al*, 1989; Santibáñez y Uribe, 1993; Amigo y Ramírez, 1998, Morales *et al*, 2006) se han desarrollado diversos métodos de clasificaciones climáticas, cada una distinta en diversos aspectos propios de la generación de estas zonificaciones (Morales *et al*, 2006). Siendo la primera zonificación edafoclimática a escala 1:250000 la realizada por Matus *et al* (2005) por la superposición de mapas de clima y suelo.

En el presente trabajo se muestra una aplicación de zonificación edafoclimática mediante la utilización del método desarrollado por Morales et al (2006).

METODOLOGÍA

Recopilar la información Climática y Edafica cartografica de las Regiones RM a VIII.

Se reunió toda la información generada y recopilada en las etapas anteriores del proyecto, la que se encuentra en forma digital

Corrección de errores cartograficos

Al momento de reunir la información cartografica de los suelos y climas, se obrservó diferencias entre los limites utilizados para delimitar la información regional, por lo cual se prodeció a corregir los errores cartograficos presentes en la información climática.

Para este fin, se utilizó el software Arcview® que permitió solucionar el problema de los limites de la información climática y edafica regional.

Generación de Información Edafoclimatica

Logrado el paso anterior, se procedio al cruce la información cartografica se las series de suelo y de la zonificación climática de las regiones RM a VIII. Este paso se realizó mediente el procedimiento de tabulación Cruzada (CROSSTAB) en el ambiente Arcview®, que consiste en la superposición de las categorías de dos matrices diferentes, de manera de obtener una nueva matriz que contenga la combinación de las categorías de las imágenes originales (Carstensen, 1987: Morales, 2006).

De esta manera se obtuvierón las cartografias de clasificación edafoclimatica de las regiones RM a VIII.

RESULTADOS

La cartografía obtenida se encuentra en el sistema de coordenadas Latitud-Longitud en imágenes vectoriales (software Arcview[®], Figuras 1; 2; 3; 4 y 5)

Figura 1: Mapa de Distritos Edafoclimaticos de la V Región

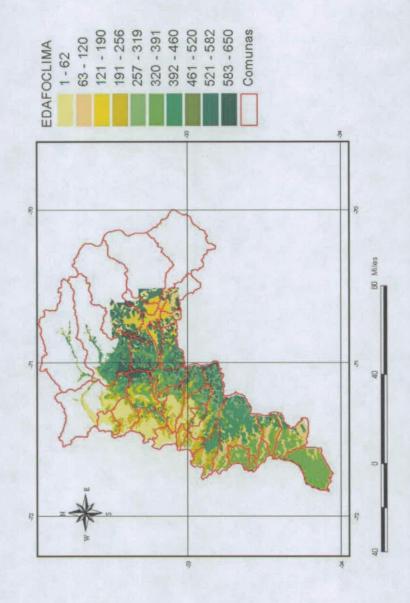
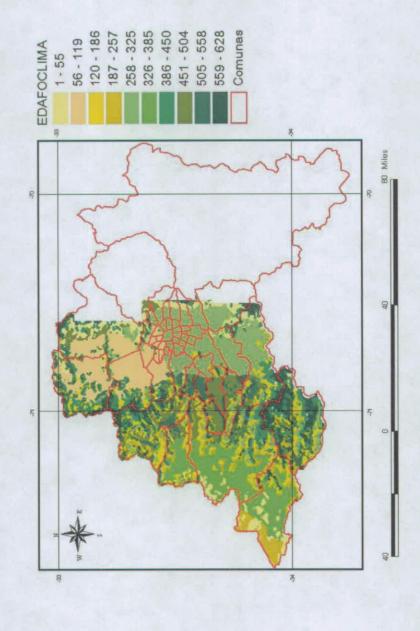
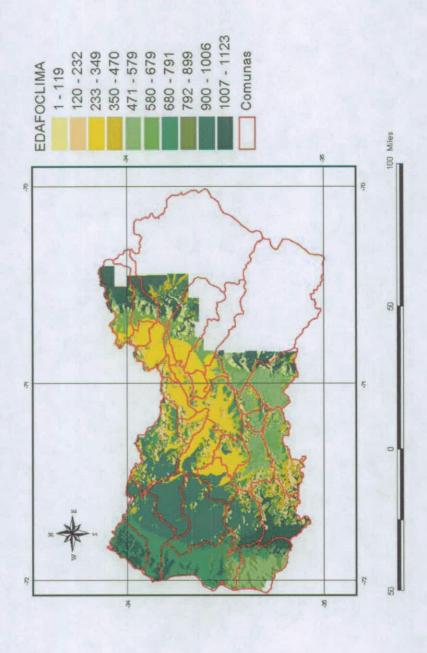
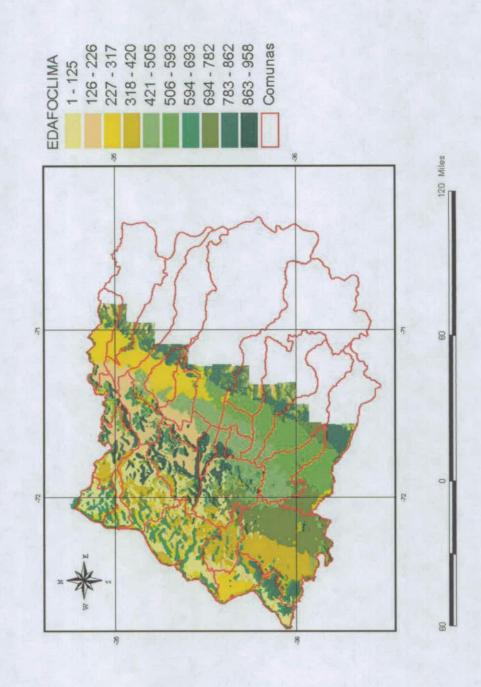


Figura 4: Mapa de Distritos Edafoclimaticos de la Región Metropolitana


Figura 5: Mapa de los Distritos Edafoclimaticos de la VI Región

VII Región

Figura 6: Mapa de los Distritos Edafoclimaticos de la VII Región

BIBLIOGRAFÍA

AMIGO, J y RAMIREZ, C. 1998. A Bioclimatic classification of Chile: woodland communities in the temperate zone. Plant Ecology 136: 9-26.

BAGNOULS, F y GAUSSEN, H. 1957. Les climats biologiques et leur classification. Annales de Géographie 355: 193-220.

CARSTENSEN, L.W., 1987. A Measure of Similarity for Cellular Maps, The American Cartographer, 14, 4, 345-358.

DI CASTRI, F y HAJEK, G. 1961. Índices pluviométricos para una clasificación del país en zonas bioclimáticas. En: CONVENCION NACIONAL de médicos veterinarios (4º, 1961, Santiago, Chile), Santiago, Chile.

FAO. 1985. Datos agroclimatológicos para América latina y el caribe. Colección FAO, Producción y Protección vegetal Nº 24, Roma, Italia.

KOEPPEN, W. 1948. Climatología. México. Fondo de cultura económica. 478 p.

MATUS, F.; RODRÍGUEZ, J.; PINOCHET, D. 2005. Soil Fertility; a rational method of interpretation. Workshop of 9th International Symposium of soil and plant analysis, Enero 30 -Febrero 4, Cancún, Mexico,89 p.

MORALES S, Luis, CANESSA M, Fabricio, MATTAR, Cristian, ORREGO, Raúl, MATUS, Francisco. CARACTERIZACIÓN Y ZONIFICACIÓN EDÁFICA Y CLIMÁTICA DE LA REGIÓN DE COQUIMBO, CHILE. R.C. Suelo Nutr. Veg., 2006, vol.6, no.3, p.52-74. ISSN 0718-2791.

NOVOA S. A., R.; VILLASECA C., S.; DEL CANTO S., P; ROUANET M., J. L.; SIERRA B. C; DEL POZO L. A., 1989. Mapa Agroclimático de Chile. 60pp.

SANTIBAÑEZ, F Y URBIE, J. Atlas agroclimático de Chile: Regiones IV a IX. Universidad de Chile, Santiago, Chile.1993. 64 pp.

THORNTHWAITE, C. 1948. An approach toward a rational clasification of the climate. The Geographical Review. 38 (1): 55-94.

INFORME PROYECTO:

"Zonificación Por Rendimiento y Calidad del Trigo Candeal entre la RM y La VIII Región"

Recopilar y sistematizar información de ensayos de trigo candeal en el área de estudio

> Paola Silva C. Juliette Kolopp Edmundo Acevedo H.

Recopilar y sistematizar información de ensayos de trigo candeal en el área de estudio

TRIGO CANDEAL: ¿DONDE CULTIVAR PARA TENER UNA MEJOR CALIDAD? P. Silva, J. Kolopp y E. Acevedo.

Laboratorio de Relación Suelo-Agua-Planta. Facultad de Ciencias Agronómicas. Universidad de Chile. Casilla 1004. Santiago. Chile. psilva@uchile.cl; eacevedo@uchile.cl

RESUMEN

Una buena cosecha de trigo candeal se define por su rendimiento y por su calidad para producción de pastas. La calidad de las pastas depende mucho de la calidad del grano de trigo. Chile esta desarrollando este cultivo y para mejorarlo es importante conocer cuales son las mejores áreas para su cultivo. En este trabajo se realizó una zonificación del país a partir de información proporcionada por la empresa LUCCHETTI. Fue posible identificar los mejores sitios de cultivo, correlacionar los parámetros de calidad y establecer cuales son los parámetros del medio ambiente que influyen sobre ellos. El medio ambiente influyó sobre la calidad pero el suelo, el manejo agronómico y el nivel tecnológico también tienen un peso en la calidad del grano. La Región Metropolitana y la Octava Región fueron identificadas como áreas con mejor potencial para producir trigo candeal de alta calidad.

INTRODUCCIÓN

El trigo candeal sirve para hacer pastas, bourghul, couscous y en algunos países pan. Estos productos tienen bajo nivel de transformación por lo que su calidad depende mucho de la calidad del grano de trigo. Las pastas, bourghul y couscous necesitan la misma calidad de grano (Peña y Wolfgang, 2006) por lo que es fácil establecer normas comunes de calidad.

La calidad del trigo candeal es un parámetro de gran importancia para su utilización. Por lo tanto, para que Chile pueda exportar grano de trigo candeal, como Europa, necesita mejorar su calidad y cumplir con normas más exigentes (Peña y Wolfgang, 2006). En el país, las dos empresas más grandes de producción de pastas son LUCCHETTI y CAROZZI. Ellas tienen exigencias comerciales que incluyen la calidad para aceptar una cosecha de trigo. Por otra parte, el trigo candeal es más sensible que el trigo harinero a fusariosis, brotación del grano en pie, frío, exceso de agua, sequía temprana y enfermedades de las raíces pero más resistente a la sequía tardía (comunicación personal con ARVALIS, www.arvalisinstitutduvegetal.fr). El trigo candeal, por otra parte, tiene un rendimiento potencial mayor (Marque et al., 2004) o igual que el trigo harinero (Sayre, 1996).

El objetivo de este estudio fue realizar una zonificación de Chile que identifique zonas favorables para la obtención de trigo candeal de alta calidad y asociar los parámetros del medio ambiente con la calidad.

MATERIALES Y MÉTODOS

Selección de sitios

En este trabajo se dispuso de datos de calidad de siembras comerciales de trigo proporcionados por la empresa LUCCHETTI, 100 sitios a lo largo de Chile desde el año 2003 hasta 2006 (Cuadros 1, 2 y 3). No todos los sitios se repitieron todos los años. No había información sobre el o los genotipos cultivados, sin embargo, la variedad Llareta ocupa alrededor de 90% de la superficie de trigo candeal en Chile (estimación hecha por Iván Matus Director Nacional del programa de fitomejoramiento en trigo candeal de Chile), por lo que se supuso que todo el trigo candeal era de dicha variedad.

Cuadro1. Número de sitios por temporada.

Temporada	Número de sitios
2005-06	52
2004-05	61
2003-04	52
2002-03	59

Cuadro 2 Número de años por sitio.

Años	Número de sitios				
1	35				
2	26				
3	21				
4	18				
Total	100				

Cuadro 3. Número de sitios por región.

Región	Número de sitios					
III	3					
IV	1					
V	6					
RM	25					
VI	22					
VII	15					
VIII	21					
IX	6					
X	1					
Total	100					

El primer paso, antes de realizar el análisis, fue homogeneizar la información. Eso se realizó con dos criterios:

- Se consideraron sitios que tuviesen datos por más de 2 años.
- Se eligió sitios sin interacción con el factor año, así en el análisis se pudo utilizar los años como repeticiones (Annicchiarico, 2002). Para evaluar si existía una evidente interacción año x sitio se hizo un análisis de componentes principales con los sitios y los años, utilizando todos los parámetros de calidad. Si los distintos años de un mismo sitio se encontraron juntos en el biplot de los dos primeros componentes principales, se consideró que dicho sitio no presentaba interacción con los años, es decir, para cualquier año la calidad de ese sitio era similar. Si los puntos estaban alejados, dicho sitio tenia interacción con los años es decir, el año influía sobre la calidad y ese tipo de sitio no se consideró en los análisis posteriores.

Con estos criterios se seleccionaron 26 sitios que abarcaron de la Quinta hasta la Octava Región, en que la mayor parte del trigo candeal es producido bajo riego.

Parámetros de calidad

Se trabajó con 8 parámetros de calidad, peso específico (peso del hectolitro de grano), proteínas, vitreosidad, humedad del grano, punta negra, granos helados e inmaduros, granos partidos y chupados y granos brotados. En la zonificación por calidad los tres primeros parámetros deben maximizarse y los cuatro siguientes deben minimizarse.

Análisis

Se calculó el **promedio y desviación estándar** de cada parámetro por sitio y por año. Para obtener una clasificación de las localidades por calidad, se usaron los siguientes criterios:

- Índice de calidad para cada localidad. Para hacer este índice, las localidades se ordenaron en un ranking para cada parámetro. Para los parámetros que se maximizaron, como peso específico, proteína y vitreosidad, el mejor valor tuvo nota 1 y la calidad fue decreciendo en la medida que aumentaba el valor. Para los parámetros

que se minimizaron, como punta negra, granos chupados, helados e inmaduros y granos brotados, la inexistencia de estos problemas tuvo nota 1. Posteriormente se obtuvo un promedio de las notas para cada localidad. También se usó coeficientes para dar más peso a los parámetros más importantes como la proteína, la punta negra, la vitreosidad. Los sitios con el menor valor de índice ambiental fueron los mejores.

- Análisis de componentes principales (ACP). Esta es una técnica estadística de síntesis de la información, o reducción de la dimensión (número de variables). Es decir, en un grupo de datos con muchas variables, el objetivo es reducirlas a un menor número perdiendo la menor cantidad de información posible a través de la generación de componentes principales. Los componentes principales o factores son una combinación lineal de las variables originales (Crossa, 1990). Este análisis permitió observar las variaciones de calidad entre las localidades, la asociación entre parámetros, e identificar grupos de calidad para hacer una zonificación.
- Partial least square regression. Este análisis asocia sitios con los parámetros de calidad y de medio ambiente. Este análisis extrae la variación principal entre dos planillas de datos de los mismos sitios, una con los parámetros de calidad del grano y otra con los parámetros de clima de cada sitio (Reynolds et al., 2004).

Los datos fueron analizados con el programa INFOSTAT y para el análisis de Partial Least Square Regression se usó el programa SAS.

RESULTADOS Y DISCUSIÓN

En Chile la norma del Instituto Nacional de Normalización (INN), ordena la calidad del trigo en 6 grados (Cuadro 4), además, cada empresa tiene criterios propios de aceptación (Cuadro 5).

Cuadro 4. Normas de calidad del trigo candeal del INN (NCh 1319 f1977) (INN, 1977).

	Requisito			Gra	dos		
		1	2	3	4	5	6
	Peso del hectolitro, kg/hL, mínimo	81	80	80	79	79	78
<u></u>	Granos blanqueados	5	10	20	30	40	50
Defectos y aneraciones, % del máximo	Suma de : granos con germen roído, granos dañados por hongos y/o bacterias, granos picados	0	0	0	0,1	0,1	0.3
Suma d	Suma de : granos helados, granos inmaduros o verdes	0,5	1	3	5	7	9
máximo	Punta negra	1	1,5	2	2,5	3	4
s F	Granos brotados	0	0,5	1	1,5	2	3
SOL	Granos partidos y/o quebrados	1	2	3	4	5	6
ם ח	Granos chupados y delgados	0,5	1	2	4	7	14
2	Granos dañados por calor	0	0,1	0,2	0,5	1	3
	Materias extrañas, % m/m, máximo	0,5	0,5	1	2	3	4
	Granos extraños, % m/m, máximo	1	1,5	2	3	4	5
	Trigo de otra especies, % m/m, máximo	0,5	1	1,5	2	3	4
	Humedad, %, máximo			14	4		

Cuadro 5. Requerimientos de calidad de trigo candeal para pasta de la empresa LUCCHETTI, año 2006.

Parámetros		
Peso Hectolitro (kg / hL)	Mínimo	78
Vitreosidad (%)	Mínimo	50
Impurezas (%)	Máximo	5
G. Partidos y Chupados (%)	Máximo	10
Humedad del grano (%)	Máximo	14,5
Punta Negra (%)	Máximo	4-8
G. Brotados (%)	Máximo	3,5
Helados y Inmaduros (%)	Máximo	2
G. otras especies (%)	Máximo	8
Gluten húmedo (%)	Mínimo	27
Gluten seco (%)	Mínimo	9
Gluten Index (%)	Entre	45-80
Proteínas (%)	Mínimo	10
Color L	Mínimo	88
Color a	Máximo	-2,6
Color b	Mínimo	19
Falling number (s)	Mínimo	350
Peso 1000 granos (kg)	Mínimo	52

A partir de la información analizada (Cuadro 6) se observa que el peso específico es siempre alto y además muy estable por lo que no es útil para expresar variación en calidad. La vitreosidad también fue un parámetro alto y muy estable.

Cuadro 6. Medias y desviaciones estándares de los parámetros de calidad separados por año.

Temporada	Peso Hectolitro (kg/hL)	Proteinas (%)	Vitreosidad (%)	Humedad (%)	Punta Negra (%)
2002-03 ¹	84,7 ± 0,8	10,2 ± 0,9	92,2 ± 1,6	12,1 ± 5,5	$3,0 \pm 0,6$
2003-04 ²	85,2 ± 0,7	$9,9 \pm 0,9$	94,1 ± 1,5	11,4 ± 5,5	$3,3 \pm 0,6$
2004-05 ³	85,1 ± 1,0	$10,5 \pm 0,7$	93,6 ± 1,2	11,5 ± 4,0	$2,7 \pm 0,6$
2005-064	84,9 ± 0,6	10,8 ± 0,7	91,1 ± 1,5	12,3 ± 4,0	$2,8 \pm 0,4$

Cuadro 6. Continuación.

Temporada	G. Partidos Chupados (%)	Helados e Inmaduros (%)	Granos Brotados (%)	Gluten Húmedo (%)	Gluten Index	Gluten Seco (%)
2002-03 ¹	3,9 ± 1,8	0,3 ± 0,2	0.7 ± 0.4	sd	sd	sd
2003-04 ²	3,6 ± 1,5	0.3 ± 0.3	0.5 ± 0.4	sd	sd	sd
2004-05 ³	$3,7 \pm 1,2$	$0,2 \pm 0,2$	0.3 ± 0.2	23,5 ± 11,2	41,0 ± 19,5	7.8 ± 3.7
2005-064	3,9 ± 1,4	0.3 ± 0.2	$0,4 \pm 0,2$	28,3 ± 3,5	56,9 ± 17,2	9,6 ± 1,2

¹ promedios calculados sobre 59 sitios por la temporada 2002-03. ² promedios calculados sobre 52 sitios por la temporada 2003-04.

