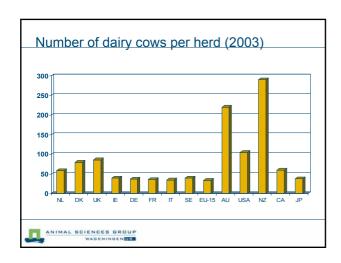
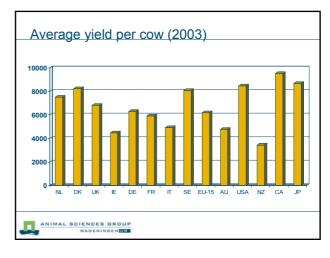
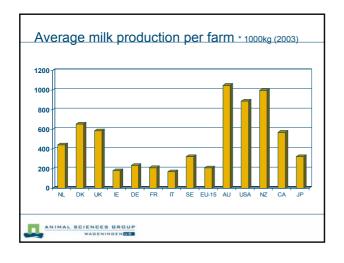
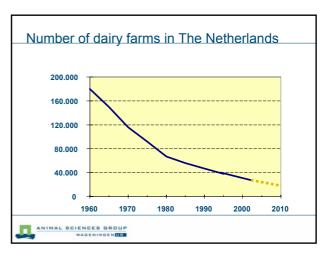


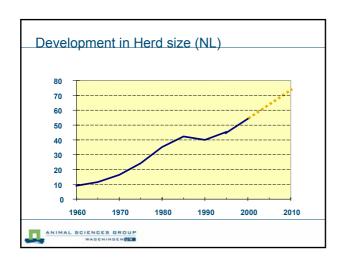
Developments
Milk harvesting systems
Automatic Milking Systems
Experiences in Europe
Concluding remarks

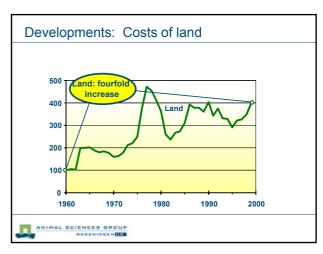

ANIMAL BRIENDES BROUP

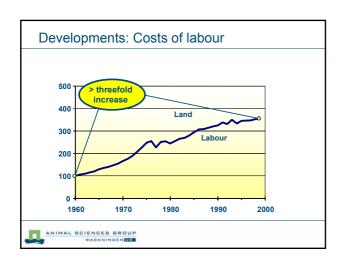


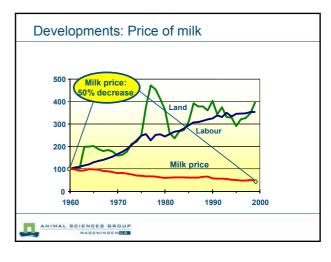


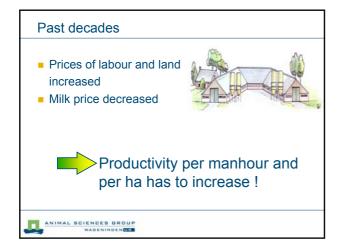


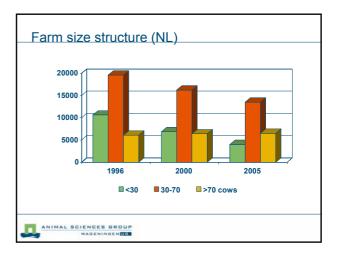




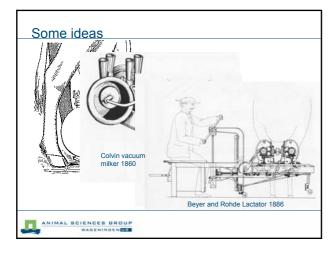








Innovations to improve milk harvesting


- Developments
- Milk harvesting systems
- Automatic Milking Systems
- Experiences in Europe
- Concluding remarks

ANIMAL SCIENCES GROUP

Milk harvesting: history

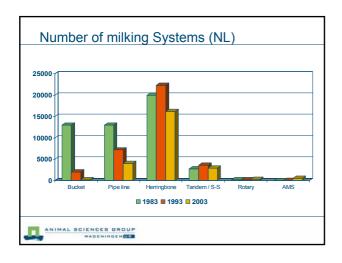
- Milking cows 3000 BC
 - Manual labour
- 19th century
 - Industrial development
 - Lack of labour / increased labour costs
 - First ideas to milk cows mechanically
 - Several approaches
 - · Invention of liner and pulsator

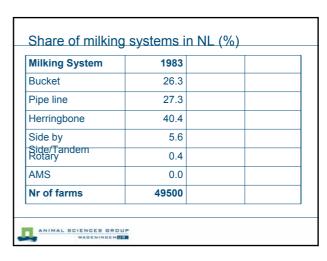
ANIMAL SCIENCES GROUP

Milk harvesting: history

20th century – introduction milking machines Focus on increasing capacity per manhour

