INFORME FINAL TÉCNICO Y DE DIFUSION

EJECUTOR: BIO INSUMOS NATIVA LIMITADA
NOMBRE DEL PROYECTO:
DESARROLLO DE UN FORMULADO DE MICROORGANISMOS EXTREMÓFILOS PARA EL CONTROL DE ENFERMEDADES DE POSTCOSECHA DE FRUTA DE EXPORTACIÓN.
CÓDIGO: FIA- PI-C- 2007- 1-A-002
N° INFORME: Final
PERIODO: Desde: 16 Diciembre de 2010 Hasta: 30 de Noviembre de 2011
NOMBRE Y FIRMA COORDINADOR PROYECTO:
EDUARDO DONOSO CUEVAS
USO INTERNO FIA
FECHA RECEPCIÓN
OFICINA DE PARTES 2 FIX RECEPCIONADO

I. ANTECEDENTES GENERALES

Código: FIA- PI-C-2007-1-A-002

Nombre del Proyecto: Desarrollo de un formulado de Microorganismos Extremófilos para el control de enfermedades de Postcosecha de fruta de exportación.

Región: VII

Agente Ejecutor: Universidad de Talca.

Agente Asociados: Bio Insumos Nativa Ltda.

Coordinador del Proyecto: Eduardo Donoso Cuevas.

COSTO TOTAL DEL PROYECTO (Valores Reajustados)	: \$	151.751.489		
FINANCIAMIENTO SOLICITADO A FIA (Valores Reajustados)	:\$	99.999.489	66	%
APORTE DE CONTRAPARTE Bio Insumos Nativa Ltda. (Valores Reajustados)	: \$	51.752.000	34	%

Periodo de Ejecución: Diciembre 2007 a Diciembre de 2011

II. RESUMEN EJECUTIVO DEL PROYECTO

El presente proyecto de investigación se basa en la búsqueda de microorganismos extremófilos de bajas temperaturas (ETB), que presenten acción biocontroladora sobre hongos causantes de pudriciones de postcosecha en frutas de exportación. Estos potenciales controladores provienen de huertos, líneas de embalaje, cámaras de frío y ambientes fríos naturales, con los cuales se ha trabajado con el fin de seleccionar cepas que presenten la mayor capacidad competitiva. Las cepas nativas recolectadas se evalúan en tres etapas: *in vitro* (laboratorio), *in vivo* y bajo condiciones comerciales.

Una primera fase, se realizó la prospección y recolección de potenciales biocontroladores y agentes fitopatógenos en cámaras de frío, packing, líneas de embalaje, mesas de selección de fruta, así como también desde ambientes naturales, como muestras de suelo, nieve, morrena, agua, sedimento, glaciales, campo de hielo norte y Antártica entre otros.

Se lograron aislar 165 cepas de microorganismos los que fueron evaluados a través de pruebas *in vitro*, realizando ensayos de competencia e inhibición por compuestos difusibles como por volátiles, a tres temperaturas (4,10 y 25°C), lo que entrego 100 organismos con algún nivel de capacidad de control de los patógenos de post cosecha evaluados, *Colletotrichum, Botryosphaeria, Aspergillus, Geotrichum, Botrytis, Neofabrea, Rhizopus y Penicillium.* Con las mejores cepas para cada patógeno se realizaron ensayos *in vivo*, en manzanas, kiwis, limones, cerezos, uvas, granado, arándano y goldenberries sobre los hongos fitopatógenos de importancia para cada especie frutal o para pudriciones en general. Paralelamente a esto se evaluó posibles efectos negativos de las cepas seleccionadas sobre las frutas en estudio, como generación de pudriciones o proliferación de micelio o conidias.

Con las mejores cepas y mezclas seleccionadas, se realizaron pruebas de campo, tanto por aplicaciones pre y post cosecha, en cultivos de manzano, cerezo y uvas, los que se están repitiendo esta temporada, realizándose ensayo en exportadoras como Del Monte, Sub Sole, Unifrutti y Copeffrut.

Así durante el periodo Diciembre 2010 a Noviembre 2011, las mejores cepas han sido identificadas a nivel de especie, a través de técnicas moleculares y tradicionales y están siendo sometidas a test de toxicidad aguda, información necesaria para la tramitación de registro SAG, lo que permitirá contar con a lo menos dos formulados comerciales, en un plazo de dos años, tiempo estimado para contar con registro SAG.

Las cepas seleccionadas han sido evaluadas, para determinar la factibilidad de ser producidas y formuladas, a través de los métodos establecidos para los productos comerciales con los que cuenta la empresa, habiéndose establecido un sistema de producción y formulación liquida viable de ser usada a nivel de campo. Para el desarrollo de formulados y dispositivos de dispersión en post cosecha se presentó un perfil de proyecto a la convocatoria 2011 de FIA, la que fue aprobada y en febrero se presentaría

la propuesta definitiva, la que permitirá incrementar el número e impacto de los resultados.

Los principales resultados, han sido la obtención de una colección de más 100 microorganismos con capacidad de control de fitopatógenos de post cosecha, dos mezclas de organismos, una para aplicaciones pre cosecha y la otra en post cosecha, ambas en formulación liquida, con un sistema de producción, factible de ser implementado a escala comercial.

Los resultados más relevantes de estas formulaciones, fueron el incremento en 15 días en la post cosecha de uva de mesa, logrando niveles de control similares a fungicidas químicos, hasta 120 días de almacenaje de manzana.

Esto resultados son factibles de proteger a través del patentamiento de las cepas, así como las formulaciones, por lo que se están elaborando las memorias descriptivas para la presentación de patente nacional y posterior PCT.

III. INFORME TECNICO FINAL

1. OBJETIVOS DEL PROYECTO

Objetivo General

Desarrollar un formulado en base a microorganismos extremófilos, para el control de enfermedades fungosas de Postcosecha, de fruta de exportación.

Objetivos específicos

- Recolección y reproducción de cepas de extremófilos de bajas temperaturas (ETB) y agentes causales de pudriciones de postcosecha (AF/PP) en fruta de exportación.
- 2. Evaluar la capacidad controladora *in vitro, in vivo* y en condiciones de almacenaje de cepas ETB, para el control de agentes causales de enfermedades de post cosecha.
- **3.** Desarrollar un sistema de producción masivo y de formulación de las cepas ETB con potencial comercial.
- **4.** Difundir ampliamente los resultados alcanzados del proyecto entre grupos de agricultores con potencialidad de adoptar esta tecnología.
- 5. Iniciar proceso de obtención de registro SAG.