⁴ promedios calculados sobre 52 sitios por la temporada 2005-06.

promedios calculados sobre 61 sitios por la temporada 2004-05.

Del grano de trigo candeal se extrae sémola y harina. Una vitreosidad alta significa un buen rendimiento en sémola, ingrediente básico para hacer pastas. El promedio para trigo candeal es un rendimiento de 67-70% de sémola y 5-12% de harina (Peña y Wolfgang, 2006). El análisis muestra que vitreosidad y proteínas presentaron valores aceptados por la empresa. Sin embargo, el contenido de proteínas esta en el límite inferior de 10%. Este parámetro es uno de los más importantes para la elaboración de pastas (Panozzo y Eagles, 2000), por lo tanto, su valor debe aumentarse. En Europa, el mínimo aceptado es de 13-14% (ITCF, 1996), por lo tanto, si Chile quiere exportar su producción de grano de trigo tiene que aumentar el contenido de proteína en el grano. Para aumentar proteína y vitreosidad, a nivel nacional la recomendación ha sido utilizar altas dosis de fertilizante nitrogenado (Ramírez, 2001), sin embargo, también se recomienda usar variedades adecuadas (Elouafi et al., 2000, Porceddu et al., 1998) y rotaciones con leguminosas (Amri et al., 1999).

Los valores de humedad son inferiores a 14%, lo que es positivo, pero una humedad del grano demasiado baja es también un problema porque los granos son más débiles y se rompen durante la cosecha, aumentando el porcentaje de granos partidos y eso disminuye el rendimiento de semolina. Por tal motivo en Europa, la humedad exijida es mayor a 13% y menor a 14,5% (ITCF, 1996).

Los parámetros granos partidos, chupados y punta negra están dentro de los valores de calidad de la empresa, como así mismo granos helados e inmaduros y granos brotados, pero sus valores tienen una variación demasiado alta dentro de cada año. No son parámetros estables. Incluso, la variación puede ser mayor a la media. Una debilidad de este conjunto de datos es que falta información de gluten húmedo, gluten seco y gluten index. Estos parámetros son muy importantes porque entregan información sobre la textura que va a tener la masa de la pasta. En este trabajo, no se pudo considerar estos parámetros porque no se dispuso de suficiente información, sin embargo la limitada información disponible mostró valores aparentemente poco estables con el año.

Índice de calidad

En el Cuadro 7 aparecen 3 tablas con los resultados de los índices de calidad para cada localidad. Las localidades están ordenadas de mejor a peor índice. La primera tabla presenta los índices sin coeficientes y la segunda y tercera tabla presentan índices con distintos coeficientes para los parámetros.

Las tres clasificaciones tuvieron un ranking similar. En negrita se destacan los mejores sitios, con un simple promedio o con diferentes coeficientes. Los sitios con buena calidad fueron Pudahuel, siempre primero, Talagante, Peñaflor, Maipú, Melipilla y Curacaví de la Región Metropolitana, El Carmen, Yungay, San Carlos, Bulnes y Chillán de la Octava Región.

Los peores sitios fueron Codegua en la Sexta Región, siempre ultimo, San Antonio en la Quinta Región, Teno y San Clemente de la Séptima Región, El Monte de la Región Metropolitana, Chimbarongo, San Fernando y Nancagua de la Sexta Región

Los sitios con calidad neutra fueron Hospital, Paine y María Pinto de la Región Metropolitana, San Vicente de Tagua Tagua, Palmilla y Pichidegua de la Sexta Región y Calle Larga de la Quinta Región.

Cuadro 7: Índice de calidad de los 26 sitios sin coeficiente, o con dos coeficientes.

Sin coeficientes	Índice calidad	Con coeficientes 1	Indice calidad	Con coeficientes ²	Índice
Pudahuel	6,57	Pudahuel	4,10	Pudahuel	4,85
El Carmen	6,86	Bulnes	6,80	Maipú	6,30
Talagante	7,29	Peñaflor	7,35	Peñaflor	6,80
Yungay	7,71	Maipú	7,45	Yungay	7,60
Peñaflor	8,86	Yungay	8,15	Bulnes	8,00
San Carlos	9,29	El Carmen	8,15	El Carmen	8,60
Bulnes	9,71	Melipilla	8,50	Talagante	8,85
Chillán	10,57	Talagante	8,60	Melipilla	9,80
Maipú	10,86	Paine	10,65	Curacaví	10,00
Melipilla	11,43	Curacaví	10,65	Chillán	10,65
Curacaví	12,71	Chillán	10,90	Paine	10,80
Paine	12,86	Hospital	11,90	Calle Larga	11,70
Hospital	13,00	Calle Larga	12,75	Hospital	12,40
Sn Vte T-Tagua	13,57	María Pinto	13,10	San Carlos	12,80
Palmilla	13,86	San Carlos	13,65	María Pinto	14,55
Pichidegua	14,43	Pichidegua	14,45	Pichidegua	15,00
María Pinto	14,57	Nancagua	16,85	Palmilla	15,25
Calle Larga	16,00	Palmilla	17,25	Nancagua	16,25
El Monte	17,43	Sn Vte T-Tagua	17,70	Sn Vte T-Tagua	18,30
San Clemente	18,00	Teno	17,80	Teno	18,80
San Fernando	18,43	Chimbarongo	19,70	San Clemente	19,55
Teno	18,71	San Antonio	19,75	Chimbarongo	20,05
Nancagua	19,00	San Clemente	20,10	San Antonio	20,05
Chimbarongo	19,00	El Monte	20,45	El Monte	20,45
San Antonio	19,00	San Fernando	21,60	San Fernando	21,00
Codegua	21,29	Codegua	22,65	Codegua	22,60

Peso Específico=15%, Proteínas=35%, Punta Negra=10%, Vitreosidad=25%, Granos Chupados=5%, Helados e Inmaduros=5%, Granos Brotados=5%.

Análisis de componentes principales

El análisis de componentes principales permitió visualizar en un biplot la asociación de los parámetros de calidad con los sitios (Figura 1). En la Figura 1 aparecen dos ejes de calidad, el primero explica 32,9% de la variación y el segundo explica 27,3%. En el cuadrante inferior izquierdo, hay dos parámetros, granos helados e inmaduros y granos brotados que se desean minimizar y en el sentido contrario están los parámetros proteínas y vitreosidad, que se desean maximizar. Los sitios que están en el sentido de proteínas y vitreosidad tienen una mejor calidad que los otros sitios. Una situación similar se observa con el eje perpendicular a este primer eje. En el cuadrante inferior derecho está el parámetro peso específico que se desea

Peso Específico=10%, Proteínas=35%, Punta Negra=20%, Vitreosidad=20%, Granos Chupados=5%, Helados e Inmaduros=5%, Granos Brotados=5%.

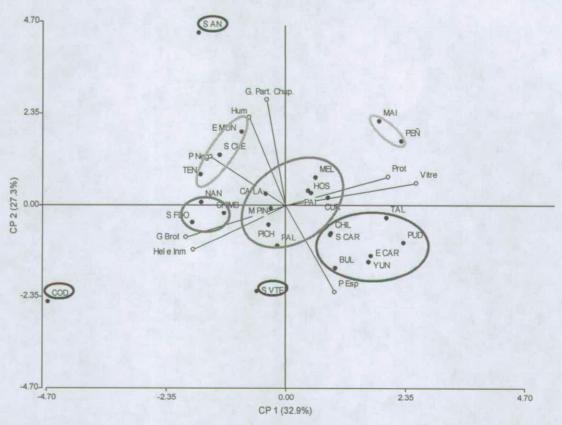


Figura 1. Análisis de componentes principales de calidad con los promedios por localidad.

Parámetros de calidad: G Brot: granos brotados, Part Chup: granos partidos y chupados, Hel Inm: helados e inmaduros, Hum: humedad, P Esp: peso específico, Prot: proteínas, P Neg: punta negra, Vitre: vitreosidad. Localidades: BUL: Bulnes, CALA: Calle Larga, CHIL: Chillán, CHIMB: Chimbarongo, COD: Codegua, CUR: Curacaví, ECAR: El Carmen, EMON: El Monte, HOS: Hospital, MAI: Maipú, MEL: Melipilla, MPIN: María Pinto, NAN: Nancagua, PAI: Paine, PAL: Palmilla, PEÑ: Peñaflor, PICH: Pichidegua, PUD: Pudahuel, SAN: San Antonio, SCAR: San Carlos, SCLE: San Clemente, SFDO: San Fernando, SVTE: San Vicente de Tagua Tagua, TAL: Talagante, TEN: Teno, YUN: Yungay.

maximizar y en el sentido contrario está punta negra y granos partidos que hay que minimizar. San Antonio se asocia a un menor peso específico, sin embargo su valor es aceptable. El promedio general de este parámetro es de 84,96 kg/hL, con una variación muy baja (DE= ±0,57). Se observa una mayor variación producto del primer eje, que del segundo. Esta clasificación de calidad es relativa porque los puntos que pueden parecer de mala calidad están también dentro de las exigencias de la empresa. La calidad cambia entre estos sitios, pero siempre dentro de valores aceptables por la empresa.

Dentro de los 26 sitios hay tres sitios que aparecen aislados: San Antonio, Codegua y San Vicente de Tagua Tagua. San Antonio tiene una humedad de grano alta, Codegua tiene baja proteína y vitreosidad, pero al mismo tiempo más granos brotados y granos helados e inmaduros. Con los otros sitios se pueden hacer grupos de calidad homogénea, destacando los siguientes cincos grupos:

 Yungay, Bulnes, El Carmen, Chillán, San Carlos en la Octava Región, con Talagante y Pudahuel de la Región Metropolitana, con alto peso específico, alta proteína y alta vitreosidad,

- Maipú y Peñaflor con mayor porcentaje de proteínas y vitrosidad, posiblemente debido a que es un área regada con el agua del río Mapocho (rica en nitratos),
- Nancagua, San Fernando y Chimbarongo, de menor calidad,
- Hospital, Paine, Melipilla, Curacaví, Calle Larga, María Pinto, Pichidegua, Palmilla forma el grupo del centro del biplot, sin características particulares,
- El Monte, San Clemente y Teno tienen mucha humedad y punta negra,
- San Antonio corresponde al único sitio en la costa.

Los análisis con el índice de calidad y el análisis de componentes principales entregaron los mismos grupos de calidad.

Influencia del clima

El clima, suelo (Smith y Gooding, 1999), el nivel tecnológico, la fertilización y el riego influyen en la calidad del grano de trigo candeal. Los datos de LUCCHETTI no tienen información sobre el clima por lo que se trabajó con datos climáticos obtenidos de otro estudio (Universidad de Chile, 2005).

En la Figura 2, los simbolos corresponden a los grupos de calidad de la Figura 1. San Antonio nuevamente aparece como un sitio aislado, dada su ubicación costera. Al contrario, las otras localidades aisladas en el análisis de componentes principales para calidad (Figura 1), Codegua y San Vicente de Tagua Tagua, aparecen con otras localidades como Paine o Pudahuel. La calidad homogénea determinada en la figura 1 no se agrupó en la figura 2, por lo que el clima y la ubicación geográfica explican solamente una parte de la variación en calidad. Este análisis no asoció los parámetros de clima utilizados con los grupos de calidad, probablemente debido a que la información de clima no fue lo suficientemente específica.

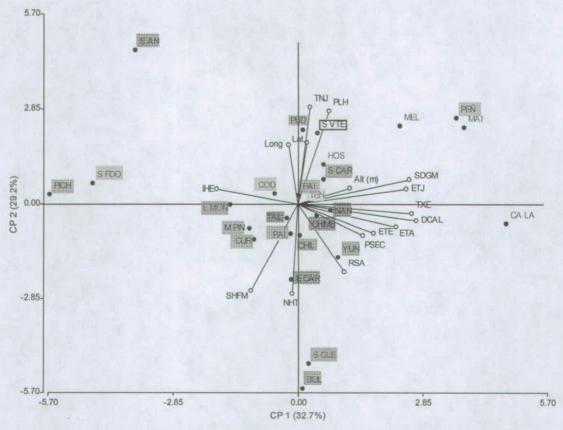


Figura 2. Análisis de componentes principales para calidad, sitios, clima y ubicación. Localidades: BUL: Bulnes, CALA: Calle Larga, CHIL: Chillán, CHIMB: Chimbarongo, COD: Codegua, CUR: Curacaví, ECAR: El Carmen, EMON: El Monte, HOS: Hospital, MAI: Maipú, MEL: Melipilla, MPIN: María Pinto, NAN: Nancagua, PAI: Paine, PAL: Palmilla, PEÑ: Peñaflor, PICH: Pichidegua, PUD: Pudahuel, SAN: San Antonio, SCAR: San Carlos, SCLE: San Clemente, SFDO: San Fernando, SVTE: San Vincente de Tagua Tagua, TAL: Talagante, TEN: Teno, YUN: Yungay. Parámetros climáticos y ubicación geográfica: ALT: altitud (m), DCAL: numero de días de calor, DEFH: déficit hídrico, ETA: evapotranspiración anual, ETE: evapotranspiración en enero, ETJ: evapotranspiración en julio, EXCH: excedente hídrico, IHE índice de humedad estival (media (Iluvia)/ET durante los tres meses los mas calidos del año), LAT: latitud, LONG: longitud, NHT: número de heladas total, PHUM: numero de meses húmedos (Pm/Etm >0,5), PLH: periodo libre de helado, PPA: precipitación anual, PSEC: numero de meses secos (Pm/Etm < 0,5), RSA: radiación sola anual, SDGM: suma diaria de grados por mes (T>10°C), SHFM: suma de horas de frió mensual (T<7°C), TNJ: temperatura mínima del mes el más frió (julio), TXE: temperatura máxima del mes el más calido (enero).

Relaciones entre los parámetros de calidad, los parámetros de clima y ubicación geográfica

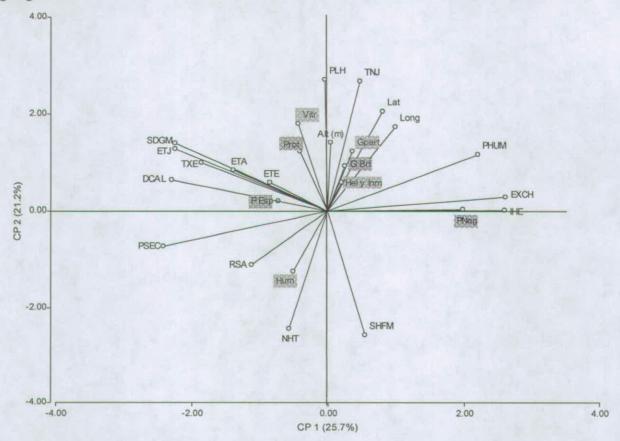


Figura 3. Análisis de componentes principales de los parámetros de calidad, clima y ubicación geográfica. Parámetros de calidad (●) y parámetros del medio ambiente (○).

Parámetros de calidad: G Brot: granos brotados, Part Chup: granos partidos y chupados, Hel Inm: helados e inmaduros, Hum: humedad, P Esp: peso específico, Prot: protéinas, P Neg: punta negra, Vitre: vitreosidad.

Parámetros del medio ambiente: ALT: altitud (m), DCAL: numero de días de calor, DEFH: déficit hídrico, ETA: evapotranspiración anual, ETE: evapotranspiración en enero, ETJ: evapotranspiración en julio, EXCH: excedente hídrico, IHE índice de humedad estival (media (lluvia)/ET durante los tres meses los mas calidos del año), LAT: latitud, LONG: longitud, NHT: numero de heladas total, PHUM: numero de meses húmedos (Pm/Etm >0,5), PLH: periodo libre de helado, PPA: precipitación anual, PSEC: número de meses secos (Pm/Etm < 0,5), RSA: radiación solar anual, SDGM: suma diaria de grados por mes (T>10°C), SHFM: suma de horas de frió mensual (T<7°C), TNJ: temperatura mínima del mes el más frió (julio), TXE: temperatura máxima del mes el más calido (enero).

En la Figura 3 aparecen los parámetros de calidad correlacionados con los parámetros de descripción del clima y de ubicación geográfica. El eje del componente principal 1 aparece como el eje de humedad del medio ambiente, con la sequía en el lado de los valores negativos y la humedad en el lado de los valores positivos. El eje del componente principal 2 corresponde al calor. Las temperaturas altas como valores positivos y las temperaturas bajas como los valores negativos. Los sitios del cuadrante superior izquierdo tienen la mejor calidad porque es el cuadrante de los parámetros que se quieren maximizar. Este cuadrante corresponde a medio ambientes secos y más calidos.

El parámetro punta negra esta correlacionado al parámetro índice de humedad estival. En efecto, punta negra, asociado con *Alternaria spp* y *Cochliobolus sativus*, se encuentra en los medios ambientes más fríos y húmedos, que tienen heladas durante el desarrollo del grano (Fernández *et al.*, 2000).

Los parámetros de proteínas y vitreosidad aparecen correlacionados con las altas temperaturas, lo que coincide con lo señalado por Panozzo y Eagles (2000), donde las altas temperaturas y el estrés terminal durante el período de llenado de grano mejoran el contenido de proteína y la vitreosidad del grano.

Partial Least Square Regression

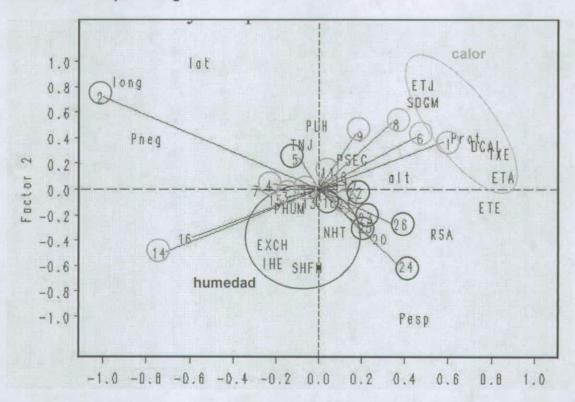


Figura 4. Asociación de los sitios de calidad homógenea con parámetros de calidad y parámetros del medio ambiente.

Sitio con granos brotados y helados (\square), sitio con alto porcentaje de punta negra y humedad de grano (\blacksquare), sitio de alta proteína (\bullet), sitio de alta proteína, alto peso específico y alta vitrosidad (\triangle), San Antonio (*), San Vicente de Tagua Tagua (*) y Codegua (+).

Parámetros de calidad: Pesp: Peso específico (kg/hL), Prot: Proteínas(%), Pneg: Punta negra.

Parámetros del medio ambiente: ALT: altitud (m), DCAL: numero de días de calor, ETA: evapotranspiración anual, ETE: evapotranspiración en enero, ETJ: evapotranspiración en julio, EXCH: excedente hídrico, IHE índice de humedad estival (media (Iluvia)/ET durante los tres meses los mas calidos del año), LAT: latitud, LONG: longitud, NHT: numero de heladas total, PHUM: numero de meses húmedos (Pm/Etm >0,5), PLH: periodo libre de helado, PSEC: número de meses secos (Pm/Etm < 0,5), RSA: radiación solar anual, SDGM: suma diaria de grados por mes (T>10°C), SHFM: suma de horas de frió mensual (T<7°C), TNJ: temperatura mínima del mes el más frío (julio), TXE: temperatura máxima del mes el más calido (enero).