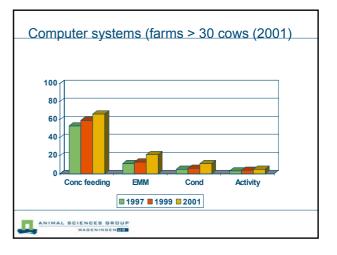
- Bucket milking machines
- Pipe line systems
- Bulk tanks
- Milking parlours
- Automation (ID, ACR, sensors)
- Automatic milking

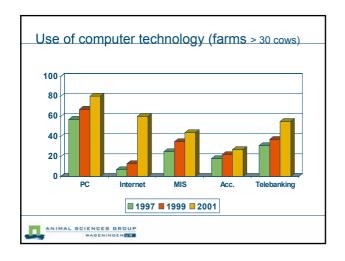

ANIMAL SCIENCES GROUP

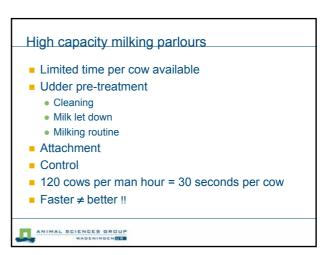

50 years development in dairying ANIMAL BCIENCES GROUP WAREHINGEN GROUP

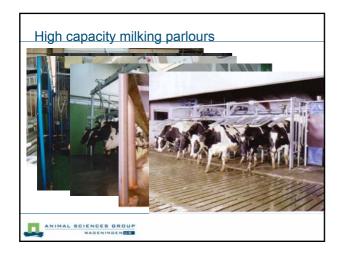
Current milk harvesting systems

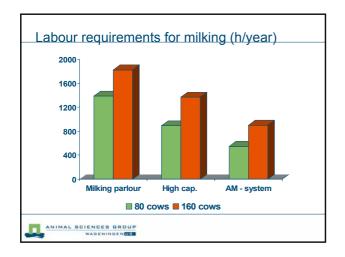
- Focus on productivity per manhour
- Use of technology
 - ACR and other ancillary equipment
 - Machine settings
 - Sensors and computer technology
- Rapid exit systems
- Design parlour / waiting area
- Cost / benefit analysis

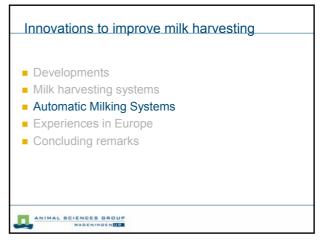




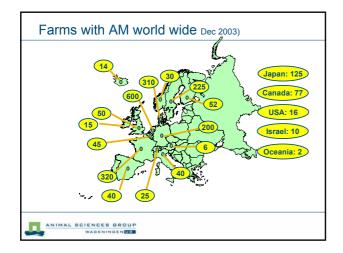

Milking System	1983	1993	
Bucket	26.3	5.3	
Pipe line	27.3	21.1	
Herringbone	40.4	62.7	
Side by	5.6	10.1	
Ride/Tandem Rotary	0.4	0.6	
AMS	0.0	0.04	
Nr of farms	49500	35540	


Milking System	1983	1993	2003
Bucket	26.3	5.3	0.8
Pipe line	27.3	21.1	14.4
Herringbone	40.4	62.7	68.6
Side by	5.6	10.1	12.5
Side/Tandem Rotary	0.4	0.6	1.3
AMS	0.0	0.04	2.4
Nr of farms	49500	35540	23595





Automatic milking: History


- First patents early 70's
- First prototypes 1984-1986
- Institutes in Netherlands, Germany, UK, France
- Manufacturers of AM-systems
- Introduction in 1992
- 1992-1997: variable results and experiences
 - some farmers stopped (management, technical problems, milk quality, economical aspects)
 - · research, extension, courses

Automatic millking in Europe

- First patents early 70's
- First prototypes 1984-1986
- Introduction in 1992
- 1992-1997: variable results and experiences
- Effect on milk quality, farm economy, many questions
- Idea of an integrated research project

Potential Benefits and Concerns

Benefits

- Quality of life
- Labour saving/relief
- Animal welfare
- Udder health

Concerns

- Milk quality
- Economical aspects
- Grazing

ANIMAL SCIENCES GROUP

EU-project "Implications of automatic milking"

Objectives

- To identify determinants for the adoption of automatic milking
- To assess the implications of the adoption of automatic milking
- To generate solutions for adverse effects
- To disseminate results

From dec 2000 till June 2004

ANIMAL SCIENCES GROUP

The project work packages

- 1. Socio-economic aspects
- 2. Public acceptance
- 3. Redefinition of acceptable milk quality
- 4. Milk quality
- 5. Prevention of antibiotic residues
- 6. Effectiveness of automatic udder cleaning
- 7. Optimal cleaning of equipment
- 8. Health
- 9. Welfare assessment
- 10. Grazing
- 11. Operational management support

Dissemination

- 28 Research reports
- Progress and final reports
- Articles & Presentations
- Web-site www.automaticmilking.nl
- Proceedings Symposium March 24-26, 2004 Lelystad, The Netherlands