Se ha cumplido con los objetivos planteados en el proyecto, ya que se ha obtenido una colección de más 100 microorganismos con capacidad de control de fitopatógenos de post cosecha, donde se evaluó la capacidad controladora tanto *in vitro* como *in vivo* y posteriormente en ensayos de campo.

Las cepas seleccionadas han sido evaluadas, para determinar la factibilidad de ser producidas y formuladas, a través de los métodos establecidos para los productos comerciales con los que cuenta la empresa, habiéndose establecido un sistema de producción y formulación liquida viable de ser usada a nivel de campo.

Así también estos resultados serán presentados en charlas con agricultores y productores de empresas de fruta de exportación, para los cuales se beneficiaran de este bio controlador que previene las pudriciones en postcosecha. En proceso de ejecución se encuentra el objetivo 5, para obtener el registro SAG, el cual estará listo a mediados del 2013.

2. METODOLOGÍA

El proyecto fue divido en 4 etapas, las que son:

- -. Prospección
- -. Evaluación (in vitro e in vivo).
- -. Formulación
- -. Registro SAG
- -. Difusión

ETAPA 1. PROSPECCION

Recolección y reproducción de cepas de extremófilos de bajas temperaturas (ETB).

Los lugares de recolección han sido cámaras de frío, líneas de packing, pozos de vaciado de fruta, sitios de descarga de fruta desde el campo y de salida a cámaras de frío y frigoríficos en general, así como ambientes naturales, donde se den condiciones de frío permanente (media anual de temperatura menor a 8° C) y frío temporal (media invernal de temperatura menor a 8° C). Esto ha permitido obtener extremófilos de baja temperatura (ETB), que son capaces de desarrollar todo su ciclo a temperaturas menores a 8°C y microorganismos que podrán soportar temperaturas superiores. La recolección se ha realizado en los meses de verano, con el fin de asegurar la existencia de las condiciones de frío durante todo el año. Los lugares de búsqueda han sido glaciares, nieves eternas, campos de hielo, donde se han recolectado muestras de agua, suelo, nieve y tejido vegetal, de varias alturas y profundidades.

Los packings donde se recolectaron muestras se encuentran desde la Región Metropolitana a la VII región.

El protocolo que se siguió para recolectar muestras de packing consistió en lo siguiente:

- Utilizar una tórula de algodón embebida en agua estéril e ir pasando sobre las líneas de packing, paredes y bordes de maquinaria de la línea.
- Colocar filtros de papel con agua estéril en packing y cámaras de frío y se recolectan al cabo de 10 a 15 días, para llevar a laboratorio y aislar los posibles AF/PP que hayan sido atrapados en el filtro.
- Abrir placas petri con medio PDA (agar papa dextrosa) y AN (agar nutriente) en cámaras de frío, túneles de pre-frío y packing (líneas del packing, durante o posterior al procesamiento y embalaje de fruta) con el fin de capturar ETB o AF/PP en cada placa.

Las muestras se llevan al laboratorio, donde se siembran en medios de cultivo (PDA/AN) y se mantienen en incubadoras a 4 y 25°C. Al cabo cinco a siete días reincubación, las colonias de microorganismos (hongos, levaduras y bacterias) se repican a nuevas placas para aislar colonias.

La recolección de muestras de ambientes naturales abarcó desde la VII a la XI regiones. Esta se realizó introduciendo muestras de suelo, agua, nieve, entre otras, en tubos de 15 ml estériles. Estos se trasladaban en neveras con gel packs que mantenían las muestras en frío, hasta llegar al laboratorio, para ser sembradas en medios de cultivo.

Recolección y aislación de patógenos de postcosecha.

Los microorganismos fitopatógenos de postcosecha, se han obtenido desde aislaciones de fruta en almacenaje con síntomas y signos de las enfermedades que producen estos patógenos. Además, se han hecho cámaras húmedas de frutos, tales como, manzanas, uva, cítricos, con el fin de dar las condiciones para que posibles pudriciones se expresen bajo alta humedad y temperatura, logrando aislar patógenos de postcosecha.

Para aislar patógenos desde fruta comercial (uva de mesa, limones y manzanas) se lavaron con agua destilada estéril y se les hizo tres perforaciones con una aguja hipodermal estéril. Se colocaron en contenedores plásticos de 1L de capacidad con toalla absorbente humedecida con agua destilada y se ubicaron en una sala con temperatura controlada a 25°C. Se revisaban cada 72 horas hasta observar esporulación de hongos de postcosecha, tales como *Botrytis cinerea*, *Aspergillus spp.* y *Penicillium spp.*

Junto con esto, se han obtenido muestras de laboratorios de Fitopatología Vegetal. Las muestras han sido sometidas a los procesos estándar de aislación, cultivo *in vitro* y almacenaje.

Reproducción in vitro de ETB.

La selección de hongos y bacterias se ha realizado mediante observación del o de los microorganismos que presenten mayor crecimiento e invasión en una misma muestra. Los que hayan presentado mayor agresividad, invadiendo o frenando el crecimiento de otros, han sido aislados en medios de cultivo. Además, las muestras sembradas que no presentaron crecimiento de ningún microorganismo, se fueron eliminando.

Los aislamientos de extremófilos se han realizado en medios de cultivo simples, agar papa dextrosa para hongos, levaduras y agar nutriente para bacterias, de manera de evitar la necesidad de sistemas de producción y manipulación complejos. No obstante, algunas muestras obtenidas desde la Antártica, se han cultivado en medios específicos, tales como LB y R2A. La reproducción de ETB se ha efectuado a bajas temperaturas, 0°, 1°, 4° y 10°C, y a temperatura ambiente, 25°C.

Junto con lo anterior, se tomaron 40 aislamientos de tres packings y se prepararon diluciones para lo cual se inocularon en frutas (manzanas, uva, nectarines y ciruelas), con

el fin de determinar si éstos son patogénicos. De esta manera, se desinfectó la fruta por 6 min en cloro al 1% y alcohol 75°, las que se distribuyeron en cámaras húmedas de 1 L de capacidad.

Cada fruto o baya, en el caso de uva de mesa, se inoculó con una suspensión de los 40 ETB, obtenida de cultivos puros de 15 días en APD y AN. La suspensión se depositó en cada una de tres perforaciones, realizadas con una aguja hipodermal estéril. La fruta se incubó por 15 días a 25°C con una humedad relativa entre 90–95%. Concluido el período de incubación, se determinó si había pudrición en las zonas inoculadas o cerca de éstas. De este modo, se discriminó si eran patogénicas a esa fruta en específico, lo que nos indicó su potencialidad como controlador para ser utilizados en los siguientes ensayos.