Este análisis se realizó con los sitios agrupados por calidad homogénea, según Figura 1, más tres parámetros de calidad para visualizar mejor la información. Los parámetros considerados fueron proteína, peso específico y punta negra. Cada parámetro se ubicó en un cuadrante diferente del biplot, por lo que permitieron ver las

diferencias de calidad entre los sitios. Hay también parámetros de descripción del medio ambiente que pueden juntarse en dos grupos, los de humedad y los de calor. La proteína esta correlacionado con calor, peso específico con humedad y punta negra con longitud (cercanía a la costa). Así un mejor contenido en proteína se puede obtener en los sitios más calidos. En un estudio realizado por Smith y Gooding (1999), el efecto de genotipo, nitrógeno, lluvia y temperatura explicó el 90% de la variación del contenido en proteínas. El nitrógeno tuvo un efecto positivo, la lluvia en invierno y en primavera un efecto negativo, y la temperatura del verano, particularmente después de antesis, tuvo un efecto positivo de un 20% en la variación total. Sin embargo, las altas temperaturas durante el período de llenado de grano limitan el rendimiento (Randall y Moss, 1990). Por lo tanto es importante poner en una balanza estos dos objetivos, considerando que la aplicación de nitrógeno en el momento correcto puede aumentar el rendimiento y al mismo tiempo aumentar el contenido de proteína (Smith y Gooding, 1999).

CONCLUSIONES

Chile tiene un clima particularmente adaptado al cultivo de trigo candeal. Este clima mediterráneo permite obtener una buena calidad. En este trabajo se identificaron sitios en que se produce trigo candeal de muy buena calidad. Parte de este efecto se debió a clima, en particular a través de alta temperatura y humedad. La Región Metropolitana y Octava Región destacan por su buena calidad y parecen ser las mejores para el cultivo de trigo candeal. El calor esta asociado con alta proteína, vitreosidad y peso específico, mientras que la humedad y cercanía al mar favorecen la aparición de punta negra.

LITERATURA CITADA

Annicchiarico, P. 2002. Genotype X Environment, challenges and opportunities for plant breeding and cultivar recommendations. Ed FAO, Roma, Italia, 115p.

Crossa, J. 1990. Statistical analyses of multilocation trials. Advances in Agronomy 44: 55-85.

Elouafi, I., Nachit, M.M., Elsaleh, A., Asbati, A. and Mather, D.E. 2000. QTL-mappping of genomic regions controlling gluten strength in durum (*Triticum turgidum* L. ssp. *durum*). *In:* CIHEAM, Options Méditerranéennes n°40: Durum wheat improvement in the Mediterranean region, Royo C., Nachit M.M., Di Fonzo N., Araus J.L. (eds.). Zaragoza (Spain). 83: 505-509

Fernández, M.R., Clarke, J.M. and Knox, R.E. 2000. Black Point reaction of Durum and Common Wheat cultivars grown under irrigation in Southern Saskatchewan. Plant Disease 84(8): 892-894.

Instituto Nacional de Normalización (INN). 1977. Norma Chilena Oficial NCh1319 Of1977, Trigo Durum (Candeal)-Especificaciones, 7p.

Institut Technique des Céréales et des Fourrages (ITCF). 1996. Blé Dur, Objectif Qualité. Ed ITCF, Paris, France, 52p.

Marque, V., Fritz, A.K., Martin, T.J. and Paulsen, G.M. 2004. Agronomic and Quality Attributes of Winter Durum Wheat in the Central Great Plain. Crop Science 44: 878-883

Novoa, S-A R., Villaseca, C. S. Del Canto, S. P., Rouanet, M. J.L., Sierra, B. C. and Del Pozo, L. A. 1989. Mapa agroclimatico de Chile, Instituto de Investigaciones Agropecuarias, Novoa, R., Villaseca, S., (eds). Santiago, Chile, 221 p.

Panozzo, J.F. and Eagles, H.A. 2000. Cultivar and environmental effects on quality characters in wheat. II. Protein. Aust. J. Agric. Res. 51: 629-36

Peña, R.J. and Wolfgang, H. 2006. Breeding methodologies and strategies for Durum Wheat quality improvement, Durum Wheat Breeding 22: 663-702

- Porceddu, E., Turchetta, T., Masci, S., D'vidi, R., Lafiandra, D., Kasarda, D.D., Impliglia, A., and Nachit, M.M. 1998. Variation in endorsperm protein composition and technological quality properties in durum wheat. Euphytica 100: 197-205.
- Ramírez, I. 2001. Trigo Candeal- Recomendación Temporada 2001-2002. Convenio de Investigación INIA-LUCCHETTI, Información La Platina nº15. Ed Ramírez, I. Santiago, Chile,4p.
- Randall, P.J. and Moss, H.J. 1990. Some Effects of Temperature Regime During Grain Filling on Wheat Quality. J. Agric. Res. 41: 603-617.
- Reynolds, M.P., Trethowan, R., Crossa, J., Vargas, M., and Sayre, K.D. 2004. Physiological factors associated with genotype by environment interaction in wheat. Field Crop Research 85(1-2): 253-274.
- Sayre, K.D., 1996, The role of crop management research at CIMMYT in addressing bread wheat yield potential issues. *In:* Increasing yield potential in wheat: Breaking the barriers. Reynolds, M.P., Rajaram, S., and McNab, A. (eds), Obregón, Sonora, Mexico, 203-207
- Smith, G.P. and Gooding, M.J. 1999. Models of wheat grain quality considering climate, cultivar and nitrogen effect. Agricultural and Forest Meteorology 94: 159-170
- Universidad de Chile 2005. Análisis de las ventajas comparativas de los climas de Chile y del Mundo, Informe final Centro de Agricultura y Medioambiente. ODEPA, Chile. 239p.

INFORME PROYECTO:

"Zonificación Por Rendimiento y Calidad del Trigo Candeal entre la RM y La VIII Región"

Realizar ensayos para medir la productividad y calidad en trigo candeal en el área de estudio.

Paola Silva C. Rosa Peralta C. Iván Matus T. Edmundo Acevedo H.

Realizar ensayos para medir la productividad y calidad en trigo candeal en el área de estudio.

Introducción

La producción nacional de trigo duro se concentra entre la RM y VIII región con una superficie de 10.000 ha (Censo). El rendimiento nacional es de 51 qq/ha. La media nacional de calidad se presenta en el Cuadro 1. En el se destaca el bajo porcentaje de proteína el cual alcanza el 10.4%, este valor debe subir a 12.0% para que el trigo duro nacional sea competitivo con el trigo duro Canadiense.

Cuadro 1. Calidad media de trigo duro nacional.

Peso del hectolitro (kg/Hl)	84.9
Proteína (%)	10.4
Vitreosidad (%)	92.7
Punta negra (%)	3.0
Gluten húmedo (%)	25.9
Gluten index (%)	48.9
Gluten seco (%)	8.7

El contenido de proteína en los granos es fuertemente afectado por el manejo agronómico y el medio ambiente. La fertilización nitrogenada puede aumentar el rendimiento, el porcentaje de proteína o ambos.

Objetivo

Evaluar el efecto del nitrógeno y el medio ambiente en el rendimiento y calidad de trigo candeal.

Materiales y Métodos

Durante dos temporadas de crecimiento (2006 y 2007), se realizaron un total de 16 ensayos en dos sitios representativos de la zona central de Chile: en la Estación Experimental Antumapu (Santiago) y en la Estación Experimental Santa Rosa (Chillán). Los experimentos fueron sometidos a dos regimenes hídricos (riego y secano). La combinación de año, sitio y régimen hídrico fue considerado como medio ambiente, la descripción de cada medio ambiente y detalles agronómicos se muestra en el Cuadro 2.

En cada medio ambiente los experimentos fueron realizados con dos variedades de trigo duro: Llareta-INIA y Corcolen-INIA.

Los tratamientos de cada ensayo estuvieron dados por los siguientes dos factores con sus respectivos niveles:

- Dosis de nitrógeno para rendimiento (Nrend) que correspondio a 0 kg N/ha, 90 kg N/ha, 210 kg N/ha, aplicados 1/3 a la siembra y 2/3 en primer nudo en forma de salitre sódico.

- Dosis de nitrógeno para calidad (Ncal) que correspondió a 0 kg N/ha, 30 kg N/ha, 60 kg N/ha y 90 kg N/ha, aplicados en el estado de embuche en forma de salitre sódico).

En cada ensayo los tratamientos tuvieron un diseño de Parcela Dividida, en arreglo factorial de 3x4, donde la parcela principal correspondió a la dosis de nitrógeno para rendimiento y la sub parcela a la dosis de nitrógeno para calidad. Se usaron cuatro repeticiones. La unidad experimental tuvó una dimensión de 5 m de ancho por 5 m de largo.

La dosis de semilla fue de 220 Kg/ha lo que equivalió a una densidad de siembra de 395 semillas m⁻².

Se evaluó fecha de espigadura, fecha de madurez fisiológica, rendimiento, biomasa, IC, peso de los 1000 granos, peso hectolitro, el porcentaje de proteína, porcentaje de vitrosidad y porcentaje de punta negra.

Se realizó análisis de varianza combinado con el fin de separar el efecto del ensayo, genotipo y medio ambiente. La interacción del ensayo con el medio ambiente se estudió a través de análisis de componentes principales.

Cuadro 2. Descripción de medio ambientes y detalles agronómicos.

	Santiago	Santiago	Santiago	Santiago	Chillán	Chillán	Chillán	Chillán
Medio ambiente	1	2	3	4	2	9	7	80
Coordenadas	33040' S 70038' O				36°31′ S			
Altitud (m.s.n.m.)	604				220			
Clasificación de suelo	Mollisol				Andisol			
Textura	Franco arcillo arenoso		Franco arcillo		Franco limoso	Franco arcillo	Franco limoso	Franco limoso
Profundidad (cm)	50		50		40	100	40	40
C.C. (%)	20.63		20.63		39.9	25.7	40.8	40.8
P.M.P. (%)	11.15		11.15		25.2	13.4	23.5	23.5
Densidad aparente (g/cm³)	1.42		1.42		0.89	1.49	1.16	1.16
pH	8.12		8.06		6.02	6.04	6.23	6.27
Materia orgánica (%)	1.52		1.53		8.42	8.53	9.97	8.62
N (ppm)	28.3		9.6	10.6	23.0	17.0	10.3	6.6
P (ppm)	19.33		10.15	7.75	19.74	33.91	22.59	18.01
K (ppm)	141.41		147.15	175.35	177.00	338.00	178.67	98.72
S (ppm)	14.5		4.7	2.85	9.23	5.39	10.12	10.06
Mg (cmol(+)/kg)	1.32		1.13	1.17	0.63	0.76	0.49	0.44
B (ppm)	0.26	The second	0.57	0.55	0.26	0.36	0.41	0.37
Zu (bbm)	1.15		1.17	1.24	0.15	0.36	0.32	0.24
Año	2006	2006	2007	2007	2006	2006	2007	2007
Lluvia + riego (mm)	306 + 240	306 + 15	79.6 + 270	79.6 + 45	193.12 + 52.3	193.12	97.1 + 160.6	97.1
P ₂ O ₅	169	169	120	120	120	120	120	120
K20	0	0	09	09	86	86	86	86
S	0	0	0	0	44	44	44	44
MgO	0	0	0	0	36	36	36	36
8	0	0	0.7	0.7	1.1	1.1	1.1	1.1
Zu	0	0	0	0	1.05	1.05	1.05	1.05
Fecha de siembra	22 junio	22 junio	29 junio	29 junio	30 agosto	30 agosto	11 septiembre	11 septiembre
Fecha de espigadura	10 octubre	10 octubre	29 octubre	24 octubre	10 noviembre	12 noviembre	19 noviembre	16 noviembre
Fecha madurez fisiológica	20 noviembre	19 noviembre	26 noviembre	21 noviembre	12 diciembre	11 diciembre	19 diciembre	16 diciembre
Fecha de cosecha	1 diciembre	1 diciembre	3 diciembre	3 diciembre	15 enero	15 enero	21 enero	21 enero

Cuadro 3. Datos climaticos durante la espigadura y madurez fisiologica del trigo candeal en los 8 medio ambientes.

	Santiago	Santiago	Santiago	Santiago	Chillán	Chillán	Chillán	Chillán
Medio ambiente	1	2	3	4	22	9	7	8
HR (%)	76.4	76.4	55.5	53.7	82.95	82.4	69.7	73.0
T max	22	22	25.1	24.8	24.49	24.3	26.0	25.0
T min	8.4	8.3	8.33	8.12	7.98	7.9	8.1	7.9
T media	15.2	15.15	16.72	16.46	16.24	16.1	17.05	16.45
рр	178.8	58.8	90.4	0.4	59.3	6.8	85.8	5.5

Resultados

El análisis combinado de varianza muestra una fuerte influencia del MA sobre todos los parámetros, especialmente en rendimiento, peso del hectolitro y punta negra, representando más del 67% de la variabilidad observada. Mientras que en proteína y amaregamiento representa alrededor del 41% de la variabilidad. El Nrend (aplicado a la siembra y primer nudo) Representó el 45% de la variabilidad observada en proteína y amarengamiento (Cuadro 4).

En el mismo Cuadro se observa interacción MA x Nrend en rendimiento, proteína, peso del hectolitro, amaregamiento y punta negra con una menor explicación de la variabilidad observada.

La aplicación de Ncal (aplicado en el estado de embuche) no afectó el rendimiento. Lo mismo se observó con el peso del hectolitro y punta negra. Mientras que proteína fue afectado por la dosis de Ncal, explicando este factor 6% de la variabilidad observada. La interacción MA x Ncal se observó en proteína y amaregamiento explicando sólo el 2% de la variabilidad observada.

Cuadro 4. Porcentaje de los cuadrados medios del análisis de varianza combinado para rendimiento, proteína, peso del hectolitro, amarengamiento y punta negra.

Fuente de variación	Rendimiento	Proteína	Peso hectolitro	Amareng	Punta Negra
MA	0.75***	0.39***	0.67***	0.44***	0.87***
N rend	0.16***	0.48***	0.18***	0.42***	0.04*
MA x Nr	0.07***	0.03***	0.10***	0.09***	0.05***
N cal	0.00	0.06***	0.01	0.02	0.01
MA x Nc	0.00	0.02***	0.01	0.02**	0.01
Nr x Nc	0.01	0.01*	0.02	0.00	0.01
MA x Nr x Nc	0.01	0.01*	0.01	0.01	0.01

La interacción MA x Nrend se debio sólo a la dosis de 0 KgN/ha ya que se observó una correlación positiva entre las aplicaciones de 90 y 210 KgN/ha en los 8 medioambientes estudiados, tanto para rendimiento (r=0,94) como para porcentaje de proteína (r=0,84). Por lo tanto a continuación se asociará las características climáticas durante espigadura y madurez fisiologica en los tratamientos con 210 KgN/ha sin aplicación de nitrógeno en embuche en los 8 medio ambientes estudiados.

Los medio ambientes que tuvieron un mayor rendimiento fueron los que presentaron un mayor peso del hectolitro asociado a una mayor humedad relativa durante espigadura y madurez fisiológica. Por otra parte el mayor contenido de ptoteina se asoció a menor humedad relativa y mayor temperatura mínima durante espigadura y madurez fisiologica (Figura 1) (Cuadro 5).

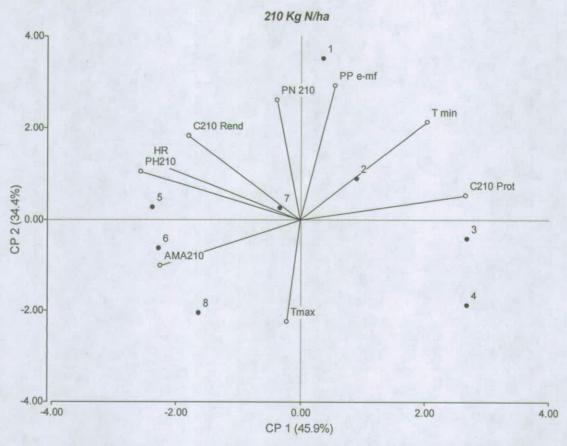


Figura 1. Biplot de componentes principales para 8 medio ambientes con Nrend de 210 KgN/ha y Ncal de 0 KgN/ha. Los números corresponden a los medio ambientes. Las variables climaticas coresponden al periodo dentre espigadura y llenado de grano donde Tmax es temperatura máxima, Tmin es temperatura mínima, HR es la humedad relativa, PP e-mf es la precipitación. C210 Rend es rendimiento, C210Prot es proteína, PN210 es punta negra, PH210 es peso del hectolitro y AMA210 es amarengamiento.

El mayor porcentaje de punta negra se asoció en la Figura 7 a una mayor precipitación entre espigadura y madurez fisiologica (Cuadro 5).

Cuadro 5. matriz de correlaciones de rendimeinto, calidad y parámetros climaticos en 8 MA con Nrend de 210 KgN/ha y Ncal de 0 KgN/ha.

	PP e-mf	Tmax	T min	HR	C210	Prot	C210	Rend	PH210	AMA210	PN 2	210
PP e-mf	1.00											
rmax	-0.44	1.00										
T min	0.76*	-0.55	1.00									
HR	0.09	-0.39	-0.35	1.00								
C210 Prot	0.30	-0.20	0.79*	-0.73*		1.00						
C210 Rend	0.36	-0.21	-0.11	0.78*	-	0.48		1.00				
PH210	0.09	-0.19	-0.44	0.95**	*	-0.80*		0.72*	1.00			
AMA210	-0.32	0.33	-0.75*	0.51	-	0.80*		0.21	0.61	1.00		
PN 210	0.83*	-0.27	0.38	0.29	-	0.02		0.47	0.37	-0.03	1.	00

* P≤0,05, ** P≤0,01 y * **P≤0,001.

Los números corresponden a los medio ambientes. Las variables climaticas coresponden al periodo dentre espigadura y llenado de grano donde Tmax es temperatura máxima, Tmin es temperatura mínima, HR es la humedad relativa, PP e-mf es la precipitación. C210 Rend es rendimiento, C210Prot es proteína, PN210 es punta negra, PH210 es peso del hectolitro y AMA210 es amarengamiento.

Considerando 0, 90 y 210 Kg N/ha (Nrend) sin nitrógeno en el estado de embuche en los 8 medio ambientes las mayores aplicaciones de N rend aumentaron el rendimiento de mayor a menor en los medio ambientes 6, 5, 7 y 1. En los medio ambientes 2 y 8 no hubo cambio en el rendimiento como resultado de las aplicaciones de Nrend, mientras que en los medio ambientes 3 y 4 el rendimiento se redujo por las aplicaciones de Nrend. Esto ultimo se puede explicar por el gran desarrollo del cultivo durante el invierno el cual disminuyó el contenido de humedad del suelo, antes del llenado de grano, periodo que además coincidio con alta temperatura, baja HR y con ello una mayor demanda evaporativa, generandose muchas espigas vanas y granos de bajo peso (Cuadro 6).

Cuadro 6. Medias de rendimiento, proteína, peso del hectolitro, amaregamiento y punta negra de 8 medio ambientes con 0, 90 y 210 Kg /N aplicados para aumentar rendimiento. Sin nitrógeno en el estado de embuche.

MA	Nrend (Kg /ha)	Rendimiento (Kg/ha)	Proteína (%)	Peso hectolitro (Kg/L)	Amarenga (%)	Punta Negra (%)
1	0	4437	11.1	86.0	7.5	0.5
1	90	4538	12.3	84.3	0.5	2.8
1	210	5902	13.9	82.2	0.2	5.2
2	0	2914	11.2	85.3	5.8	0.0
2	90	3817	13.1	83.2	1.0	0.0
2	210	3474	14.8	80.7	0.0	0.0
3	0	4457	10.5	82.7	4.8	0.0
3	90	4130	12.5	76.4	0.4	0.0
3	210	3163	15.1	69.4	0.0	0.0
4	0	1706	11,1	80.3	1.3	0.0
4	90	1511	14.0	72.3	0.0	0.0
4	210	772	15.3	68.3	0.0	0.0
5	0	3091	10.8	85.8	24.4	1.8
5	90	5881	11.1	86.2	9.0	0.4
5	210	7159	12.7	85.5	1.5	1.9
6	0	2972	10.1	85.0	41.3	0.5
6	90	5538	10.4	85.3	13.8	0.3
6	210	6925	11.6	85.4	0.6	0.1
7	0	2744	12.7	83.1	2.9	3.1
7	90	3894	13.2	82.9	0.6	2.9
7	210	5084	13.5	82.9	0.5	3.1
8	0	1325	11.9	82.1	3.3	0.0
8	90	1625	11.7	82.7	2.3	0.0
8	210	1769	11.9	83.0	1.7	0.0
Media		3701	12.4	81.7	5.1	0.9
DMS		914	0.6	1.7	4.6	1.0

Se observó valores elevados de porcentaje de amarengamiento cuando no se aplicó nitrogeno al cultivo. Este problema disminuyó significativamente con aplicaciones de nitrógeno, en particular con aplicaciones de nitrógeno en el estado de embuche (Cuadro 7).