Automatic Milking

Automatic Milking: consumer's perception

- Not really an issue for consumers (Maris & Roe, 2004)
- General: positive image for milk and dairy
- Consumers worried about food scares and safety in general
- Followed by animal welfare in general
- Automatic Milking: milk quality, animal welfare
- Concerns about grazing

Automatic Milking: Reasons to invest Labour reduction: 29% Labour flexibility: 27% Get rid of hired labour: 15% Improving technical parameters: 12% Future, challenge: 8% Other activities: 9%

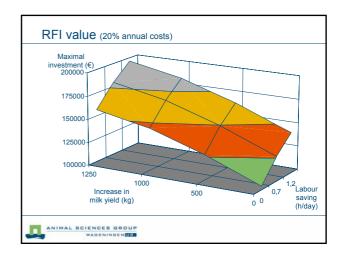
Social reasons (67%) > economic reasons (33%) (Mathijs et al, 2004)

ANIMAL SCIENCES GROUP

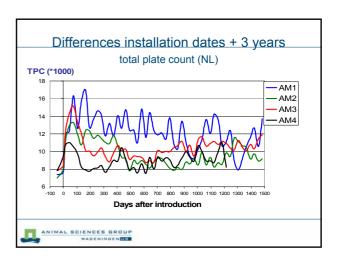
Automatic milking: Economical aspects Labour saving ~ 20% Variable results Depending on: Increase milk yield, labour saving Reference milking system Labour redeployment Efficiency of the system Capacity of the system Capacity of the system Economic results variable

Room for Investment (RFI value)

Annual accumulated returns from:


- additional milk +
- labour reduction +
- savings by not investing in a milking parlour

divided by


 Annual costs of an AM-system (depreciation + maintainance in %)

ANIMAL SCIENCES GROUP

ANIMAL SCIENCES GROUP

Automatic Milking: Milk Quality Milk quality is influenced by AM Transition period TPC and BMSCC more or less equal FFA and FP-levels increase and stay higher Other parameters – no differences Risk factors found: • Technical and management factors • Equal to conventional milking

Automatic Milking: Cleaning procedures

- Same principle
- 2 times versus 3 times cleaning per day
- Small but significant increase in TPC
- Significant increase in Coliform, Psychotrophic and Thermoduric Counts
- Farm effects

Automatic Milking: abnormal milk

Test "State of the Art" (Rasmussen et al, 2004)

- 6 models tested
- Sensitivity ranged from 13 to 50%
- Specificity ranged from 87 to 100%

Conclusion: Current systems are designed to produce alarm lists and are not ready to separate automatically

Impact on Grazing

- Consumers concern in NW Europe
- Different grazing strategies
- Technically possible
- Effect on milking frequency
- Labour requirements
- Less grazing

ANIMAL SCIENCES GROUP

Impact on management

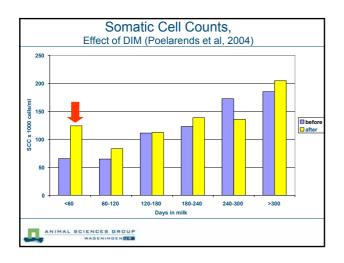
- Fysical labour replaced by management tasks
- Increased decision-making tasks
- Sensor and computer technology
- Labour reduction ~ 20%
- Work is less time-bound
- Person "on call" at all times
- Herd observation very important

It takes ~6 months to get used to it!

Impact on cows

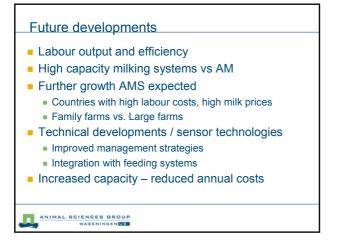
- Max. 5-10 % not suitable
- Voluntary visits at non-regular times needs training
- No effects on health and welfare
- Udder and claw health be monitored
- Feed intake be monitored; roughage be always available
- Urge to fetch cows highly variable
- Increase in milk yield highly variable (-6% to +35%)

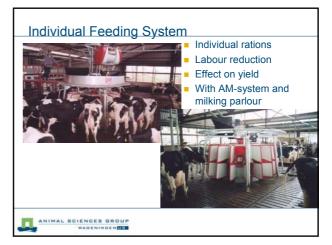
Cows get used much faster than the herdsman!




Impact on Animal health

- Studies in 3 countries on 45 farms (Hillerton et al, 2004)
- No major effects (nor negative of positive)
- Period before transition important
- Transition period
 - Fresh cows 2nd and 3d lactation
 - No problems for heifers
- Risk factors more or less equal to conventional milking





Utilisation of AM-systems

2004

- Europe 0,5 5 % market share
- North America : < 0.7 %
- Mainly 'family farms', moderate size

2020

- Growth in countries with high labour costs
 - Up to 30-40% in NW Europe
- North America
 - Systems for large farms
- Oceania new approaches with grazing strategies