Identificación de patógenos y de ETB (familia o género).

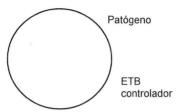
La identificación de microorganismos patógenos se ha realizado por medio de protocolos estándar, basándose en características morfológicas. Hasta el momento, se ha logrado el reconocimiento de género para los patógenos utilizados.

Para la identificación de ETB seleccionados, se utilizarán procedimientos similares a los usados en la caracterización de patógenos, junto con análisis moleculares correspondientes.

ETAPA 2. EVALUACION (in vitro e in vivo)

Evaluación de la capacidad inhibitoria *in vitro* de cepas nativas de ETB para aislados de AF/PP

Ensayo I. Actividad Inhibitoria


Para llevar a cabo el ensayo de actividad inhibitoria de microorganismos seleccionados, ya sea bacterias, levaduras y hongos, se ha realizado lo siguiente.

De cultivos puros de hongos patógenos y ETB, se tomará con ayuda de un sacabocado, un trozo de micelio de ambos y se pondrán en cultivo dual. Cada 72 horas desde incubación, se evalúa el nivel de avance y control, el que resulta de la diferencia de crecimiento radial (mm), entre el patógeno en forma aislada (placas control) y en cultivo dual.

En el caso de bacterias, desde cultivos líquidos puros se extraen alícuotas, las que son colocadas en agujeros realizados en el medio de cultivo en placas Petri, previamente inoculadas con conidias de los patógenos. Se evalúa el nivel de control, el que resulta de la diferencia en milímetros de micelio o bacterias, entre el crecimiento del patógeno en forma aislada (placas control) en cultivo dual y ensayos de halo de inhibición.

El crecimiento de cada microorganismo se evalúa cada 72 horas, por 20 a 30 días o hasta que uno de los dos microorganismos invada al otro. Se preparan 3 repeticiones de cada uno, más dos controles de cada patógeno y del organismo ETB. Cada ensayo se realiza a 4, 10 y 25°C.

Una vez obtenidos los resultados, se seleccionan las mejores cepas por patógeno, las que serán utilizadas en el siguiente ensayo.

Ensayo III. Sustancias volátiles

Para la realización de este ensayo, se dejó crecer una placa completa con cada biocontrolador en medio APD. Luego, con ayuda de un sacabocado, se colocó en otra placa con APD, cultivos puros de hongos fitopatógenos bien esporulados. Se coloca una placa sobre otra, sin que se topen los micelios, y se sellan con parafilm. Se dejaron en incubador a 4, 10 y 25°C, según corresponda, para cada hongo de postcosecha. Se fue midiendo el crecimiento radial del patógeno cada 5 a 7 días, y al cabo de 20 días se concluye el experimento, realizándose el correspondiente análisis estadístico, más el porcentaje de inhibición.

Ensayo III. Sustancias difusibles

La primera parte de la metodología es la misma redactada anteriorment. Luego, correspondió colocar sobre una placa petri con total crecimiento de ETB, un círculo de papel celofán, y sobre éste, colocar otra parte basal con un disco de micelio de cada hongo fitopatógeno: *Botrytis cinerea*, *Rhizopus* spp., *Botryosphaeria* spp. y *Colletotrichum* spp. La diferencia es que siempre se dejó la placa con el ETB, y no sólo el papel celofán, por lo que se repetirá el ensayo como corresponde según la metodología. Se midió el crecimiento radial de cada patógeno cada 5 a 7 días, y al cabo de 20 días se concluye el experimento, realizándose el correspondiente análisis estadístico.

Evaluación de la capacidad inhibitoria *in vivo* de cepas nativas de ETB para aislados de AF/PP

Para cada sistema, se realizó la siguiente metodología:

Manzanas/ Botrytis cinerea:

En este caso, se hicieron dos ensayos: pre y post-inoculación del patógeno.

Pre-inoculación.-

Se tomaron manzanas de la variedad Fuji, las cuales fueron desinfectadas con agua corriente más cloro al 10% durante dos minutos. Luego, se lava la fruta con agua corriente, se aplica alcohol al 75% y se lava nuevamente con agua destilada estéril con el fin de eliminar residuos.

Los tratamientos aplicados son los siguientes:

T1: I. R. Jorge + Botrytis cinerea

T2: S. L. Maule Botrytis cinerea

T3: L. Queñes Botrytis cinerea

T4: VXI G. Leones Botrytis cinerea

T5: Control I. R. Jorge

T6: Control S. L. Maule

T7: Control L. Queñes

T8: Control VXI G. Leones

T9: Control Botrytis cinerea

Luego, las manzanas fueron asperjadas con suspensiones de cuatro biocontroladores a una concentración de 10⁹ ufc/mL, cada una. Se dejan secar a temperatura ambiente y se colocan en cajas plásticas cuyo fondo se encuentra con papel absorbente previamente asperjado con agua destilada estéril, con el fin de otorgar las condiciones de alta humedad necesarias, para lograr una cámara húmeda. Se dejan en cámara de crecimiento a 25°C.

Transcurridas 24 horas, cada manzana fue asperjada con una suspensión de conidias de *Botrytis cinerea* a una concentración de 10⁹ ufc/mL y se dejan secar a temperatura ambiente; posteriormente, se colocan nuevamente dentro de la caja plástica. Las cámaras húmedas se colocaron en el fitotrón de Bio Insumos Nativa a ±25°C con ±95% HR en oscuridad.

Cada tratamiento consta dos manzanas (repetición), cada una de las cuales, corresponde a una cámara húmeda. Se evaluó la incidencia de pudriciones a los 4, 9, 14, 18 y 25 días. Los datos se analizaron según un análisis de varianza de medidas repetidas en el tiempo y las medias se separan mediante la prueba de Tukey (p< 0,005).

Post-inoculación.-

El proceso es el mismo, sólo cambia el orden de la aplicación de los biocontroladores: las manzanas se inoculan con el patógeno (*Botrytis cinerea*) y al cabo de 24 horas, se aplican los ETB. Las cámaras húmedas se colocaron en el fitotrón de Bio Insumos Nativa a ±25°C con ±95% HR en oscuridad.