Existe una asociación curvilinea entre el contenido de proteína y el porcentaje de amarengamiento del grano (Figura 2). El porcentaje de amarengamiento disminuye con el aumento de proteína en el grano, volviendose cero alrededor del 11,5 % de proteína en el grano.

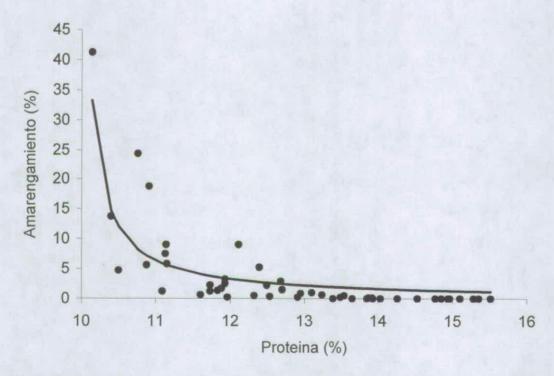


Figura 2. Relación porcentaje de amarengamiento y porcentaje de proteína.

El contenido de proteína fue afectado por las aplicaciones de N al estado de embuche (Ncal). Se observó interacción MA x Ncal para contenido de proteína y amarengamiento. En el Cuadro 7 se muestra las medias de proteína y amaregamiento para 0 y 60 KgN/ha aplicados al estado de embuche en los 8 medio ambientes. La aplicación de N al estado de embuche aumento el contenido de proteína de los granos en 0,5 a 1,5% dependiendo el medio ambiente. En el medio ambiente 7 y 8 no se observó aumento de proteína, En el medio ambiente 8 esto se explica por la falta de lluvias desde primer nudo, por lo que el N aplicado en embuche no pude ser incorporado, en el medio ambiente 7 la situación no esta clara. La aplicación de N también disminuyó el porcentaje de amarengamiento en los granos.

Cuadro 7. Medias de rendimiento, proteína, peso del hectolitro, amaregamiento y punta negra de 8 medio ambientes estudiados con 0 y 60 Kg/N ha en el estado de embuche.

MA		N	cal	
	0 Kg 1	N/ha	60 Kg	N/h
	Proteina (%)	Amareng (%)	Proteína (%)	Amareng (%)
1	12.5	2.7	14.0	0.0
2	13.0	2.3	14.6	0.1
3	12.7	1.7	14.1	0.1
4	13.5	0.4	14.8	0.0
5	11.5	11.6	12.7	4.8
6	10.7	18.5	11.3	8.2
7	13.2	1.3	13.0	1.0
8	11.8	2.4	11.8	1.7
Media	12.4	5.1	13.3	2.0
DMS	0.4	2.6	0.3	1.7

En la Figura 3 se mustra el rendimiento y calidad de los 8 medi ambientes con lasdosis de Nrend (0, 90 y 210 Kg N/ha) sin aplicación de nitrógeno al estado de embuche. La Figura 4 muestra lo mismo, pero con aplicación de 60 Kg N al estado de embuche. Revisando ambos graficos se puede observar que la dosis de 60 KgN/ha disminuyó el número de sitios con amarengaiento, asocio estrechamente el porcentaje de punta negra con mayor rendimiento y mayor peso del hectolitro.

Se observa medioambientes como el 8 que no responden a las dosis de N., debido a lo temprano en la temporada que terminaron las lluvias (primer nudo). También destacan medio ambientes de bajo rendimiento que responden a aplicaciones de nitrogeno tardias debido ha la presencia de lluvias en embuche..

En la Figura 5 se observa el medio ambiente 5 que correspondeió al de mayor rendimiento. En esta figura se puede observar altos rendimientos y alta proteína asociados a dosis alta de Nrend (210 Kg N/ha) y alto rendimiento y alta proteína sociado a dois de Nrend de 90Kg/ha y Ncal sobre 60 KgN/ha.

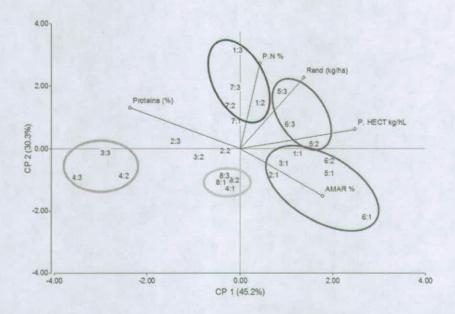


Figura 3. Biplot de rendimiento y calidad de trigo duro en 8 medio ambientes. Sin nitrógeno al estado de embuche. El primer número corresponde al medio ambiente y el segundo número a dosis Nrend (1=0 KgN/ha, 2=90 Kg N/ha y 3=210 Kg N/ha)

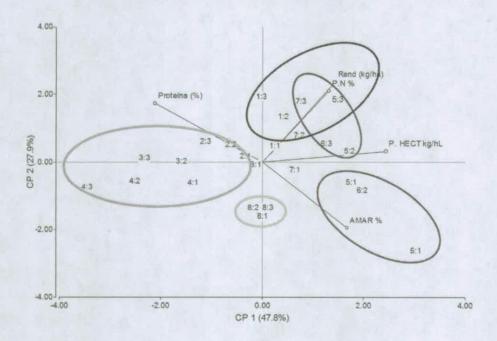


Figura 4. Biplot de rendimiento y calidad de trigo duro en 8 medio ambientes. 60 Kg N/ha al estado de embuche. El primer número corresponde al medio ambiente y el segundo número a dosis Nrend (1=0 KgN/ha, 2=90 Kg N/ha y 3=210 Kg N/ha)

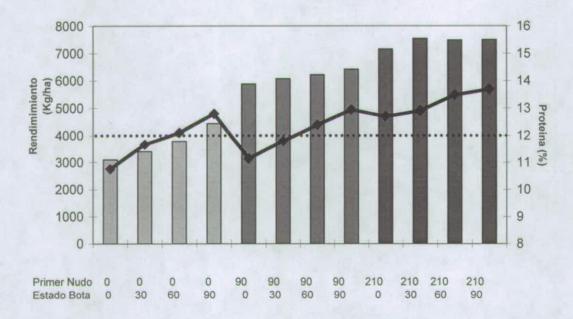


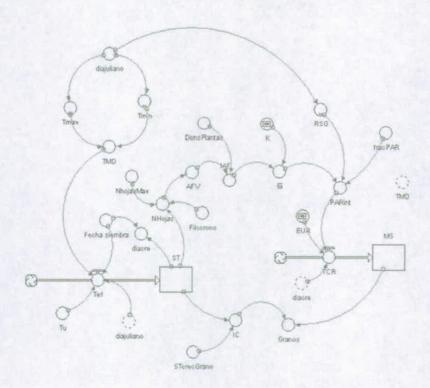
Figura 5. Rendimiento y porcentaje de proteína de trigo candeal con Nrend x Ncal en el medio ambiente 8.

Conclusiones

- El contenido de proteína respondió a las aplicaciones de N dependiendo de la disponibilidad de agua durante encañado y espigadura de trigo.
- Aplicaciones de N en estado bota permitieron obtener alto porcentaje de proteína en trigos con alto rendimiento.
- El porcentaje de amarengamiento disminuyó con aplicaciones N antes de primer nudo y/o con aplicaciones en estado bota.
- El mayor porcentaje de punta negra se asocio a medio ambientes regados y con altas aplicaciones de nitrógeno.

INFORME PROYECTO:

"Zonificación Por Rendimiento y Calidad del Trigo Candeal entre la RM y La VIII Región"


Modelo simple de simulación del crecimiento y fenología del trigo candeal

Giorgio Castellaro G. Paola Silva C. Luis Morales S. Felipe Román O. Francisco Lang T.

1. Introducción.

Las principales hipótesis en las cuales se basa la elaboración del modelo, fueron descritas en detalle en un informe previo (Anexo 1). No obstante, en esta sección se presentan los resultados de experimentos de campo orientados a calcular coeficientes genéticos que definen la fenología, el desarrollo foliar y la intercepción de radiación por parte del cultivo, los cuales son específicos de las variedades de trigo candeal evaluadas en este estudio. En una segunda parte se describen brevemente los resultados de simulaciones efectuadas bajo condiciones de riego y secano en dos localidades (Antumapu en la región Metropolitana y santa rosa, en la región del Bío-Bío). En la figura 1, se presenta un diagrama simplificado que muestra las interacciones de las principales variables que determinan el crecimiento del cultivo y específicamente lo relacionado con la generación de área foliar:

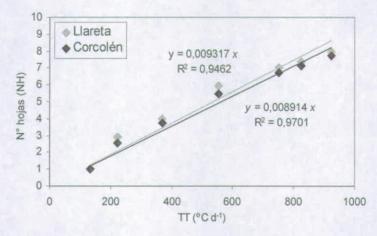
Figura 1. Diagrama simplificado que muestra las interacciones de las principales variables que determinan el crecimiento y desarrollo del cultivo.

2. Coeficientes ecofisiológicos de variedades de trigo candeal.

2.1 Desarrollo y fenología del cultivo.

En este aspecto fue preciso determinar los requerimientos termales del cultivo, expresados en suma térmica, necesarios para cumplir diferentes eventos fenológicos. Entre los dos cultivares evaluados (Corcolén-INIA y Llareta-INIA) no existieron grandes diferencias (Cuadro 1).

Cuadro 1. Duración de los periodos de desarrollo (°C d) para las dos variedades de trigo candeal.


Variedad		PV		PF	F	PFG	P	CG		PT
varieuau	días	°C día								
Corcolén	76	653,2	27	375,3	9	151,5	27	468,7	139	1644,3
Llareta	73	612,3	30	422,5	7	106,7	27	464,4	137	1610,2

PV: periodo vegetativo (estado 10 al 37 Zadoks); PF: periodo de floración (estado 37 al 60 Zadoks), PFG: periodo de formación o cuaja del grano (estado 60 al 70 Zadoks), PCG: periodo de crecimiento del grano (estado 70 al 90 Zadoks), PT: periodo total, desde emergencia hasta madurez fisiológica.

Cabe decir que la literatura en lo que respecta a estas variedades, indica una mayor precocidad de la variedad Corcolén-INIA, no obstante muchas veces estas diferencias no se manifiestan, debido a condiciones climáticas y de riego. La fase más variable en términos de tiempo térmico entre las dos variedades fue el total del ciclo total del cultivo, donde registraron diferencias significativas, debido fundamentalmente a la poca variación que existió entre parcelas de una misma especie (coeficiente de variación inferior al 1%). Las mismas diferencias existieron en la relación del tiempo térmico acumulado (°Cd) con los eventos fenológicos.

La tasa de aparición foliar (TAF) generalmente esta asociada al tiempo térmico acumulado (TT). Esta relación de tipo lineal determinó que Llareta-INIA tuvo una tasa de aparición foliar (TAF) de 9,32·10⁻³ hojas día °C⁻¹ (R² = 0,946; p > 0,021) menor que la de Corcolén-INIA con 8,91·10⁻³ hojas día °C⁻¹(R² = 0,97; p > 0,021), con una regresión ajustada al origen ya que el intercepto no fue significativo (p>0,05). La diferencia entre las variedades tampoco fue significativa (p>0,05). Esta simplificación ayuda a una mejor comprensión del modelo de generación foliar. El valor de filocrono se determinó como el inverso multiplicativo de la tasa de aparición foliar. Estos valores fueron 107,33 y 112,18 °C día hoja⁻¹, para Llareta-INIA y Corcolén-INIA, respectivamente.

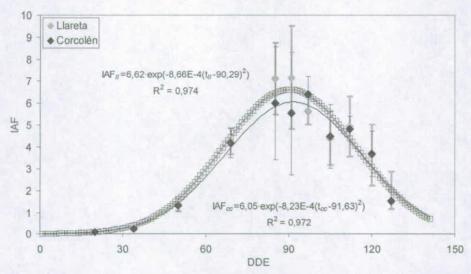
Figura 2. Relación lineal entre número de hojas desplegadas y tiempo térmico (TT).

Dada que las diferencias en fenología y tasa de aparición foliar entre ambas variedades no fue sustantiva, para efectuar las simulaciones se utilizaros los valores medios de estos coeficientes entre ambas variedades, valores que se presentan en el Cuadro 2. En este mismo cuadro, y a modo de comparación, aparecen valores obtenidos en la literatura para trigo panadero, los cuales fueron utilizados en las simulaciones preliminares efectuadas con el modelo y que fueron presentadas en un informe previo.

Cuadro 2. Valores de Coeficientes genéticos de trigo candeal utilizados por el modelo. Promedio de valores obtenidos en las variedades Corcolén-INIA y Llareta-INIA ¹.

Coeficiente genético	Trigo candeal	Trigo harinero
Filocrono (º día hoja ⁻¹)	110,0	103,0
Unidades termales entre fin de crecimiento de las hojas hasta la antesis (°C día)	528,0	460,0
Unidades termales entre antesis y el inicio del crecimiento del grano(°C día)	129,0	90,0
Unidades termales requeridas para el crecimiento del grano (°C día)	467,0	550,0

¹ Experimentos de campo realizados por el equipo de investigación SAP, 2008


2.2 Evolución de el área foliar del cultivo.

Los valores de índice de área foliar fueron más altos en Llareta-INIA que en Corcolén-INIA. La mayor producción de macollos, la mayor velocidad en la

aparición de las hojas ayudan a que el valor máximo teórico y medido sea mayor. Corcolén-INIA presentó un valor de medición de IAF máximo igual a 6,05 m² m⁻², mientras que en Llareta-INIA este valor fue de 6,62 m² m⁻². La curva de regresión de mayor ajuste a la relación entre en IAF y el tiempo cronológico fue la que se presenta en la siguiente ecuación y su expresión grafica se muestra en la Figura 3.

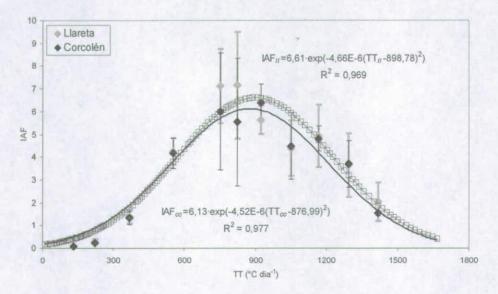
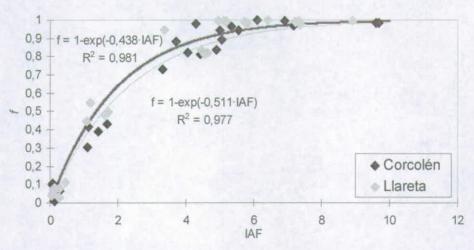

$$IAF = a \cdot e^{-b(t-c)^2}$$

Figura 3. Índice de área foliar (IAF) como función de los días después de emergencia (DDE) para las dos variedades evaluadas.

En esta curva logística simétrica se señala un máximo teórico del IAF (valor a), un valor donde ocurre ese peak en el eje x (valor c) y un valor relacionado con la curtosis y la amplitud media de la curva (valor b). Llareta-INIA tuvo un mayor IAF máximo (p< 0,01) y una mayor precocidad explicado por el coeficiente c (p< 0,01) que Corcolén-INIA (Figura 2). Un comportamiento similar se obtuvo cuando se usó como variable independiente el tiempo térmico (Grados-día acumulados desde la emergencia del cultivo). Esta relación se presenta en la Figura 4.


Figura 4. Índice de área foliar (IAF) como función del tiempo térmico acumulado (TT) para las dos variedades evaluadas.

La diferencia con las curvas anteriores es que denota un pequeño retraso por parte de Llareta-INIA en la senescencia, siendo los valores del coeficiente a igual a 6,13 y 6,61 m² m⁻², en las variedades Corcolén-INIA y Llareta-INIA, respectivamente. Los valores encontrados para el coeficiente c fueron significativamente distintos entre las dos variedades (p< 0,01). Existe una caída después de antesis del área foliar producto fundamentalmente de un estrés hídrico oculto en el cual ni el suelo ni la planta manifestaron síntoma alguno.

2.3 Intercepción de radiación solar por parte de la cubierta vegetal.

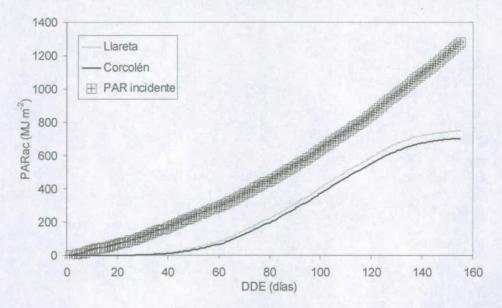
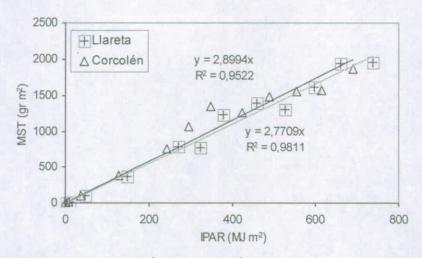

En la cubierta vegetal de ambas variedades se cumplió la relación de Beer-Lambert (Figura 5). Los valores estimados del coeficiente extinción de la radiación fotosintéticamente activa (k) fueron de 0,512 \pm 0,031 (r^2 = 0,977; p< 0,032) y de 0,438 \pm 0,021 (r^2 = 0,981; p< 0,021), para Llareta-INIA y Corcolén-INIA, respectivamente. Existieron diferencias significativas (p< 0,05) al comparar las dos curvas en base a su coeficiente k, lo que implica que la variedad Corcolén-INIA tiene las hojas más erectófilas que Llareta-INIA complementariamente a la disposición de las yemas foliares en el tallo principal que extinguen menos la luz en el perfil.

Figura 5. Fracción de la radiación fotosintéticamente activa interceptada (f) como función del índice de área foliar (IAF) para las dos variedades de trigo candeal evaluadas.

Con esta curva obtenida se puede efectuar una estimación de la intercepción interceptada acumulada, calculando el valor porcentual interceptado diariamente, considerando en este cálculo los datos de radiación solar global (RSG, MJ m⁻² día⁻¹). Llareta-INIA fue la variedad que más MJ acumulados intercepta, producto de la mayor velocidad con la que genera las hojas, un mayor índice de área foliar máximo y una conformación de la arquitectura de las hojas que extingue la radiación más rápidamente (Figura 6).


Figura 6. Radiación fotosintéticamente activa acumulada incidente (PARac) en comparación con la intercepción de las dos variedades de trigo candeal evaluadas.

Durante todo el ciclo de desarrollo, la variedad Llareta-INIA interceptó un 58,58% del PAR incidente lo que resultó no significativamente mayor que en el caso de la variedad Corcolén-INIA, la cual interceptó un 55,04%.

2.4 Eficiencia de uso de la radiación (EUR)

Un modelo lineal forzado a pasar por el origen, producto de la poca significancia del intercepto en el eje "y" obtenido en la regresión lineal de las dos variedades (p = 0,223), fue utilizado para estimar EUR. Los valores de este coeficiente estimado para todo el ciclo del cultivo, fueron de 2,899 ($R^2 = 0,994$; p< 0,001) y 2,771 g MJ $^{-1}$ ($R^2 = 0,985$; p< 0,001), para Corcolén-INIA y Llareta-INIA, respectivamente siendo la diferencia entre las variedades no significativa (p >0,05) (Figura 7).

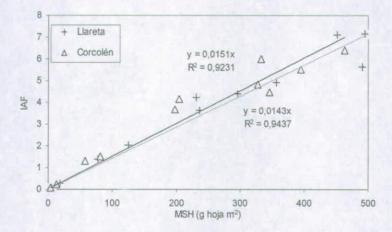


Figura 7. Materia seca total aérea en función de la IPAR acumulada de las dos variedades en todo el ciclo del cultivo.

2.5 Relación de área foliar

La relación entre los gramos de materia seca de hojas verdes y el área foliar fotosintéticamente activa expresado como IAF, tuvo una alta significancia cuando se utilizó un modelo de regresión lineal para describirla (p< 0,001). No obstante, los interceptos de la línea de regresión obtenidos en ambas variedades no fueron significativos (p= 0,17). Los valores de la pendiente de esta relación, fueron de 0,0151 m² g⁻¹ (R² = 0,923; p < 0,001) y de 0,0143 m² g⁻¹ (R² = 0,944; p< 0,001), para Corcolén-INIA y Llareta-INIA, respectivamente (Figura 8). Entre ambas variedades no se obtuvieron diferencias significativas (p > 0,05). Al calcular el inverso multiplicativo de los valores obtenidos, se obtuvo un valor de 66,163 y de 69,963 g m⁻², para Corcolén-INIA y Llareta-NIA, respectivamente.

Figura 8. Materia seca total aérea en función de la IPAR acumulada de las dos variedades en todo el ciclo del cultivo.

2.6 Evolución del Índice de Cosecha

La relación lineal entre el índice de cosecha y los días después de emergencia tuvo una alta significancia en ambas variedades (Figura 9). El incremento porcentual del índice de cosecha de Llareta-INIA fue de 0,842% d^{-1} ($R^2 = 0,986$), no siendo significativamente distinto (p > 0,05) al obtenido en la variedad Corcolén-INIA, cuyo valor fue de 0,847% d^{-1} ($R^2 = 0,965$).

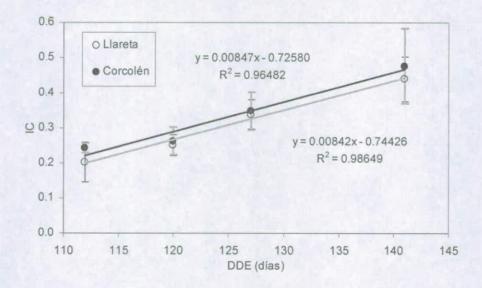


Figura 9. Índice de Cosecha en función del día después de emergencia.

3. Simulación de la fenología, producción de materia seca y dinámica del Nitrógeno: condiciones de riego y secano en la Región Metropolitana y Región del Bio-Bío.

Con el propósito de visualizar el comportamiento del modelo, a continuación se describen el resultado de simulaciones efectuadas en la localidad de Antumapu (Región Metropolitana; 33°40′ Lat. Sur; 70°38′ Long. O.; 604 m.s.n.m.) y Santa Rosa (Región del Bío-Bio; 36°31′ Lat. Sur; 71°54′ Long. O.; 220 m.s.n.m.). En ambas localidades se simuló un cultivo de trigo candeal utilizando en su caracterización ecofisiológica los valores promedios de los coeficientes genéticos obtenidos para las variedades Corcolén-INIA y Llareta-INA, los cuales han sido descritos en los párrafos precedentes de esta sección.

En ambas localidades se simularon dos regimenes hídricos (riego y secano). Para Antumapu se utilizó la información meteorológica de los años 2006 y 2007, mientras que para Santa Rosa solamente se empleó la información climática de del año 2006. La fecha de siembra de la localidad de Antumapu fue el 22 de junio y en Santa Rosa la fecha de siembra fue el 30 de agosto. En ambos casos el manejo de la fertilización nitrogenada contempló una aplicación de 210 kg ha⁻¹ parcializado a un 1/3 a la siembra y 2/3 al primer nudo. La población de plantas fue de 252 plantas m⁻² para las dos localidades.

Las características principales de los suelos de ambas localidades se presentan en el Cuadro 3.

Cuadro 3. Características principales de los suelos donde se efectuaron las simulaciones del rendimiento y fenología del trigo candeal.

ANTUMAPU

	prof (cm) ¹	dap (g/cc) ²	cdc (%)3	pmp (%) ⁴	% arena ⁵
Estrato 1	13	1,46	20,45	11,00	43,40
Estrato 2	18	1,44	20,15	11,00	46,20
Estrato 3	19	1,38	21,20	11,40	37,10

SANTA ROSA

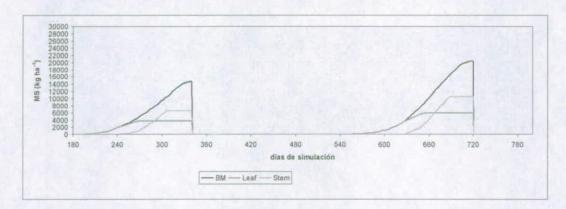
	prof (cm)	dap (g/cc)	cdc (%)	pmp (%)	% arena
Estrato 1	17	0,8	64,7	33,7	10,0
Estrato 2	23	0,9	65,4	36,3	8,9
Estrato 3	10	0,9	64,2	36,5	12,9
Estrato 4	10	0,9	61,5	35,6	8,0
Estrato 5	45	0,9	57,9	34,9	9,2
Estrato 6	35	1,0	56,3	40,2	15.0

prof: profundidad

² dap: densidad aparente

³ cdc: capacidad de campo

⁴ pmp: punto de marchitez permanente


^{5 %} arena: porcentaje de arena

En el caso del suelo Antumapu se utilizó una curva número Nº 85 y en suelo Santa Rosa, la curva número fue la Nº 78 (ver detalle en Anexo 1, sección 2.1).

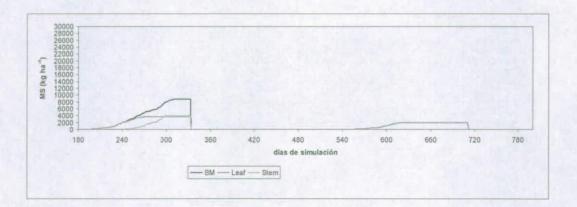
3.1 Región Metropolitana: localidad de Antumapu, situación bajo riego.

En la Figura 10, se puede apreciar la evolución de los principales componentes de la materia seca (MS) aérea del cultivo para la localidad de Antumapu en las dos temporadas simuladas y bajo una condición de riego.

Figura 10. Evolución de los principales componentes de la fitomasa aérea de un cultivo de trigo candeal, en la Localidad de Antumapu durante las temporadas 2006 y 2007, bajo condiciones de riego. BM= fitomasa área total; Leaf: fitomasa de hojas; Stem: fitomasa de tallos.

A su vez, en el Cuadro 4 se pueden visualizar algunos aspectos relevantes de la fenología y el rendimiento del cultivo, así como algunas variables de interés relacionadas con la proteína en los granos, la absorción de N y la dinámica del agua en el cultivo.

Cuadro 4. Variables relevantes de fenología, producción de MS, proteína, nitrógeno y uso del agua de un cultivo de trigo candeal. Condición de riego. Localidad Antumapu, Región Metropolitana.


Variable	Año 2006	Año 2007
Siembra	22-Jun	22-Jun
Emergencia	29-Jun	02-Jul
Inicio macolla	30-Jul	17-Ago
Duración período vegetativo (días)	89	107
Duración fin periodo vegetativo-antesis (días)	36	32
Inicio de antesis	01-Nov	18-Nov
Duración del llenado de granos (días)	26	25
Largo total del ciclo del cultivo (días)	160	172
Fecha Madurez fisiológica	05-Dic	20-Dic
Fecha probable de cosecha	15-Dic	30-Dic
Producción de MS aérea (kg ha ⁻¹)	14648.0	20504.0
Producción de Granos base MS (qqm ha ⁻¹)	62.1	85.2
Producción de Granos base 13% humedad (qqm ha ⁻¹)	71.4	97.9
Porcentaje proteína del grano (base MS)	10.4	10.5
Eficiencia Agronómica (tn grano kg ⁻¹ N)	0.0413	0.0454
N mineralizado en el ciclo cultivo (kg ha ⁻¹)	17.3	11.8
N lixiviado en el ciclo cultivo (kg ha ⁻¹)	3.0	0.7
N absorbido por el cultivo (kg ha ⁻¹)	150.5	187.7
Lluvia en el ciclo cultivo (mm)	306.0	87.8
ETR en el ciclo cultivo (mm)	446.8	610.8
Agua aplicada (mm)	630.8	1001.0
Escurrimiento superficial acumulado (mm)	370.2	457.1

Los valores obtenidos en las variables indicadas en el cuadro anterior, están dentro de los rangos medidos en experimentos de campo realizados en la misma localidad (ver sección ensayos de campo de este informe), siendo éstos considerados como satisfactorios. No obstante se evidencian índices de cosecha algo bajos (40-42%), lo cual sugiere una revisión de las hipótesis relacionadas con el reparto del crecimiento hacia los granos.

3.2 Región Metropolitana: localidad de Antumapu, situación de secano.

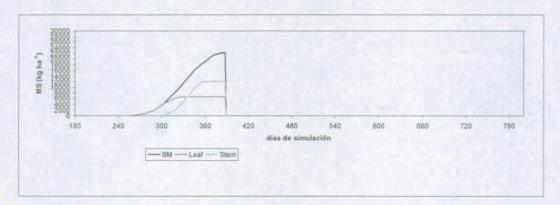
En la figura 11 y en el Cuadro 5, se presenta los resultados obtenidos para una situación de secano en la misma localidad.

Figura 11. Evolución de los principales componentes de la fitomasa aérea de un cultivo de trigo candeal, en la Localidad de Antumapu durante las temporadas 2006 y 2007, bajo condiciones de secano. BM= fitomasa área total; Leaf: fitomasa de hojas; Stem: fitomasa de tallos.

Cuadro 5. Variables relevantes de fenología, producción de MS, proteína, nitrógeno y uso del agua de un cultivo de trigo candeal. Condición de secano. Localidad Antumapu, Región Metropolitana.

Variable	Año 2006	Año 2007
Siembra	22-Jun	22-Jun
Emergencia	29-Jun	02-Jul
Inicio macolla	30-Jul	17-Ago
Duración período vegetativo (días)	89	107
Duración fin periodo vegetativo-antesis (días)	28	23
Inicio de antesis	24-Oct	09-Nov
Duración del llenado de granos (días)	28	26
Largo total del ciclo del cultivo (días)	153	163
Fecha Madurez fisiológica	28-Nov	11-Dic
Fecha probable de cosecha	08-Dic	21-Dic
Producción de MS aérea (kg ha ⁻¹)	8847.4	1984.1
Producción de Granos base MS (qqm ha ⁻¹)	39.0	8.4
Producción de Granos base 13% humedad (qqm ha ⁻¹)	44.8	9.7
Porcentaje proteína del grano (base MS)	13.1	20.3
Eficiencia Agronómica (tn grano kg ⁻¹ N)	0.0297	0.0193
N mineralizado en el ciclo cultivo (kg ha ⁻¹)	14.0	7.5
N lixiviado en el ciclo cultivo (kg ha ⁻¹)	2.9	0.0
N absorbido por el cultivo (kg ha ⁻¹)	131.3	43.6
Lluvia en el ciclo cultivo (mm)	306.0	87.6
ETR en el ciclo cultivo (mm)	195.5	114.4
Agua aplicada (mm)	0.0	0.0
Escurrimiento superficial acumulado (mm)	56.2	1.1

Del análisis de la información reportada en la figura 11 y el Cuadro 5, queda en evidencia el efecto que tiene el estrés hídrico sobre la producción de MS y sus componentes. Dada la escasa precipitación registrada durante el ciclo del



cultivo, el rendimiento de MS se resiente en forma drástica, especialmente durante la segunda temporada simulada, en donde dicho monto no superó los 90 mm provocando que el cultivo no superase los 2000 kg ha⁻¹ con un rendimiento de granos (base MS) de 8,4 qqm ha⁻¹ (Cuadro 5). De acuerdo a los valores simulados y dadas las características pluviométricas de esta localidad, se sugiere la no conveniencia de cultivar trigo en esta si no se cuenta con un abastecimiento seguro de agua de riego.

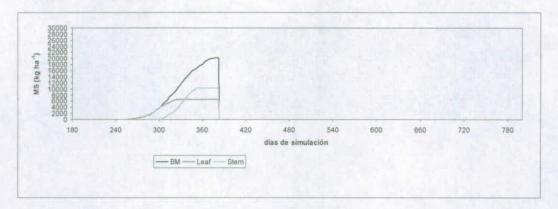
Resulta importante destacar los altos valores de proteína obtenidos en el grano, especialmente en condiciones de estrés hídricos severos, tales como los registrados en la temporada 2007 (Cuadro 5). Si bien es dable esperar un mayor porcentaje de proteína explicable por un efecto de "concentración" de la proteína en la MS del cultivo por efectos del déficit hídrico, los valores simulados aparecen más altos a los reportados en los experimentos de campo. Esta situación lleva a concluir que es necesario revisar las hipótesis del modelo referidas a la absorción de N y translocación de este elemento a los granos en condiciones de estrés hídrico, ya que el modelo no es capaz de reproducir con realismo esta situación.

3.3 Región del Bío-Bío: localidad de Santa Rosa. Situación bajo riego.

En la figura 12 se presentan los resultados de la simulación del cultivo de trigo candeal, para la localidad de Santa Rosa en la región del Bío-Bío. Los detalles en cuanto a los eventos fenológicos, rendimiento y proteína del grano y aspectos asociados al uso de nitrógeno y el agua, se detallan en el Cuadro 6.

Figura 12. Evolución de los principales componentes de la fitomasa aérea de un cultivo de trigo candeal, en la Localidad de Santa Rosa durante la temporada 2006, bajo condiciones de riego. BM= fitomasa área total; Leaf: fitomasa de hojas; Stem: fitomasa de tallos.

Cuadro 6. Variables relevantes de fenología, producción de MS, proteína, nitrógeno y uso del agua de un cultivo de trigo candeal. Condición de riego. Localidad Santa Rosa, Región del Bío-Bío.


Variable	Año 2006	
Siembra	30-Ago	
Emergencia	06-Sep	
Inicio macolla	05-Oct	
Duración período vegetativo (días)	76	
Duración fin periodo vegetativo-antesis (días)	31	
Inicio de antesis	22-Dic	
Duración del llenado de granos (días)	24	
Largo total del ciclo del cultivo (días)	139	
Fecha Madurez fisiológica	23-Ene	
Fecha probable de cosecha	02-Feb	
Producción de MS aérea (kg ha ⁻¹)	22280.9	
Producción de Granos base MS (qqm ha ⁻¹)	90.7	
Producción de Granos base 13% humedad (qqm ha ⁻¹)	104.3	
Porcentaje proteína del grano (base MS)	11.0	
Eficiencia Agronómica (tn grano kg ⁻¹ N)	0.0439	
N mineralizado en el ciclo cultivo (kg ha ⁻¹)	90.4	
N lixiviado en el ciclo cultivo (kg ha ⁻¹)	0.0	
N absorbido por el cultivo (kg ha ⁻¹)	206.8	
Lluvia en el ciclo cultivo (mm)	226.5	
ETR en el ciclo cultivo (mm)	649.0	
Agua aplicada (mm)	2447.9	
Escurrimiento superficial acumulado (mm)	1886.2	

Los resultados de producción de MS y de granos obtenidos en esta localidad bajo una situación de regadío, fueron más altos a los simulados en la Región Metropolita, pero con contenidos de proteína en el grano similares y una mayor absorción de N por parte del cultivo. En el suelo se evidencia mayores tasas de mineralización así como mayores pérdidas de agua del sistema debido a la escorrentía. Lo anterior es esperable dadas las diferencia en cuanto a materia orgánica de los suelos y los montos de precipitación registrados en esta localidad durante el año 2006.

3.4 Región del Bío-Bío: localidad de Santa Rosa. Situación de secano.

Para la condición de secano, los resultados obtenidos se presentan en la figura 13 y el Cuadro 7.

Figura 13. Evolución de los principales componentes de la fitomasa aérea de un cultivo de trigo candeal, en la Localidad de Santa Rosa durante la temporada 2006, bajo condiciones de secano. BM= fitomasa área total; Leaf: fitomasa de hojas; Stem: fitomasa de tallos.

Cuadro 7. Variables relevantes de fenología, producción de MS, proteína, nitrógeno y uso del agua de un cultivo de trigo candeal. Condición de secano. Localidad Santa Rosa, Región del Bío-Bío.

Variable	Año 2006	
Siembra	30-Ago	
Emergencia	06-Sep	
Inicio macolla	05-Oct	
Duración período vegetativo (días)	76	
Duración fin periodo vegetativo-antesis (días)	26	
nicio de antesis	17-Dic	
Duración del llenado de granos (días)	24	
Largo total del ciclo del cultivo (días)	133	
Fecha Madurez fisiológica	17-Ene	
Fecha probable de cosecha	27-Ene	
Producción de MS aérea (kg ha ⁻¹)	20241.4	
Producción de Granos base MS (qqm ha ⁻¹)	82.4	
Producción de Granos base 13% humedad (qqm ha ⁻¹)	94.7	
Porcentaje proteína del grano (base MS)	11.1	
Eficiencia Agronómica (tn grano kg ⁻¹ N)	0.0404	
N mineralizado en el ciclo cultivo (kg ha ⁻¹)	75.2	
N lixiviado en el ciclo cultivo (kg ha ⁻¹)	0.0	
N absorbido por el cultivo (kg ha ⁻¹)	204.2	
Lluvia en el ciclo cultivo (mm)	226.5	
ETR en el ciclo cultivo (mm)	484.6	
Agua aplicada (mm)	0.0	
Escurrimiento superficial acumulado (mm)	21.0	

En esta situación se obtuvieron rendimientos levemente inferiores a la condición de regadío, evidenciándose un acortamiento del ciclo de desarrollo. También se observa un buen aprovechamiento de las precipitaciones, las que en el periodo

del cultivo ascendieron a 226 mm. Respecto del contenido de proteína en el grano, en esta situación se obtuvieron porcentajes del orden del 11%, valores considerados razonables, al compararlos con los obtenidos en ensayos de campo.

4. Conclusiones

Se determinaron requerimientos termales asociados a la fenología así como coeficientes genéticos para las variedades de trigo candeal Llareta-INIA y Corcolén-INIA, los que en general fueron similares en las dos variedades, a excepción del coeficiente de extinción de radiación en el cual se detectaron diferencias. A pesar de lo anterior, esta diferencia no influye de manera significativa en el patrón de intercepción de radiación solar ni en la producción de MS, lo que se refleja en eficiencias de uso de la radiación similares en ambas variedades.

El modelo de simulación calibrado con coeficientes genéticos específicos para variedades de trigo candeal obtenidos de experimentos de terreno, simula la acumulación de MS y sus componentes, así como los contenidos de proteína en los granos, bajo condiciones de riego. No obstante, bajo una situación de secano y especialmente con bajos montos de precipitación, si bien se simulan valores razonables de MS, se sobreestima los contenidos de proteína en los granos.

La situación anterior hace necesario la cuantificación de la interacción entre el nivel de estrés hídrico, la absorción de nitrógeno y la translocación de este elemento hacia los granos, aspectos que deberán abordarse en proyectos de investigación a futuro.

ANEXO 1.