Los tratamientos aplicados son los siguientes:

T1: Botrytis cinerea + I. R. Jorge

T2: Botrytis cinerea +S. L. Maule

T3: Botrytis cinerea + L. Queñes

T4: Botrytis cinerea + VXI G. Leones

T5: Control I. R. Jorge

T6: Control S. L. Maule

T7: Control L. Queñes

T8: Control VXI G. Leones

T9: Control Botrytis cinerea

Cada tratamiento consta dos manzanas (repetición), cada una de las cuales, corresponde a una cámara húmeda. Se evaluó la incidencia de pudriciones a los 4, 9, 14, 18 y 25 días. Los datos se analizaron según un análisis de varianza de medidas repetidas en el tiempo y las medias se separan mediante la prueba de Tukey (p< 0,005).

Manzanas/ Colletotrichum spp. y Penicillium spp. en frío.-

Se tomaron manzanas de la variedad Fuji, las cuales fueron desinfectadas con agua corriente más cloro al 10% durante dos minutos. Luego, se lava la fruta con agua corriente, se aplica alcohol al 75% y se lava nuevamente con agua destilada estéril con el fin de eliminar residuos.

Se dejaron frutas con heridas (aguja fina) y sin heridas, con el fin de evaluar el efecto de posibles puntos de entrada de los patógenos.

Los tratamientos aplicados para cada patógeno son los siguientes:

Con herida y sin herida:

T1: Penicillium + Macerado

T2: Penicillium + Sulico 4

T3: Penicillium + L. Queñes

T4: Penicillium + 11 G. Sucio

T5: Penicillium + Linares

T6: Control Macerado

T7: Control Sulico 4

T8: Control L. Queñes

T9: Control 11 G. Sucio

T10: Control Linares

T11: Control Penicillium

Además, para ambos ensayos (con y sin heridas), se dejaron testigos con sólo aplicación de los ETB, con el fin de descartar su crecimiento sobre la fruta.

Con y sin herida:

T1: Colletotrichum + Macerado

T2: Colletotrichum + Sulico 4

T3: Colletotrichum + L. Queñes

T4: Colletotrichum + 11 G. Sucio

T5: Colletotrichum + Linares

T6: Control Macerado

T7: Control Sulico 4

T8: Control L. Queñes

T9: Control 11 G. Sucio

T10: Control Linares

T11: Control Colletotrichum

Cada tratamiento fue aplicado en dos manzanas, donde cada una fue colocada en cajas plásticas con tapa, con un papel absorbente en el fondo de éstas. La fruta se guarda en cámaras de cultivo a \pm 4°C, en oscuridad.

La incidencia de pudriciones se evaluó cada 30 días, simulando tiempo de guarda en cámaras de frío, hasta cumplir 90 días. Los resultados se analizaron según análisis de varianza de medias repetidas en el tiempo y las medias se separaron según Tukey (p<0,005).

Limones/Penicillium spp.

Se utilizaron limones de la variedad Eureka, los cuales fueron desinfectados con agua corriente más cloro al 10% durante dos minutos. Luego, se lava la fruta con agua corriente, se aplica alcohol al 75% y se lava nuevamente con agua destilada estéril con el fin de eliminar residuos.

Se utilizaron cuarenta limones por ensayo; a la mitad de éstos, se les realizaron heridas con aguja hipodérmica (insulina) con el fin de favorecer la entrada del patógeno, y la otra mitad, se dejó sin heridas.

Luego, se aplicó el patógeno *Penicillium digitatum* vía aspersión, a una concentración de 10⁹ ufc/ml, con un volumen que asegurase el buen cubrimiento de cada fruto. Luego, se aplicaron los ETB a la misma concentración.

Posteriormente, los frutos fueron colocados en cajas plásticas con tapa, cuyo fondo contenía papel absorbente con agua destilada estéril para otorgarles una alta humedad relativa, cercana al 100%. Las cámaras húmedas fueron colocadas en el fitotrón del laboratorio de Bio Insumos Nativa a ± 25°C, en oscuridad.

Los tratamientos aplicados son los siguientes:

Con y sin herida.-

T1: Penicillium + Macerado

T2: Penicillium + L. Maule

T3: Penicillium + XLVI

T4: Penicillium + Linares

T5: Control Macerado

T6: Control L. Maule

T7: Control XLVI

T8: Control Linares

T9: Control Penicillium

T10: Control absoluto (agua destilada estéril)

La incidencia de pudriciones se evaluó cada cinco días, hasta llegar al día 15. Los datos se analizaron según un análisis de varianza de medidas repetidas en el tiempo y las medias se separaron según Tukey (p< 0,005).

Cerezas/ Botrytis cinerea y Penicillium spp.

Se utilizaron cerezas orgánicas de la variedad Brook, las cuales fueron desinfectadas con agua corriente más cloro al 10% durante dos minutos. Luego, se lava la fruta con agua corriente, se aplica alcohol al 75% y se lava nuevamente con agua destilada estéril con el fin de eliminar residuos.

Luego, se hicieron heridas con aguja hipodérmica a cada cereza, y fueron inmersas en suspensión de cada biocontrolador utilizado: I. R. Jorge y A. Diablillo, a diferentes concentraciones, la mezcla de éstos y la mezcla de patógenos. Se espera 24 horas y se aplican los patógenos, de manera separada y conjunta a la misma concentración.

Se utilizaron tres placas petri de vidrio de 90 mm por tratamiento y cada una de éstas contenía 3 cerezas. La fruta se dejó en cámara de crecimiento a 2º C por 45 días.

Los tratamientos aplicados son:

T1: I. R. Jorge 10 ⁹ ufc/mL
T2: I. R. Jorge 10 ⁸ ufc/mL
T3: I. R. Jorge 10 ⁷ ufc/mL
T4: I. R. Jorge 10 ⁶ ufc/mL
T5: Testigo absoluto
T6: Agua Diablillo 10 ⁹ ufc/mL
T7: Agua Diablillo 10 ⁸ ufc/mL
T8: Agua Diablillo 10 ⁷ ufc/mL
T9: Agua Diablillo 10 ⁶ ufc/mL
T10: Control (Mezcla I. R. Jorge + A. Diablillo 10 ⁹ ufc/mL) Dosis mayor
T11: (Mezcla I. R. Jorge + A. Diablillo 10 ⁹ ufc/mL) + (Mezcla Botrytis + Penicillium 10 ⁹ ufc/mL)
T12: (Mezcla I. R. Jorge + A. Diablillo 10 ⁸ ufc/mL) + (Mezcla Botrytis + Penicillium 10 ⁸ ufc/mL)
T13: (Mezcla I. R. Jorge + A. Diablillo 10 ⁷ ufc/mL) + (Mezcla Botrytis + Penicillium 10 ⁷ ufc/mL)
T14: (Mezcla I. R. Jorge + A. Diablillo 10 ⁶ ufc/mL) + (Mezcla Botrytis + Penicillium 10 ⁶ ufc/mL)
T15: Control (Mezcla Botrytis + Penicillium109 ufc/mL) Dosis mayor
T16: Agua Diablillo 10 ⁹ ufc/mL + (Mezcla Botrytis + Penicillium10 ⁹ ufc/mL)