DESCRIPCION DE LAS PRIENCIPALES PROCESOS BIOFÍSICOS INVOLUCRADOS EN ELA ELABORACION DE UN MODELO DE SIMULACION DEL CULTIVO DE TRIGO CANDEAL

INTRODUCCIÓN

El modelo propuesto es un algoritmo matemático mecanístico que integra la disponibilidad de agua, disponibilidad de nitrógeno y la tasa de crecimiento y fenología del cultivo. La idea es construir o adaptar un modelo simple que pueda predecir el comportamiento del trigo con un mínimo de variables de entrada. Las salidas del modelo deben ser: ontogenia del cultivo en función de la temperatura; acumulación de la biomasa del cultivo como una función de la radiación interceptada; acumulación de la materia seca por los granos como una función del tiempo y la temperatura; acumulación de nitrógeno en los granos como una función de la dosis de nitrógeno, parcialización y fuente usada.

A continuación se detallan matemáticamente algunas de las principales hipótesis en las cuales este modelo se basa.

1. Generación estocástica de variables climáticas.

Este se basa en la implementación de un generador estocástico de precipitaciones, temperaturas máximas y mínimas y radiación solar, todas ellas a nivel diario.

1.1. Precipitaciones.

El fenómeno del monto diario de precipitación, puede ser considerado de naturaleza estocástica. En efecto, esta premisa puede ser respaldada por el hecho de que asociado a cada evento de monto diario de precipitación, existe una probabilidad de ocurrencia, que no necesariamente es independiente de los montos caídos en días anteriores. De esta forma podemos asociar a cada evento una cierta probabilidad de ocurrencia, que depende de los eventos anteriores, denominados probabilidades de transición. Podemos citar como ejemplo, la siguiente matriz:

$$P = \begin{vmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{vmatrix}$$
 (Ec. 1)

donde p11 representa la probabilidad que llueva hoy, dado que ayer llovió, p12 la probabilidad que llueva hoy, dado que ayer no llovió, p21 la probabilidad que no llueva hoy, dado que ayer llovió y p22 la probabilidad que no llueva hoy dado que ayer no llovió. Estos valores de probabilidades de transición son estimados desde series históricas de datos pluviométricos.

Para implementar un método como este, se considera la precipitación diaria como un proceso markoviano, debido a que este se muestra como una herramienta interesante debido a su sencillez y flexibilidad. Esta basado en la capacidad de generar la información suficiente para que este pueda estimar la

probabilidad de proposiciones relativas a la sucesión total de eventos de precipitación que pudiesen ocurrir.

Para la implementación computacional de un modelo simple de simulación estocástico de precipitaciones, se utilizó un enfoque similar a los desarrollos teóricos de diversos autores (Richardson, 1981; Geng *et al..*, 1986; Selker and Haith, 1990)

La precipitación diaria se genera mediante un proceso de cadena de Markov de primer orden, en donde la probabilidad de un resultado de un evento es dependiente de los resultados previos obtenidos en dicho evento (Mansilla, 1993). En el caso de la precipitación, las probabilidades del estado del sistema son solo dos: llueve o no llueve. La matriz de probabilidades de transición, la cual indica el cambio de un estado a otro en el sistema, se encuentra dada por la probabilidad de que llueva hoy dado que ayer llovió (Pww) y la probabilidad de que llueva hoy dado que ayer no llovió (Pwd). Geng et al. (1986) propone que estas probabilidades son dependientes de la fracción de días con lluvia promedio de cada mes (Fwet), de acuerdo a las siguientes ecuaciones:

$$P_{wd} = 0.75 \times Fwet \tag{Ec. 2}$$

$$P_{ww} = 0.25 + P_{wd}$$
 (Ec. 3)

Fwet se obtiene de registros del número de días con lluvias promedios para cada mes, correspondiente a la localidad que desee simular.

El algoritmo de cálculo considera la resta de P_{ww} o P_{wd} (dependiendo si el día previo hubo lluvia o no) de un número aleatorio que varía entre 0 y 1. Si el resultado es menor que cero, entonces ocurre una lluvia. Si se está en presencia de un día con lluvia, el monto pluviométrico es calculado suponiendo que éste obedece a una distribución tipo Weibull, de acuerdo a la siguiente ecuación:

$$rain = 0.84 \times ppx \times (-Ln(r))^{1.333}$$
 (Ec. 4)

donde rain es el monto de lluvia (mm día⁻¹), ppx es promedio de lluvia por tormenta (calculado en función de promedio de precipitación mensual dividido por el número promedio de lluvias del mes) y r es un número aleatorio con distribución uniforme generado por el computador.

1.2. Simulación de temperaturas.

La forma más sencilla de simular la variación diaria de las temperaturas máximas (°C) y mínimas (°C), es suponer que estas variables siguen una tendencia de distribución dentro del año, la cual puede ser descrita por un modelo sinusoidal, basado en el propuesto por Charles-Edwards (1982), el cual

considera que los residuos de este ajuste son aleatorios y que estos se distribuyen normalmente, siendo también estos independientes entre sí. Los residuos presentan una media igual a cero y una desviación estándar σ:

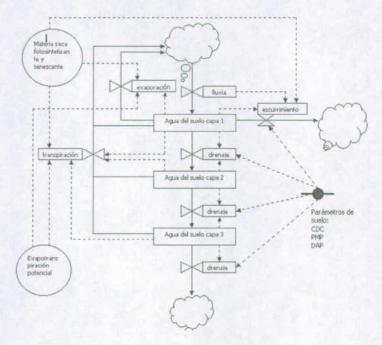
$$Y(i) = Y_{max} - \left(1 - seno\left(\frac{(75 + i) \times \pi}{180}\right)\right) \times \left(Y_{max} - Y_{min}\right) \times 0.5 + \varepsilon$$
 (Ec. 5)

donde

$$\varepsilon = Normal(0, \sigma)$$
 (Ec. 6)

El problema se reduce a ajustar el modelo sinusoidal a los datos diarios para la localidad, para la estimación de los coeficientes de la ecuación $N^{\rm o}$ 5, así como para la estimación del error estándar de la misma, el cual es una medida de la magnitud de σ .

1.3. Simulación de la radiación solar global.


La simulación diaria de la radiación solar global diaria (RSG, MJ m-2 día⁻¹), se realiza utilizando el algoritmo PINSOL.BAS (com. pers. 2003)¹ y la partir de las ecuaciones propuestas por Campbell (1997). La rutina computacional esta basada en variables como la latitud, pendiente y exposición del sitio, así como de variables astronómicas que son dependientes del día juliano y de la amplitud térmica diaria.

2. Submodelo de balance hídrico.

Uno de los factores más determinantes en la producción de un cultivo es la disponibilidad de agua. De acuerdo con lo anterior, es necesario simular un balance hídrico al nivel de la zona de raíces, la cual puede subdividirse en varios estratos. El diagrama de flujo de este proceso se presenta en la Figura 1.

PINSOL.BAS: Algoritmo desarrollado los profesionales Mark Seyfried y Clayton Hanson, pertenecientes a North West Watershed Research Center- Agricultural Research Service (NWRC-ARS- USDA). Comunicación personal, 2003.

Figura 1. Diagrama de flujo simplificado del proceso de balance hídrico en un suelo en el cual el agua se almacena en tres estratos separados.

En cada una de estos estratos es necesario conocer las constantes hídricas, capacidad de campo (cdc, mm), punto de marchitez permanente (pmp, mm) y la densidad aparente (dap, g cm⁻³). Las entradas de agua al suelo están representadas por la precipitación efectiva (PPef, mm día⁻¹), la cual es la resultante de la resta entre la precipitación y el escurrimiento superficial. Las salidas de agua del sistema son proveniente de la transpiración (TR mm día⁻¹), la evaporación directa desde el suelo (ER, mm día⁻¹) y el drenaje (DREN, mm día⁻¹). La ecuación de balance hídrico queda entonces definida por la siguiente expresión:

$$SM_{t} = SM_{t-1} + PPef - ER - TR - DREN$$
 (Ec.7)

donde SM_t y SM_{t-1} es la humedad de suelo en el día t y t-1, respectivamente.

2.1. Precipitación efectiva.

Es la resultante de la resta entre la precipitación diaria y el escurrimiento superficial. Esta última variable es calculada mediante el método de las curvas número propuesto por el Soil Conservation Service (citado por Martínez de Azagra y Navarro, 1996):

$$ESCSUP = \frac{(RAIN - 0.2 \times S)^2}{RAIN + 0.8 \times S}$$
 (Ec.8)

Donde RAIN es la precipitación (mm día⁻¹) y S es un parámetro que se obtiene a partir del número de curva de la cuenca (CN). Este parámetro debe ser un dato de entrada que es característico del tipo de suelo y condición hidrológica del mismo (para cultivos se puede suponer un valor de CN igual a 70). Se producirá escurrimiento superficial cuando la precipitación supere el 20% del valor del parámetro S.

2.2. Evaporación directa desde el suelo.

Esta tasa se supone que ocurre desde el primer estrato del suelo, la cual se supone de un espesor de 10 cm. Cuando el contenido de agua del suelo es superior al punto de marchitez permanente, la evaporación ocurre a una tasa igual a la evaporación potencial (EP, mm día⁻¹). Esta última variable depende de la evapotranspiración de referencia (Eo, mm día⁻¹) y de la cobertura efectiva del suelo (COBef) (Rickert *et al.*, 2000). Cuando el agua del estrato baja del punto de marchitez permanente, la evaporación se reduce según el contenido relativo de humedad existente en el estrato (IDHv), referido a un contenido de humedad residual, estimado en un tercio del punto de marchitez permanente (Campbell, 1997). Las ecuaciones que describen el proceso anterior son las siguientes:

$$Ep = Eo \times (1 - COB_{ef})$$
 (Ec.9)

$$ER = Ep \times IDHv$$
 (Ec.10)

La evapotranspiración de referencia (Eo, mm día⁻¹), es calculada mediante la ecuación de Priestley y Taylor:

$$Eo = 30.6 \times RN \times \frac{delta}{delta + 0.68}$$
 (Ec.11)

En la ecuación anterior, RN es la radiación neta (RN, MJ m-2 día⁻¹), y el coeficiente delta representa la pendiente de la curva presión de vapor a saturación versus la temperatura del aire. Las variables anteriormente definidas se calculan con las siguientes ecuaciones:

$$RN = \frac{2 \times \pi}{365} \times RSG \times (1 - ALB)$$
 (Ec.12)

Donde RSG (MJ m⁻² día⁻¹) es la radiación solar global (MJ m⁻² día⁻¹) y ALB es el albedo de la vegetación, coeficiente que es relativamente constante y que normalmente observa valores del orden de 24% (ALB = 0,24).

La variable delta es función de la temperatura media del aire, y es calculada según la ecuación siguiente:

$$delta = \left(\frac{5304}{(TMD + 273)^2}\right) \times e^{\left(21.3 - \frac{5304}{TMD + 273}\right)}$$
(Ec.13)

Donde tmd y Ra son la temperatura media diaria (°C) y la radiación solar global (MJ m⁻² día⁻¹), respectivamente. Ambas variables se obtienen mediante el generador climático o pueden ser leídas de archivos con datos reales.

El índice de restricción hídrica para el proceso evaporativo queda calculado de acuerdo a la siguiente ecuación (Campbell, 1997):

$$IDHV_{i} = \left(\frac{(SM - 0.33 \times pmp)_{i}}{(pmp - 0.33 \times pmp)_{i}}\right)^{2}$$
(Ec.14)

En la ecuación anterior SM_i (mm) es la humedad del suelo del primer estrato y pmp_i (mm), el punto de marchitez permanente del mismo.

2.3. Transpiración del cultivo.

La transpiración de cada estrato de suelo (TRE_i, mm día⁻¹) es simulada a partir de la transpiración potencial (TP, mm día⁻¹), de un factor de restricción hídrica a la transpiración del estrato de suelo (FRTDH_i) y de la proporción de raíces que hay en el estrato, respecto del largo total de raíces (Propraices_i):

$$TRE_i = TP \times FRTDH_i \times Propraices_i$$
 (Ec.15)

La transpiración potencial es simulada en función de la evapotranspiración de referencia (Eo, mm día⁻¹), calculada a partir de variables climáticas (temperatura y radiación) y un factor de cobertura vegetal (COB_V), el cual a su vez es función de la materia seca verde:

$$TP = Eo \times COB_V \tag{Ec.16}$$

El factor que reduce a la transpiración potencial depende del nivel de agua disponible en el estrato de suelo:

$$FRTDH_i = \frac{IDH_i}{IDHcrit}$$
 si $IDH_i < IDHcrit$ (Ec.17.1)

$$FRTDH_i = 1$$
 si $IDH_i \ge IDHcrit$ (Ec.17.2)

Donde IDH_i es el índice de déficit hídrico del estrato de suelo, el cual se calcula en función del nivel de agua (SM_i, mm) y de las constantes hídricas, capacidad de campo (cdc_i, mm) y punto de marchitez permanente (pmp_i, mm) de la misma:

$$IDH_{i} = \frac{(SM - pmp)_{i}}{(cdc - pmp)_{i}}$$
 (Ec.18)

IDHcrit representa el valor del índice de humedad (IDH_i), por sobre el cual la transpiración de la cultivo no se ve restringida, e indica el grado de resistencia al déficit hídrico de las especies vegetales. Generalmente se acepta un valor ente 0,5-0,8 para cultivos anuales de arraigamiento medio (Doorembos y Pruitt, 1976, Allen, *et al.*, 1998).

La transpiración real del cultivo (TR, mm día⁻¹) se calcula sumando los aportes de cada una de los estratos:

$$TR = \sum_{i=1}^{n} TRE_{i}$$
 (Ec.19)

2.4. Drenaje.

El drenaje de agua de un estrato de suelo (DREN_i, mm día⁻¹) se calcula suponiendo que es toda aquella agua que excede a la capacidad de campo, la cual pasa con posterioridad al siguiente estrato de suelo (Campbell, 1997):

$$DRENi = SM_i - cdc_i$$
 si $SM_i > cdc$ (Ec.20)

$$DREN_i = 0$$
 si $SM_i \le cdc$ (Ec.21)

3. Submodelo de balance de Nitrógeno en el suelo.

Al igual que en el caso del balance hídrico, este subprograma realiza un balance de nitrógeno en cada uno de los estratos del suelo. Para lo anterior se consideran los procesos de mineralización, nitrificación, lixiviación y absorción de nitrógeno por parte el cultivo. Además, se consideran la aplicación de fertilizantes y su descomposición en el suelo, según la fuente nitrogenada que ellos poseen.

3.1. Mineralización de nitrógeno en el suelo.

Este proceso esta basado en el modelo propuesto por Matus y Rodríguez (1994) y cuyo esquema general se presenta en la Figura 2.

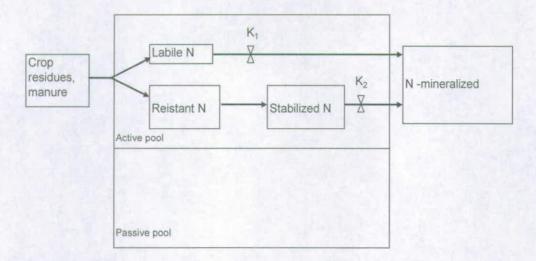


Figura 2. Diagrama simplificado del suministro de N en el suelo.

El modelo anterior considera un pool lábil (PNL_i, kg ha⁻¹) y un pool resistente (PNS_i kg ha⁻¹) de nitrógeno en el suelo, cuyas tasas de mineralización, Minl_i y Mins_i (kg ha⁻¹ día⁻¹), respectivamente, son modeladas como reacciones de primer orden:

$$Minl_i = Ktnl_i \times red min_i \times PNL_i$$
 (Ec.22)

$$Mins_i = Ktns_i \times red min_i \times PNS_i$$
 (Ec.23)

En las ecuaciones anteriores, las constantes de mineralización (Knl y Kns, día⁻¹) son afectadas por la humedad y la temperatura de cada estrato de suelo mediante una función de restricción (redmin_i), la cual refleja el efecto combinado de estas variables ambientales:

$$red min_i = rdftm_i \times rdfwm_i$$
 (Ec.24)

Donde rdftm_i y rdfwm_i, son el efecto de la temperatura media (tempsuelo_i °C) y la humedad de suelo del estrato i (SM, mm) sobre la tasa de mineralización, respectivamente:

$$rdftm_i = e^{0.0616 \times (tempsuelo_i - 35)}$$
 (Ec.25)

$$rdfwm_i = 1.11 \times (SM_i / cdc_i) - 0.138$$
 (Ec.26)

Nitrificación de nitrógeno en el suelo.

Este proceso considera la transformación del N amoniacal producido por la mineralización de la materia orgánica (NH4_i, kg ha⁻¹), a N mineral en su forma

nítrica (NO3_i kg ha⁻¹). Al igual que la mineralización, este proceso es modelado como una reacción de primer orden, cuya tasa constante (Kn, día⁻¹) es afectada por el efecto combinado de la temperatura y humedad del estrato de suelo (Ecuación 24).

$$Nitrif_i = Kn \times redmin_i \times NH4_i$$
 (Ec.27)

3.3. Lixiviación de nitrógeno en el suelo.

La lixiviación de N mineral (Lix_i, kg N ha⁻¹ día⁻¹) es producida por el agua en cada estrato de suelo que excede la capacidad de campo, la cual afecta fundamentalmente a los nitratos que se acumulan en el suelo (NO3_i, kg ha⁻¹).

$$Lix_i = NO3_i \times F_i \tag{Ec.28}$$

El coeficiente de lixiviación (Fi) es dependiente del agua de drenaje (Dren_i mm) y de la fracción de arena de la estrato de suelo (Fracarena_i), y se calcula según la ecuación citada por Parton *et al.* (1993):

$$F_i = (0.1 \times DREN_i / 18) \times (0.2 + 0.7 \times 0.01 \times Fracarena_i)$$
 (Ec.29)

3.4. Absorción de N por el cultivo.

La absorción de N es regulada por la acumulación térmica la cual define una extracción máxima (absNmax(ctu), kg ha⁻¹ día⁻¹) la cual se ajusta por efectos del estrés hídrico (frcdh). La absorción así calculada se reparte en cada estrato de suelo, en forma proporcional a la fracción de raíces (fracraices_i) que existe en cada uno de estos, obteniendo así la extracción de N de cada estrato (rknab_i) Matemáticamente la hipótesis anterior se expresa según la siguiente ecuación:

$$rknab_i = absNmax(ctu) \times frcdh \times fracraices_i$$
 (Ec. 30)

Si cantidad de N en el estrato de suelo es inferior a la tasa de extracción calculada mediante la Ec. 30, el cultivo solamente extrae un monto igual a la cantidad de N mineral existente en el estrato de suelo.

El N absorbido por el cultivo se acumula en los tejidos (hojas y tallos) hasta el inicio del crecimiento del grano, momento en el cual se da inicio a la translocación de este N acumulado hacia los granos. La translocación de N desde hojas y tallos implica senescencia de estos tejidos.

3.5. Aplicación de fertilizantes.

Este proceso opera como una tasa discreta en la cual de acuerdo con una o varias fechas definidas, se aplica una cantidad conocida de fertilizante nitrogenado de origen mineral, el cual puede ser urea, amoniacal, nítrico o una mezcla de los dos últimos, los cuales se aplican al estrato superficial del suelo. Si el fertilizante es urea, ésta se descompone según una reacción de primer orden, con tasa constante (Ku día⁻¹), modificada por los efectos combinados de la temperatura y humedad del primer estrato del suelo (Tdescurea_i, kg N ha⁻¹ día⁻¹) y proporcional a la cantidad de N ureico presente en el estrato (Nurea_i, kg ha⁻¹):

$$Tdescurea_{i} = Ku \times redmin_{i} \times Nurea_{i}$$
 (Ec.31)

El N descompuesto por el proceso anterior, entra al pool mineral correspondiente a amonio del primer estrato de suelo.