T17: Agua Diablillo 10 ⁸ ufc/mL + (Mezcla Botrytis + Penicillium10 ⁸ ufc/mL)	
T18: Agua Diablillo 10 ⁷ ufc/mL + (Mezcla Botrytis + Penicillium10 ⁷ ufc/mL)	
T19: Agua Diablillo 10 ⁶ ufc/mL + (Mezcla Botrytis + Penicillium10 ⁶ ufc/mL)	
T20: I. R. Jorge 10 ⁹ ufc/mL + (Mezcla Botrytis + Penicillium10 ⁹ ufc/mL)	
T21: I. R. Jorge 10 ⁸ ufc/mL + (Mezcla Botrytis + Penicillium10 ⁸ ufc/mL)	
T22: I. R. Jorge 10 ⁷ ufc/mL + (Mezcla Botrytis + Penicillium10 ⁷ ufc/mL)	
T23: I. R. Jorge 10 ⁶ ufc/mL + (Mezcla Botrytis + Penicillium10 ⁶ ufc/mL)	

La incidencia de pudriciones se realizó en base a *Penicillium* spp., ya que fue el patógeno que creció, predominando sobre *Botrytis cinerea*, a los 30, 40 y 50 días en frío.

Los datos se analizaron según un análisis de varianza de medidas repetidas en el tiempo y las medias se separaron según Tukey (p< 0,05).

Nota: sólo se tomaron los datos recolectados desde el T15 en adelante, ya que en el resto no hubo diferencias; así, se puede observar el efecto de distintas dosis de estos dos biocontroladores sobre *Penicillium* spp.

Arándanos/Botrytis cinerea- Penicillium spp- Botryosphaeria spp.

Para este ensayo, se utilizaron arándanos orgánicos de un huerto de la VIII región. La fruta no se desinfectó como el resto de la utilizada anteriormente, ya que los arándanos estaban embalados en su respectiva caja, listos para ser exportados y consumidos, por lo que se optó por no desinfectar aún más la fruta. Se tomaron 400 g de fruta por tratamiento, utilizando cuatro repeticiones de 100 g cada una, colocadas en envases plásticos transparentes tipo "clamshell".

Los tratamientos aplicados son los siguientes:

T1	Testigo con mezcla de patógenos	10 ⁹ ufc/mL
T2	TRICHODERMAS	10 ⁹ ufc/mL
Т3	BACILLUS SPP.	10 ⁹ ufc/mL
T4	A. DIABLILLO PLAYA	10 ⁹ ufc/mL
T5	XXIII B G. SUCIO	10 ⁹ ufc/mL
T6	XLIII	10 ⁹ ufc/mL
T7	XLVI G. LEONES	10 ⁹ ufc/mL
Т8	MACERADO	10 ⁹ ufc/mL
Т9	MEZCLA A	10 ⁹ ufc/mL
T10	MEZCLA A	10 ⁸ ufc/mL
T11	MEZCLA A	10 ⁷ ufc/mL
T12	MEZCLA B	10 ⁹ ufc/mL
T13	MEZCLA B	10 ⁸ ufc/mL
T14	MEZCLA B	10 ⁷ ufc/mL
T15	MEZCLA C	10 ⁹ ufc/mL
T16	MEZCLA C	10 ⁸ ufc/mL
T17	MEZCLA C	10 ⁷ ufc/mL
T18	MEZCLA D	10 ⁹ ufc/mL

T19	MEZCLA D	10 ⁸ ufc/mL
T20	MEZCLA D	10 ⁷ ufc/mL
T21	Testigo absoluto	-
T22	I. R. Jorge	10 ⁹ ufc/mL

Las mezclas utilizadas son las siguientes:

Mezcla A	Agua Diablillo Playa + XLIII+ XLVI G. Leones	
Mezcla B	XXIIIB G. Sucio + XLIII + XLVI G. Leones	
Mezcla C	XXIIIB G.Sucio + Macerado + XLVI G. Leones	
Mezcla D	Agua Diablillo Playa + Macerado + XXIII B G.Sucio	

Cada tratamiento fue aplicado vía inmersión, utilizando una dosis de 5 mL/L de cada ETB y sus mezclas. La fruta se secó a temperatura ambiente y al cabo de 24 horas, se les aplicó la mezcla de tres hongos fitopatógenos: *Botrytis cinerea- Penicillium* spp-*Botryosphaeria* spp., en la misma dosis, y a la misma concentración (10⁹ ufc/mL de cada AF/PP).

La fruta se guarda en una cámara de frío en el laboratorio de Bio Insumos Nativa entre 2-4°C. La incidencia de pudriciones se realiza cada 10 días, llevando a la fecha dos evaluaciones.

Arándanos (sin inoculación patógenos).-

El objetivo de este ensayo fue evaluar el efecto de sucralosa y controladores biológicos sobre la vida de postcosecha de arándanos orgánicos. Los frutos fueron desinfectados con agua corriente más cloro al 10% durante dos minutos. Luego, se lava la fruta con agua corriente con el fin de eliminar residuos.

Los tratamientos aplicados son los siguientes:

T0: Testigo absoluto

T1: Sucralosa

T2: Mezcla de *Trichoderma* spp. (10⁹ ufc/mL)

T3: Mezcla de Bacillus spp. (10⁸ ufc/g)

T4: Sucralosa + Trichoderma spp.

T5: Sucralosa + Bacillus spp.

Los biocontroladores fueron aplicados por aspersión, con una dosis de 1,5mL/L para el caso del T2 y T4; y 3g/L en el caso de T3 y T5. Se esperó a que la fruta a secara a temperatura ambiente y se guardó en cámara de frío a 0°C, por 21 días, evaluando la incidencia de pudriciones cada 7 días.

El diseño del experimento fue completamente al azar, con 12 repeticiones por tratamiento, evaluándose 3 repeticiones en cada fecha de evaluación.

Para cada evaluación, se evaluaron tres muestras (n= 60 bayas/ tratamiento), determinándose el porcentaje de pudrición por tratamiento.