Si el fertilizante mineral es aplicado como amonio y/o nitrato, éste entra directamente a sus respectivos pooles dentro del primer estrato del suelo, de donde puede ser absorbido y/o lixiviado.

4. Submodelo de producción de fitomasa y fonología del cultivo de trigo candeal.

4.1. Crecimiento del cultivo.

El submodelo de crecimiento de la fitomasa aérea esta basado en el propuesto por Amir y Sinclair (1991) y Sinclair y Amir (1992). La tasa de crecimiento del cultivo (phs, kg ha⁻¹ día⁻¹), se calcula en función de la radiación solar global interceptada por la cubierta vegetal, lo cual define la tasa máxima de este proceso. Esta tasa es afectada por funciones de restricción, cuantificadas como multiplicadores (valores relativos entre 0 y 1), los cuales dan cuenta de los efectos que tiene la restricción hídrica (frcdh) y el contenido de N de las hojas (frcdn) sobre este proceso:

$$phs = 10 \times 0.45 \times rsg \times rue \times inter \times fredh \times fredh$$
 Ec.32)

En la ecuación anterior, rsg es la radiación solar global (MJ m⁻² día⁻¹), variable que puede ser leída o generada a través del simulador climático. La variable rue es la eficiencia de uso de la radiación fotosintéticamente activa interceptada (g MS MJ⁻¹) e inter es la fracción de radiación solar fotosintéticamente activa interceptada, la cual depende del coeficiente de extinción de la radiación solar global (kext) y del el índice de área foliar del cultivo (lai, m2 hoja m⁻² suelo):

$$inter = 1 - e^{-kext \times lat}$$
 (Ec.33)

La función de restricción del crecimiento por efectos del estrés hídrico (frcdh), es calculada en función del índice global de humedad disponible en el suelo (ftsw), el cual es a su vez estimado en función de los índices de satisfacción hídrica de cada estrato (Ec. 18).

$$frcdh = \frac{2}{1 + e^{-14 \times fisw}} - 1$$
 (Ec.34)

A su vez, el efecto del déficit de N (frcdn) es función del contenido de N de los tejidos foliares, lo cual es cuantificado mediante el contenido específico de N en las hojas (spln, g N m⁻² de hoja), variable que a su vez es función del contenido de N de las hojas (leafN, g N m⁻² de hojas) y del índice de área foliar del cultivo:

$$frcdn = 1 - e^{-cf * (spln - 0.3)}$$
 (Ec.35)

$$spln = 0,1 \times leafN / lai$$
 (Ec.36)

4.2. Fenología del cultivo.

En este modelo el control de la fenología esta basado en la acumulación de unidades termales (grados-día), la cual controla diferentes procesos como la germinación y emergencia del cultivo, desarrollo y crecimiento del índice de área foliar, inicio de la antesis, transferencia de N a los granos y momento de la maduración del cultivo.

4.2.1. Germinación y emergencia del cultivo.

Este proceso se calcula mediante la acumulación de unidades termales por sobre un valor umbral de 2,6 °C, a partir del momento de la siembra. Cuando esta acumulación llega a un valore crítico de 79 °C día, se produce la emergencia del cultivo (Villalobos *et al.*, 2002).

4.2.2 Desarrollo y crecimiento del índice de área foliar.

En estos procesos se considera la simulación de número de hojas del eje principal y del número de hojas de los tallos secundarios (macollos), basándose en el concepto de filocrono (número de grados-días necesarios para la aparición de una hoja). La acumulación de grados-días (base 0 °C) comienza a partir de de la emergencia del cultivo. Cada hoja requiere de la acumulación de una cierta cantidad de grados-días. Cuando el eje principal logra tener 3 hojas, se inicia la formación de hojas del eje secundario (inicio de macolla). En función del número de hojas presentes en cada planta (leafnumber), del incremento del número de hojas de cada planta (deltaleafnumber), y de los coeficientes px y

ax, propios y característicos de la variedad de trigo, se estima el incremento del área de cada planta (deltaleafarea, m² planta-¹ día-¹):

$$deltaleafarea = px \times 0,0001 \times ax \times (leafnumber^{(px-1)}) \times deltaleafnumber$$
 Ec.37)

Conocida el incremento del área individual de cada planta, la densidad de siembra efectiva (pop, Nº plantas m²) y un factor de restricción de la expansión del área foliar por efecto el déficit hídrico (frafdh), es posible por lo tanto estimar el incremento del índice de área foliar del cultivo (deltalai, m² hoja m² suelo día¹¹):

$$deltalai = pop \times deltaleafarea \times frafdh$$
 (Ec.38)

El área foliar del cultivo está sujeto a pérdidas por senescencia, las cuales están asociadas a la transferencia de N desde las hojas a los tallos, lo cual ocurre durante la fase vegetativa del cultivo (emergencia-antesis), en la medida que el contenido de N del cultivo baje de un contenido crítico. Posteriormente, durante el periodo post-antesis estas pérdidas de N se incrementan por efecto de la transferencia de N desde las hojas hacia los granos, con la consecuente pérdida de área foliar.

4.2.3 Inicio de la antesis.

Este evento también es controlado mediante la acumulación de grados-días (base 0° C), pero a partir del fin del crecimiento de las hojas, evento que se produce cuando el eje secundario completa su número total de hojas. El momento de inicio de la antesis se produce cuando dicha acumulación completa un valor crítico característico de la variedad.

4.2.4 Transferencia de N hacia los granos y producción de los mismos.

Desde el momento que se inicia la antesis, paralelamente se inicia el proceso de transferencia de N del los tejidos vegetativos (hojas y tallos) hacia los granos en crecimiento. Este proceso ocurre a una tasa máxima (ntr, día⁻¹) que es función del N acumulado en los tejidos vegetativos (tn, kg N ha⁻¹), de las unidades termales (tu, °C día) y un valor máximo de acumulación térmica característico de la variedad (dgcrecsem, °C día):

$$ntr = tn \times (tu / dgcrecsem)$$
 (Ec.39)

El proceso de translocación de N desde los tejidos vegetativos hacia las semillas conlleva asociado pérdida de material fotosintético en las hojas, lo que incrementa la senescencia de las mismas.

Paralelo al proceso antes descrito, se produce el incremento en crecimiento de los granos, lo que se calcula empíricamente mediante la utilización del concepto

de índice de cosecha (hi). El incremento de hi, se supone que ocurre a una tasa diaria constante a partir del momento de inicio de la antesis y concluye cuando se finaliza el crecimiento de las semillas. Finalizado el crecimiento de las semillas, la producción de granos (Prodgranos, kg ha⁻¹) se calcula tomando en cuentas la acumulación de fitomasa aérea total (bm, kg ha⁻¹) y el índice de cosecha del cultivo (hi):

$$Prodgranos = bm \times hi$$
 (Ec.40)

El contenido de proteína cruda de los mismos (PCgrano, %), se calcula considerando el N acumulado en los granos, la producción de granos y un factor que transforma N a proteína, cuyo valor es igual a 6,25:

$$PCgrano = Nacgranos \times 6,25 \times 100 / Prodgranos$$
 (Ec.41)

El cultivo finaliza su ciclo de desarrollo cuando la totalidad del N translocable acumulado en hojas y tallos es movilizado hacia los granos.

5. Bibliografía

Allen, G.R., L. Pereira, D. Raes and M. Smith. 1998. Crop evapotranspiration. Guidelines for computing crop water requirements. FAO Irrigation and Drainage paper 56. Roma. Italy. 300 p.

Amir J., y T. R. Sinclair. 1991. A model of the temperature and solar-radiation effects on spring wheat growth and yield. Field Crops Res. 28 47 -58.

Campbell, G. 1997. Modelos simples de simulación para el manejo del riego. Universidad de Concepción, Facultad de Ingeniería agrícola, Departamento de riego y drenaje. Campus Chillán.

Charles-Edwards, D. 1982. Physiological Determinants of Crop Growth. Academic Press Australia. Australia. 161p.

Doorembos, J. y Pruitt, W. O. 1976. Las necesidades de agua de los cultivos. Estudio FAO: Riego y Drenaje Nº 24. 194 p.

Geng, S., F.W.T. Penning de Vries, and I. Supit. 1986. A simple method for generating daily rainfall data, Agric. Forest Meteorol. 36:363-376.

Mansilla, M. A. 1993. Cadenas de Markov. Capítulo. X. p. 121⁻¹26. In Silva, G.M. y M. A. Mansilla (eds.) Análisis de sistemas en producción animal. Teoría y aplicaciones. Universidad de Chile. Facultad de Ciencias Agrarias y Forestales, Santiago, Chile.

Martínez de Azagra, A. y Navarro, H. J. 1996. Hidrología Forestal. El ciclo hidrológico. Secretariado de Publicaciones. Universidad de Valladolid. 286 p.

Matus F.J. and J. Rodriguez. 1994. A simple model for estimating the contribution of nitrogen mineralization to the nitrogen supply of crops from a stabilized pool of soil organic matter and recent organic input. Plant and Soil. 162, 259:271.

Parton, W. J.; Scurlock, M. O.; Ojima D. S.; Gilmanov, T. G.; Scholes, R. J.; Schimel, D. S.; Kirchner, T.; Meneaut, J-C; Seastedt, T.; García Moya, E.; Kamnalrut, A. and Kinyamario, J. I. 1993. Observations and modelling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochemical Cycles 7(4): 785 - 809.

Richardson, C.W. 1981. Stochastic simulation of daily precipitation, temperature and solar radiation. Water Resour. Res. 17:182_190.

Rickert, K. G., Stuth, J. W. and G. M Mckeon, 2000. Modelling Pasture and Animal Production. In: Mannetje, L. and Jones, R. M. (Eds.). Field and

Laboratory Methods for Grassland and Animal Production Research. Cap. 3. pp 29 –66.

Selker, J. S. and D.A. Haith. 1990. Development and testing of single parameter precipitation distributions. Water Resour. Res. 26:2773⁻²740.

Sinclair, T.R. and J. Amir. 1992. A model to assess nitrogen limitations on the growth and yield of spring wheat. Field Crops Res. 30, 63-78.

Villalobos, J. L. Mateos, F. Orgaz y E. Federes.2002. Fitotecnia, Bases y tecnologías de la producción agrícola. 496 p. Ediciones Mundi-Prensa. Madrid, España.

INFORME PROYECTO:

"Zonificación Por Rendimiento y Calidad del Trigo Candeal entre la RM y La VIII Región"

Zonificación del potencial productivo y de calidad para trigo candeal a partir un modelo de simulación

> Luis Morales S. Giorgio Castellaro G. Francisco Lang T. Paola Silva C.

INTRODUCCION

Los sistemas de información geográfica (SIG) constituyen una valiosa herramienta de apoyo a la toma de decisiones en gran número de problemas. El objetivo de realizar este análisis como complemento al de cluster es de asignar los grupos en los cuales no haya convergencia y no sea posible asignarle un grupo de pertenencia. De esta forma se asignó un objeto a un grupo atendiendo a un conjunto de criterios relacionados todos ellos con información georreferenciada. Para el proceso de asignación, al igual que un análisis de cluster, se definió para cada objeto el mismo vector de propiedades. Estos vectores de propiedades se manifiestan en el espacio como un conjunto de capas de información, correspondiente a un conjunto de matrices con una resolución espacial de 90 m. En consecuencia, al definir un conjunto de indicadores elementales, fue posible desarrollar un análisis multicriterio, a partir del cual se obtuvieron valores que permitieron clasificar la zona de estudio por rendimiento y calidad. Posterior se construyeron de mapas de superficie difusa, donde laa variables rendimiento y contenido de proteína en gran fueron conceptualizadas por un índice (IRP). Este índice varía desde cero a 200, donde estas describen apropiadamente las condiciones climáticas y de suelo, potenciales y restrictivas del trigo. Este índice corresponde a una suma lineal ponderada del rendimiento y contenido de proteína en grano de un área específica.

METODO

8.- Zonificar el potencial productivo y de calidad para trigo candeal a partir un modelo de simulación.

Se realizó una zonificación tomando en consideración las variables agroclimáticas más relevantes relacionadas con el rendimiento y la calidad del trigo candeal. Entre las anteriores, se utilizaron, la suma de temperaturas, amplitud de las mismas, cuociente fototérmico, periodo y fechas en que ocurre la primera y última helada de la temporada, entre las más importantes. Estas variables fueron estimadas a partir de los planos de información básicos (archivos raster de temperaturas y radiación a nivel medio mensual). Esta cartografía se denomino agrotopoclima.

La cartografía digital de agrotopoclima y suelos y el modelo de simulación de productividad y fenología del trigo candeal desarrollado, se realizó una estimación de la producción de granos y su correspondiente contenido de proteína, para diferentes situaciones de manejo agronómico fertilización nitrogenada como dosis, parcialización y fuente utilizada), ya que estos factores, en primera aproximación, permiten la optimización de la calidad y del rendimiento del trigo candeal.

A partir de la simulación de muchos años (100 años) mediante sucesivas iteraciones utilizando el modelo integrado a las bases de datos asociadas a la cartografía edafoclimática mencionada, se calcularon los valores promedios de rendimiento (qq/ha) y coeficiente de variación (%). A partir de dichos valores, y utilizando procedimiento de agrupación mencionados en la metodología indicada en el punto 4 de la metodología, se zonificó espacialmente tanto en contenido de proteína en grano, como al rendimiento. Esta zonificación puede ser visualizada y manejada mediante un sistema de información geográfica.

RESULTADOS

El modelo de simulación fue corrido por cada Región en la zona de estudio, correspondiente a las regiones V a la VIII. En cada Región el modelo fue implementado de tal forma de ser corrido en condiciones de riego y secano. Primeramente se hicieron pruebas con una simplificación del área de estudio reducida a información comunal, de tal forma de testear rápidamente las debilidades del modelo.

En las figuras 1 a la 5 se muestran los resultados de la simulación para las Regiones en estudio del rendimiento en qq/ha y el contenido de proteína en grano en % para la condición de riego y secano.

El rendimiento en la V Región bajo riego fluctúo entre 61 y 80 qq/ha con algunas localidades sobre este valor, en condiciones de secano no sobrepasa los 60 qq/ha. En la RM bajo riego dominan las localidades con más de 80 qq/ha. Mientras que en secano los valores no sobrepasan los 60 qq/ha. La VI Región bajo riego dominan las localidades con rendimientos entre 61 y 80 qq/ha, con algunas localidades sobre 80 qq/ha, en condiciones de secano dominan los rendimientos entre 41 y 60 qq/ha, observándose una situación muy similar a la descrita para la V región. En la VII Región bajo riego dominan los suelos con rendimientos entre 21 y 40 qq/ha, en secano el 50% de las localidades presenta rendimientos menores a 20 qq/ha, siendo por lejos la región con los más bajos rendimientos, debido a los suelos alfisoles y vertisoles que dominan en esta región. La VIII región bajo riego dominan los rendimientos sobre 61 y 81 qq/ha, en secano dominan los rendimientos entre 41 y 60 qq/ha en el valle, mientras que en precordillera, área de suelos predominantemente andisoles, los rendimientos fluctuaron entre 61 y 80 qq/ha.

Se puede observar que el contenido de proteína en el grano aumenta de la condición de riego a secano y disminuye desde la V a la VIII región. La disminución del contenido de proteína de norte a sur se asocia a una mayor precipitación que ocasiona lixiviación de nitratos. Se observa una mayor heterogeneidad en cuanto a contenido de proteína en el grano en la VII Región asociado a la gran diversidad de suelos. La VIII región se caracteriza por presentar mayor homogeneidad, pero con valores de contenido de proteína bajos. Destacando dentro de esta región las comunas ubicadas en la zona norte del valle central como San Carlos, San Nicolás y Chillán. La Región Metropolitana es la que presenta una mayor homogeneidad con valores altos de proteína (superiores al 11 %) destacando las comunas de María Pinto, El Monte, Isla de Maipú Talagante, Peñaflor, Calera de Tango y Maipú.

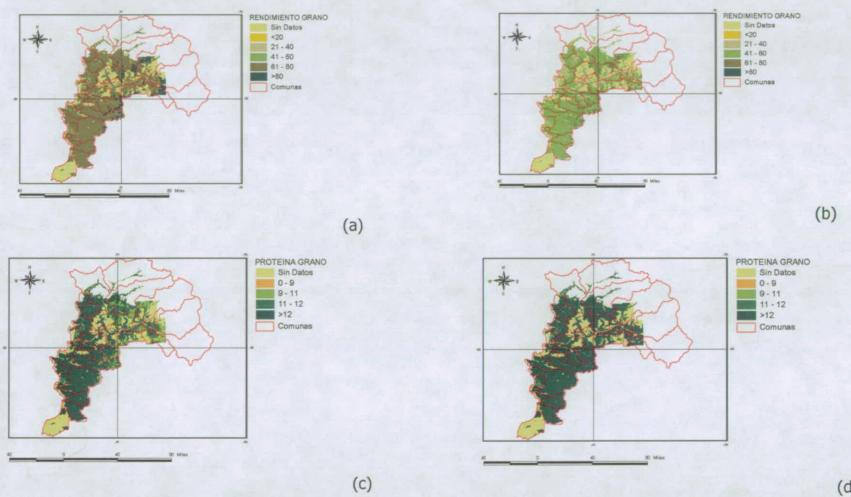


Figura 1.- Rendimiento en qq/ha para la Región de Valparaíso para condiciones de riego(a) y secano (b). Contenido de proteína en grano (%) para condiciones de riego (c) y secano (d).

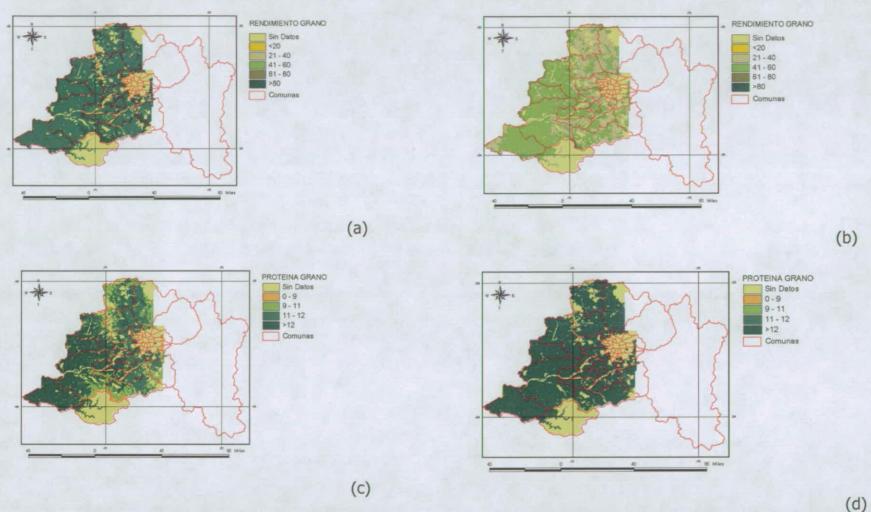


Figura 2.- Rendimiento en qq/ha para la Región Metropolitana para condiciones de riego(a) y secano (b). Contenido de proteína en grano (%) para condiciones de riego (c) y secano (d).

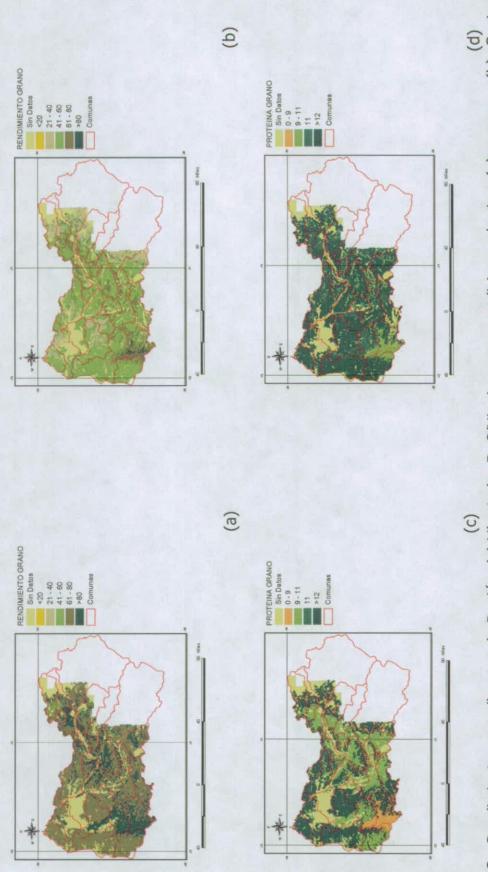
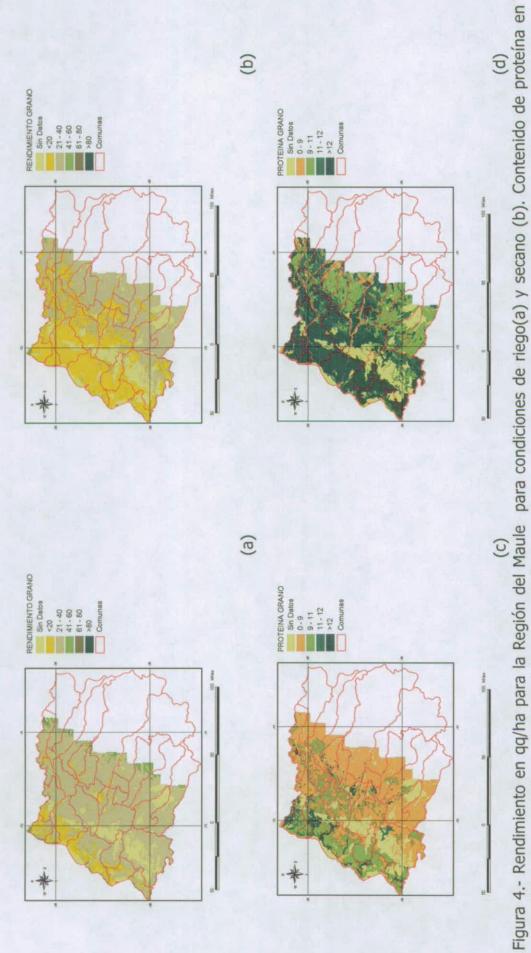
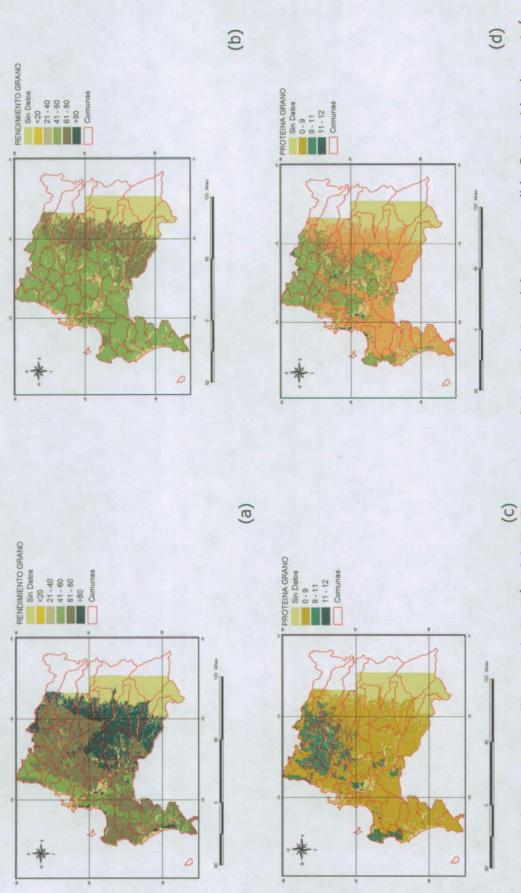




Figura 3.- Rendimiento en qq/ha para la Región del Libertador B. O'Higgins para condiciones de riego(a) y secano (b). Contenido de proteína en grano (%) para condiciones de riego (c) y secano (d).

grano (%) para condiciones de riego (c) y secano (d).

(c) (c) Figura 5.- Rendimiento en qq/ha para la Región del Bio-Bio para condiciones de riego(a) y secano (b). Contenido de proteína en grano (%) para condiciones de riego (c) y secano (d).

Índice de rendimiento y contenido de proteína en grano (IRP)

Para integrar los resultados de rendimiento y contenido de proteína en grano se utilizó el criterio asociado a la recepción por parte de los compradores, es decir un indicador económico. La calidad de cocción está asociada a la capacidad del producto de mantener una buen textura durante y después de la cocción, sin transformarse en una masa gruesa y pegajosa. Las pastas hechas con gluten fuerte tienen mayor firmeza y estabilidad en la cocción. La vitreosidad y un alto contenido de proteína se asocian con una mejor calidad de cocción que la obtenida con granos amarengados, que poseen un contenido de proteína bajo. Trigos que poseen al menos 13% de proteína pueden proveer un excelente producto, mientras que con menos de 11% de proteína dan un producto de baja calidad de cocción (Matweef, 1963). La cantidad de proteína puede afectar en 30-40% la calidad de cocción de la pasta. La industria nacional bonifica por proteína sobre el 11% de proteína.

Contenido de proteína	Bonificación (%)
10.00-10.99	0
11.00-11.99	2
12.00-12.99	3
13.00-13.99	4
14.00 y más	5

Fuente: Luchetti.

En base a esto se estimo, para un agricultor tipo, las distintas entradas por concepto de bonificación para una producción estándar y rendimiento variable en torno a ese valor. La figura 1 muestra el resultado de este análisis, y en ella se observa que el valor de venta disminuye linealmente, pero suave en relación a la proteína en grano.

Este hecho permitió establecer un indicador de los montos obtenidos por un agricultor tipo en términos del rendimiento y contenido de proteína en grano, de acuerdo a la siguiente ecuación:

$$IRP = 100 \left[0.75 \left(\frac{REND}{REND_{\text{max}}} \right) + 0.25 \left(\frac{PRO}{PRO_{\text{max}}} \right) \right]$$

Donde REND corresponde al rendimiento obtenido en quintales por hectárea, REND_{max} es el rendimiento máximo teórico esperado para la zona, PRO es el

contenido de proteína en grano en %, y PRO_{max} es la proteína máxima teórica esperado para la zona. Los valores utilizados corresponden a 140 y 16 para rendimiento máximo teórico y proteína máxima teórica, respectivamente.

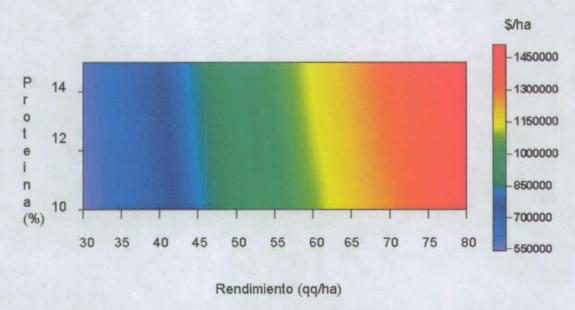


Figura 6.- Montos obtenidos por un agricultor tipo en referencia a la bonificación efectuada por el contenido de proteína en grano.

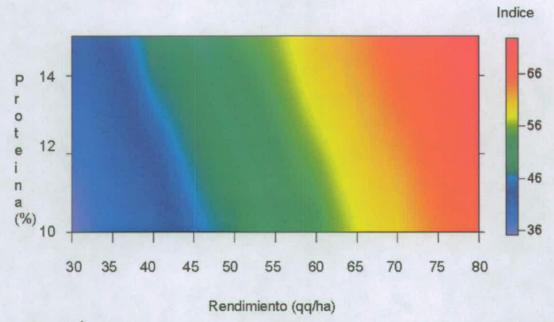


Figura 7.- Índice de rendimiento y proteína en grano (IRP) y su variación de acuerdo a las variables de rendimiento(qq/ha) y proteína en grano (%).

Este índice fue aplicado en cada Región del área de estudio para generar una cartografía específica asociada a los resultados obtenidos por el modelo en riego y secano respectivamente. Las figuras 8 a la 12 muestran los resultados del índice en cada Región para condiciones de riego y secano.

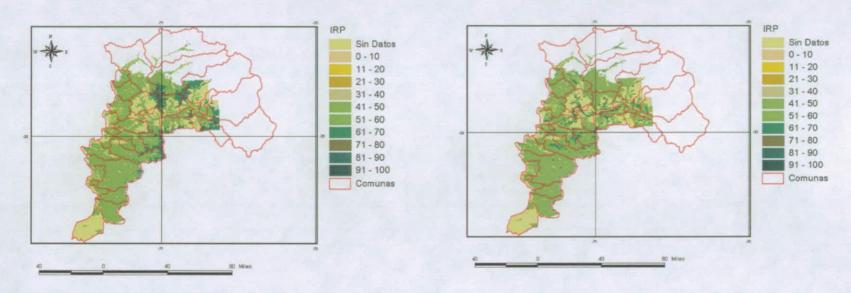


Figura 8.- Índice de rendimiento (qq/ha) y contenido de proteína en grano (%) para la Región de Valparaiso para condiciones de riego y secano.

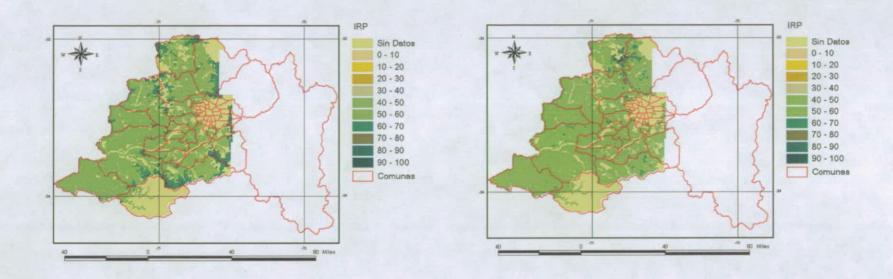


Figura 9.- Índice de rendimiento (qq/ha) y contenido de proteína en grano (%) para la Región Metropolitana para condiciones de riego y secano.

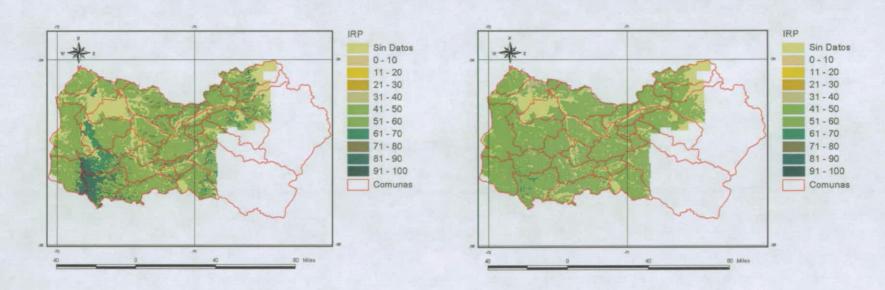


Figura 10.- Indice de rendimiento (qq/ha) y contenido de proteína en grano (%) para la Región del Libertador B. O'Higgins para condiciones de riego y secano.

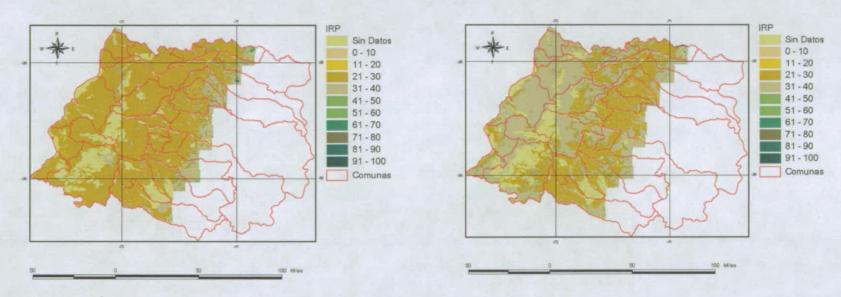


Figura 11.- Índice de rendimiento (qq/ha) y contenido de proteína en grano (%) para la Región del Maule para condiciones de riego y secano.

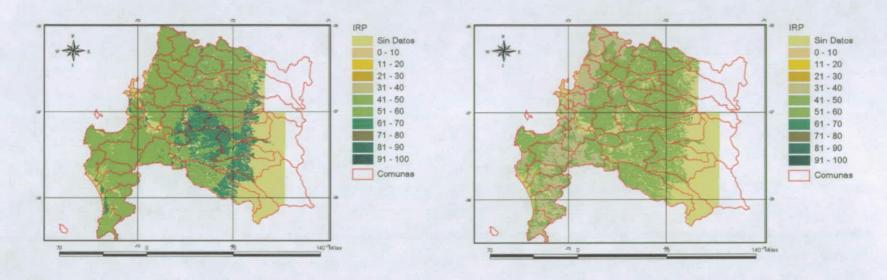


Figura 12.- Indice de rendimiento (qq/ha) y contenido de proteína en grano (%) para la Región del Bio-Bio para condiciones de riego y secano.

BIBLIOGRAFÍA CONSULTADA

Antoine, J. 1994. Linking geographical information systems (GIS) and FAO's agroecological zone (AEZ) models for land resource appraisal. pp. 35-52. In: Proceedings of the regional workshop on Agro-Ecological Zones methodology and Applications. Bangkok, Thailand 17-23 November 1991. World Soil Resources Report 75. Rome.

Antoine, J., van Waveren, E., de la Rosa, D., Mayol, F. y Moreno, J.A. 1994. FAO-ISRIC-CSIC Soil Database, Multilingual Version. FAO, Rome.

Beek, K.J., Burrough, P.A. y McCormack, D.E. (eds.). 1987. Quantitative land evaluation procedures. ITC Publication 6. Enschede, The Netherlands, ITC.

Brammer, H., Antoine, J., Kassam, A.H., y van Velthuizen, H.T. 1988. Land resources appraisal of Bangladesh for agricultural development. Technical Reports Nos. 17, FAO/UNDP Project BGD/81/035, "Agricultural Development Advice". Dhaka, bangladesh.

Brinkman, R. 1987. Agro-ecological characterization, classification and mapping. Different approaches by the International Agricultural Research Centres. In: Agricultural environments: characterization, classification and mapping. A.H. Bunting (ed.). pp. 31-42. Wallingford, UK, CAB International.

Burrough, P.A. 1986. Principies of geographical information systems for land resources assessment. Monographs on Soil and Resources Survey N° 12. Oxford, UK, Clarendon. 193 p.

CURRAN, P., 1980, Remote sensing systems for monitoring crops and vegetation, Progress in Physical Geography, 4: 315 - 341.

De Baveye, J. 1988. CYPPAC: A climatic yield potential prediction modal for annual crops. RUG, Ghent.

De la Rosa, D., Mayol, F., Moreno, J.A., Crompvoets, J. y Rosales, A. 1995. MicroLEIS 4.1. Software + Documentation. CSIC Pub., Sevilla.

DIALLO, O., DIOUF, A., HANAN, N., NDIAYE, A. y Y. PREVOST. 1990. AVHRR monitoring of savanna primary production in Senegal, West Africa: 1987-1988. International Journal of Remote Sensing, 117: 1259 - 1279.

Dumanski, J. y Onofrei, C. 1989. Techniques of crop yield assessment for agricultural land evaluation. Soil Use and Management 5(1):9-16.

FAO. 1977. Crop water requirements. FAO Irrigation and Drainage Paper 24. Rome, FAO.

FAO. 1978. Report on the Agro-Ecological Zones Project. Vol. 1. Methodology and Results for Africa. Rome, FAO.

FAO. 1979. Yield response to water. J. Doorenbos and A.H. Kassam. FAO Irrigation and Drainage Paper 33. Rome, FAO.

FAO. 1981. Informe del Proyecto de Zonas Agro-Ecologicas. Vol 3, Metodología y resultados para Amerita del Sur y Central. Roma, Italia.

FAO. 1984b. Agroclimatological data for South America, Vols 1 and 2. FAO Plant Production and Protection Series 22. Rome, FAO.

FAO. 1985. Guidelines: land evaluation for irrigated agricultura. FAO Soils Bulletin 55. Rome, FAO.

FAO. 1993a. Agro-ecological assessment for national planning: the example of Kenya. FAO Soils Bulletin N° 67. Rome, Italy. Also nine technical annexes issued as World Soil Resources Reports 71/1 -71/9.

Fischer, G.W., Makonski, H. y Antoine, J. 1996. Multiple Criteria Land Use Analysis. BASA Working Paper WP-96-006. Laxenburg, Austria.

GOWARD, S., 1989, Satellite bioclimatology, Journal of Climate 2: 710 - 720.

JANSEN, J. R., 1983, Biophysical remote sensing, Annals of the Association of American Geographers, 73: 111 - 132.

Karim, Z. 1994. Cropping system based fertilizer recommendations by agroecological zones in Bangladesh. In: Proceedings of the Regional Workshop on Agro-Ecological Zones Methodology and Applications. Bangkok, Thailand, 17-23 November 1991. World Soil Resources Report 75. Rome, FAO.pp. 53-75.

Kassam, A.H. 1977. Net biomass production and yield of crops. Present and Potential Land Use by Agro-ecological Zones Project. AGLS, Rome, FAO.

Kassam, A.H., Kowal, J.M. y Sarraf, S. 1977. Climatic adaptability of crops. Consultants' Report. Agro-ecological zones project. FAO-AGL, Rome.

MORALES , L. y SANTIBAÑEZ, F., 1996, Estimación de la emisividad de superficie usando datos de satélite, Actas VI Simposio Nac. de Física Experimental y Aplicada, Temuco, Chile, pp. 84 - 88. Chapter 7 : Monitoring desertification using remote sensing techniques IBM/ERP Program - Universidad de Chile I - 131

MORALES, L. y PARRA, J., 1996, Determinación del índice de vegetación a partir de parámetros físicos usando datos NOAA/AVHRR, Actas VI Simposio Nac. de Física Experimental y Aplicada, Temuco, Chile, pp. 51 - 55.

PRICE, J. 1992. Estimation vegetation amount from visible and near infrared reflectance. Remote Sensing of Environment 41: 29 - 34.

Radcliffe, D.J. 1981. The growing period in Angonia, Province of Tete, Mozambique. An ecological basis for crop selection. Project FAO:AG MOZ/75/011. Field Document 25. Ministry of Agriculture,

Schalk, B. 1990. METEO. A meteorological database for agricultural use. Project FAO:AG BOT/85/011. Field Document 22. Ministry of Agriculture, Gaborone.

Sombroek W.G. 1994. Introduction to the philosophy, concepts and methods of ecological-economic zoning. Manaus Workshop on Ecological-Economic-Zoning in the Amazon Region 25-29 April 1994. Rome, FAO.

Tersteeg, J.L. 1994. CYSLAMB: Crop yield simulation and land assessment model for Botswana. Version 1.2. Project FAO:AG BOT/91/001. Ministry of Agriculture, Gaborone.

TUCKER, C. y P. SELLERS. 1986. Satellite remote sensing of primary production. Int. J. Remote Sensing, 7:1395-1416.

Van Keuken, H., Berkhout, J.A.A., van Diepen, C.A., van Heemst, H.D.J., Janssen, B.H., Rappoldt, C. y Wolf, J. 1987. Quantitative land evaluation for agroecological characterization. In A.H. Bunting, ed. Agricultural Environments: characterization, classification and rnapping. CAB International, Wallingford, UK.

Van Wambeke, J. 1991. Estudio Agroecologico de la Region II de Nicaragua. Consultants' Report GCPF/NIC/015/NOR. Rome, FAO.