<u>Evaluación de la capacidad inhibitoria en condiciones comerciales de cepas nativas de</u> ETB para aislados de AF/PP.

Ensayo VI. Ensayos en cámara

Manzanas.-

Se evaluaron 5 biocontroladores en base a ETB, versus el manejo tradicional de la empresa (químico) en manzanas de exportación, variedad Fuji y Pink lady, las cuales provenían de cámara de frío, más una ducha del producto químico (Penbotec y cera).

Luego, los frutos se colocaron dentro de una malla plástica y se sumergieron en una suspensión de cada tratamiento (ETB's y control químico) de 50 litros de agua de pozo. Se mantuvieron por dos minutos y luego se dejaron secar a temperatura ambiente. Posteriormente, se colocaron 18 frutos por bandeja de cartón (repetición), dejando 4 bandejas por caja, según envase comercial. Cada caja se guardó en cámara de frío a 0°C y se evaluó la incidencia y severidad de pudriciones en general, por 150 días, revisando los tratamientos cada 30 días.

Los tratamientos aplicados fueron:

T1: Control de la empresa (Penbotec)

T2: S. L. Maule T3: Los Queñes T4: Macerado

T5 : Cámara 1 T6 : 4 Sillahur

El diseño del experimento fue completamente al azar con 6 tratamientos y 4 repeticiones cada uno. Los datos fueron analizados según un índice, que correspondió al tamaño promedio de las lesiones de cada tratamiento * número de lesiones. Éstos se analizaron mediante un análisis de varianza y las medias se separaron por Tukey (p< 0,05). Si no se daban las condiciones de normalidad, se utiliza el programa de permutaciones de Duschené.

Limones.-

El objetivo de este ensayo es evaluar el efecto de cuatro cepas de hongos biocontroladores sobre pudriciones causadas por *P. digitatum* en limones de exportación y comparar su efecto con productos químicos comerciales actualmente en uso.

Con este fin, se realizaron tratamientos preventivos y curativos (24 horas) con cepas nativas de hongos extremófilos, aplicados vía inmersión, los cuales son los siguientes:

	T23	XVIII	Inoculación 24 Horas				
5 8	T24	Chorgul	Inoculación 24 Horas				
	T25	XLVI	Inoculación 24 Horas				
Dia controlo do uno	T26	Sulico 4	Inoculación 24 Horas				
Bio controladores	T27	Inoculación 24 Horas	XVIII				
	T28	Inoculación 24 Horas	Chorgul				
	T29	Inoculación 24 Horas	XLVI Leones				
	T30	Inoculación 24 Horas	Sulico 4				
	T 31	Imazalil	Inoculación 24 Horas				
	T32	Thiabendazole	Inoculación 24 Horas				
	T33	Inoculación 24 Horas	Imazalil				
	T34	Inoculación 24 Horas	Thiabendazole				
	T35	Penicillium					

Dosis Biocontroladores: 3 cc/L

Dosis Imazalil: 2,6 cc/L Dosis Thiabendazole: 3 cc/L

A cada uno de los frutos se les realizaron tres heridas para facilitar la entrada del patógeno, previamente desinfectados con hipoclorito de sodio. Se colocaron 30 frutos por bandeja con cuatro repeticiones (n=120). Cada tratamiento se aplicó vía inmersión en 20 litros de agua de pozo. La fruta inoculada con *P. digitatum* se guardó cubierta con plástico en una cámara de frío a 10°C por 30 días.

Las evaluaciones correspondieron al tamaño de lesión causada por el patógeno al cabo de 15 días y la severidad de ésta, al cabo de 30 días a 10°C.

Peras.-

Evaluar el efecto de nuevos microorganismos, mezclas de éstos y dosis para la prevención de pudriciones causadas por *Alternaria* spp. y *Botrytis cinerea* en peras Abatte Fettel.

Metodología:

En el presente ensayo, se utilizaron peras Abatte Fettel, del Fundo Semillero, cosechadas el 24 de Febrero de 2010. Éstas se mantuvieron por 40 días en cámara con atmósfera controlada y luego, se trajeron al Laboratorio de Bio Insumos Nativa, en San Javier, donde se separaron los frutos según tratamiento. Se utilizaron 30 peras por tratamiento, con un total de 33 tratamientos, donde cada fruta correspondía a una réplica. La fruta fue asperjada con suspensiones acuosas de cada microorganismo, asegurando un buen cubrimiento de ésta. Se dejó secar a temperatura ambiente y luego se embalaron en cajas de cartón, según manejo del packing, todo esto dentro de 8 horas. Se trasladaron a cámara de frío (n° 17) donde se mantuvieron hasta los 90 días.

Las evaluaciones consistieron en cuantificar la incidencia y severidad de pudriciones causadas por los patógenos anteriormente descritos, efectuándose cada 30 días aproximadamente.

Desde la primera evaluación (35 días), no se observó presencia de ninguno de los dos patógenos anteriormente señalados, por lo que se evaluaron las pudriciones totales. Para verificar el o los patógenos que causasen tales pudriciones, se tomaron muestras de los frutos y se sembraron en placas con medio de cultivo (agar papa dextrosa) y se colocaron a 25°C en oscuridad. Se repicó el hongo hasta obtener un cultivo puro, identificando el agente causal como *Stemphylium vesicarum*, situación coincidente con los síntomas y signos presentados durante las evaluaciones.

Los tratamientos aplicados son:

Tratamientos	Detalle Biocontroladores	Concentración (ufc/mL)
T1	Trichodermas	1,5ml/L (10 ⁹ ufc/mL)
T2	Bacillus	3g/L (10 ⁸ ufc/g)
Т3	Agua Diablillo	10^9
T4	Macerado	10^9
T5	XLVI	10^9
Т6	XLVI Leones	10^9
Т7	I. R. Jorge	10^9
Т8	Sulico 4	10^9
Т9	XIX	10^9
T10	XXIII B G. Sucio	10^9
T11	A. diablillo playa	10^9
T12	XLIII	10^9

T13	Embalaje	10^9
T14	Agua diablillo + Macerado+Isla Rey Jorge+ Sulico 4	10^9
T15	Agua diablillo + Macerado+Isla Rey Jorge+ Sulico 4	10^8
T16	Agua diablillo + Macerado+Isla Rey Jorge+ Sulico 4	10^7
T17	XXIII B Glaciar Sucio + Isla Rey Jorge + Agua diablillo + XLVI	10^9
T18	XXIII B Glaciar Sucio + Isla Reyu Jorge + Agua diablillo + XLVI	10^8
T19	XXIII B Glaciar Sucio + Isla Reyu Jorge + Agua diablillo + XLVI	10^7
T20	XLVI Glaciar Leones + XX III B. Glaciar Sucio + Macerado +Isla Rey Jorge	10^9
T21	XLVI Glaciar Leones + XX III B. Glaciar Sucio + Macerado +Isla Rey Jorge	10^8
T22	XLVI Glaciar Leones + XX III B. Glaciar Sucio + Macerado +Isla Rey Jorge	10^7
T23	Agua Diablillo + XLVI Glaciar Leones, + XIX + Embalaje	10^9
T24	Agua Diablillo + XLVI Glaciar Leones, + XIX + Embalaje	10^8
T25	Agua Diablillo + XLVI Glaciar Leones, + XIX + Embalaje	10^7
T26	Macerado+ Sulico 4 + XIX + Embalaje	10^9
T27	Macerado+ Sulico 4 + XIX + Embalaje	10^8
T28	Macerado+ Sulico 4 + XIX + Embalaje	10^7
T29	Agua diablillo playa + XIX + Embalaje + XLVI Glaciar Leones	10^9
T30	Agua diablillo playa + XIX + Embalaje + XLVI Glaciar Leones	10^8
T31	Agua diablillo playa + XIX + Embalaje + XLVI Glaciar Leones	10^7
T32	Trichodermas + Bacillus	10^9
T 33	Testigo absoluto	

Las cajas embaladas se llevaron al día siguiente a la exportadora y fueron guardadas en cámara de frío convencional a 0°C.

La incidencia de pudriciones se evaluará a los 30, 45 y 90 días, tiempo máximo de guarda de esta fruta, simulando el tiempo de viaje en barco a mercados externos.

El diseño del experimento es completamente al azar con 33 tratamientos y 30 repeticiones (frutos) por tratamiento. El análisis de datos se realizará mediante un análisis de varianza de medidas repetidas en el tiempo y las medias se separarán según LSD (p< 0,05).

Evaluación en condiciones comerciales

Ensayo VII. Validación en condiciones comerciales

Manzanas 2010/2011.-

Evaluar la incidencia (presencia de pudriciones) y severidad (tamaño de lesión) en enfermedades de postcosecha.

Metodología:

Este ensayo se realizo con fruta del fundo Santa Cruz, Agrícola Seminario S.A, Comuna de Colbún y el almacenaje se realizo en frio convencional (FC) en Unifrutti Traders Planta Linares, la variedad que se ocupo fue Pink Lady.

Diseño Experimental y Análisis Estadístico

El ensayo fue conducido mediante un Diseño Completamente al azar (DCA), con arreglo factorial de 4 x 3, (tratamientos mezcla 1, mezcla 2 y control químico) y momento de cosecha (Precosecha, 3 días antes de cosecha, post cosecha, inmersión y la combinación de ambos), lo que da un total de 12 tratamientos y medias repetidas en el tiempo (30, 60, 90, 120 y 150 días). Cada tratamiento consto de 3 repeticiones, siendo la unidad experimental 20 frutos por repetición.

Los datos fueron sometidos a un ANOVA, y luego a test de diferencias de medias de Tukey HSD.

Evaluaciones

Para cada fecha se evaluó:

• Incidencia: Para calcular la incidencia, se utilizo la formula de Ogawa (1986), siendo expresada en porcentaje de acuerdo a la siguiente ecuación:

Incidencia (I) = (N ° de Frutos Infectados /Total de Frutos) x 100

- Identificación de Patógenos: La identificación de patógenos o agentes causales, se realizo tomando muestras de tejidos de los frutos dañados y estos fueron sembrados en medios de cultivo determinados para potenciar el crecimiento y desarrollo del patógeno, y poder ser posteriormente identificados, ya sea por observación al microscopio o técnicas moleculares.
- Calidad de fruta: Tanto para la determinación de sólidos solubles y la presión, se tomaron 15 frutos por tratamiento tanto en el momento de embalaje, como a los 150 días, determinando la variación de sólidos solubles y presión.

Arándanos 2011/2012

El objetivo de este ensayo es determinar la efectividad de las aplicaciones de mezclas de biocontroladores de hongos extremófilos en la Postcosecha de arándanos, bajo condiciones comerciales.

Este ensayo se realizo en el hurto de Oscar Urzúa, agricultor de Colín, Comuna de Maule.

Metodología

Este ensayo se realizo en el hurto de Oscar Urzúa, agricultor de Colín, Comuna de Maule.

Diseño experimental

Este ensayo se estableció bajo un Diseño Completamente al Azar (DCA), con 5 Tratamientos y 4 repeticiones (plantas), cuya unidad experimental corresponderá a 10 clamshell por planta.

Tratamientos

Tratamientos	ratamientos Biocontrolador					
1	Manejo de Huerto					
2	Mezcla 1	100 ml/l				
3	Mezcla 2	100 ml/l				
4	Mezcla 3	100 ml/l				

Aplicaciones:

■ Biocontroladores: La aplicación se realizo 5 días previo a la cosecha, se utilizara una concentración de 1 x 10° UFC/ML, la dosis aplicada fue de 100 ml/l.

La aplicación se realizara con turbo, con 500-700 L/ha (según mojamiento del huerto), con todas las boquillas abiertas, asegurando una cobertura homogénea en toda la planta.

Evaluación Cosecha:

Previo a la cosecha, se evaluó incidencia de pudriciones en fruta, para lo que se contaron 50 frutos por planta, evaluando la presencia de pudriciones, con lo que se calculo el promedio de incidencia por planta.

Evaluación Post-cosecha:

Luego de cosecha, la fruta será guardada en cámaras de frío, será sacada y evaluada en los clamshell (por tratamientos) a los 15, 30, 45 y 60 días después de cosecha.

Las evaluaciones se realizaran directamente sobre la fruta obtenida de cámara:

- Incidencia: Presencia o ausencia de pudriciones por clamshell
- Severidad: Porcentaje de frutos con pudrición por clamshell.

En cada evaluación, se tomaran 5 frutos por clamshell, los que serán sometidos a cámara húmeda por 3 días, luego de lo cual se evaluara el porcentaje de frutos con pudrición.

Cerezo 2010/2011 (El Monte).

El objetivo del ensayo es evaluar el efecto de control de distintos fungicidas para el control de pudriciones de postcosecha en cerezas, sobre cepas patogénicas.

Metodología

Los frutos fueron sanitizados mediante una solución con Hipoclorito de sodio al 10%, luego se enjuagaron con agua destilada estéril para eliminar el exceso de cloro. A los frutos una vez sanitizados, se les realizo una herida para luego ser sumergidos en una suspensión con cada uno de los patógenos.

Posteriormente se mantuvieron 24 horas en cámara húmeda para permitir el desarrollo de los hongos, luego a esto se realizaron los tratamientos según indica cuadro 1, mediante inmersión de los frutos en solución con las dosis entregadas por cada laboratorio.

Biocontroladores:

Se aplicaron las dos mezclas de biocontroladorses, el día Miércoles 22 de Diciembre a 1400 frutos con mezcla 1 y 1400 frutos con Mezcla 2, a una dosis de 2 mL/L por cinco minutos, al igual que los productos químicos.

La fruta se sacó y se guardó en las mismas cajas cosecheras blancas de 8 kilos en frío a 0°C por 24 horas.

Luego, se inocularon las cerezas con 3 patógenos (Botrytis, Cladosporium y Aspergillus), dejando 400 frutos por mezcla A y B, con cada uno de los patógenos, los cuales fueron contados y sumergidos en suspensiones con concentraciones conocidas por 5 minutos. Se sacó la fruta y se puso en bolsas de AM abiertas de 2.5 kilos cada una y se dejaron a 24°C en acondicionado, para que se vea favorecido el crecimiento de los patógenos por 24 horas. Luego, el personal del packing, sello las bolsas y coloco la fruta en cámara a 0°C.

Los frutos fueron dispuestos en clamshell de 5lb, donde cada clamshell corresponde a una repetición y estas se colocaron en cajas con AM selladas.

Tratamientos:

	Tratamien	to			Botrytis			Pe		Penicillium		C	ladospor	rium				
				R1	82	R3	R4	R1	82	R3	R4	RI	R2 R3	R4				
Quimica	Testigo	AM	Formulación	200	200	200	200	200	200	200	200	200	200 20	0 200	Frutos	Kg	Kg Multires	sidual
Mabruk	Rukon Flo	iprodione 50%	SC	200	200	200	200	200	200	200	200	200	200 20	0 200	2400	24	1	
Anasac	Apolo	Tebuconazole 25%	EW	200	200	200	200	200	200	200	200	200	200 20	0 200	2400	24	1	
Bayer	Royral 4FLO	Iprodione 48%	SC	200	200	200	200	200	200	200	200	200	200 20	0 200	2400	24	1	
Agrospec	Iprodion FLO	Iprodione 48%	SC	200	200	200	200	200	200	200	200	200	200 20	0 200	2400	24	3	
Rotam	Odim	Tebuconazole 43%	SC	200	200	200	200	200	200	3 204	200	200	200 20	0 200	2400	24	1	
Chemie	BC-1000	Extracto cítricos		200	200	200	200	200	200	200	200	200	200 20	0 200	2400	24	1	
Bionativa	Bio controlador 1	XXX		200	200	200	200	200	200	200	200	200	200 20	0 200	2400	24	1	
Bionativa	Bio controlador 2	XXX		200	200	200	200	200	200	200	200	200	200 20	0 200	2400	24	1	

Cada tratamiento consta de 4 repeticiones de 100 frutos cada uno y 3 cepas en total el ensayo. Así, cada tratamiento contó con 4 cajas con 100 frutos cada uno, colocados todos bajo una bolsa de AM dentro de una caja de cartón de 5 kg.

Evaluación.-

La evaluación se realizará a los 30 días de almacenaje, evaluando frutos sanos y frutos con pudrición.

Cerezo 2011/2012.-

El objetivo de este ensayo es determinar la efectividad de las mezclas de ETB, en el control de enfermedades de Post- cosecha.

Este ensayo se realizo en la Agrícola Verdani, ubicada en Duao, Comuna de Maule. La fruta fue guardad en Frio en las dependencias de nuestra empresa.

Metodología

El ensayo será conducido mediante un Diseño Completamente al Azar (DCA), cada uno compuesto por 3 repeticiones (árbol), cuya unidad experimental corresponderá a la cosecha de una caja de 5 kg.

Tratamientos

Tratamientos	Biocontrolador	Dosis
1	Manejo de Huerto	
2	Mezcla 1	100 ml/l
3	Mezcla 2	100 ml/l
4	Mezcla 3	100 ml/l

Aplicación:

- ✓ Esta dosis se ocupara para ambas mezclas (1 y 2) y para el control. Con follaje: 100 ml/100 L de agua.
- ✓ La aplicación se realizara con turbo, con 1000-1500 L/ha (según mojamiento del huerto), con todas las boquillas abiertas, asegurando una cobertura homogénea en toda la planta.

Evaluación Post-cosecha:

Luego de cosecha, la fruta será guardada en cámaras de frío, será sacada y evaluada en las caja (por tratamientos) a los 15, 30, 45 y 60 días después de cosecha.

Las evaluaciones se realizaran directamente sobre la fruta obtenida de cámara:

- Incidencia: presencia ausencia de pudriciones por caja, determinada como peso de frutos con pudrición.
- Severidad: Tamaño de lesión por fruto.

En cada evaluación, se tomaran 10 frutos por caja, los que serán sometidos a cámara húmeda por 3 días, luego de lo cual se evaluar incidencia y severidad.

Uva de Mesa 2010/2011

El objetivo de este ensayo es evaluar incidencia y severidad de las enfermedades de Postcosecha de uva de mesa, variedad Flame.

Se realizaron ensayos de aplicación en campo y papel de embalaje en cv. Flame. La fruta fue cosechada y luego guardada en las cámaras de la Universidad de Talca.

<u>Metodología</u>

El ensayo será conducido mediante un Diseño Completamente al Azar (DCA), con arreglo factorial 3x3 donde los factores fueron tratamientos (control químico, mezcla 1 y mezcla 2) y momento de aplicación (pre cosecha, aspersión sobre papel del embalaje y combinación de ambos), con medias repetidas en el tiempo (30 y 60 días). , cada uno compuesto por 6 repeticiones, cada una compuesta por una planta, de la cual se extrajo una caja de 8 kg.

Aplicación:

Esta dosis se ocupara para ambas mezclas 3 ml/1 L de agua., esto tanto para la aplicación sobre el papel como en campo.

- La aplicación de campo se realizo con turbo, con 1000L/ha (según mojamiento del huerto), con todas las boquillas abiertas, asegurando una cobertura homogénea en toda la planta.
- Mientras que la aplicación sobre el papel, fue con aspersor, con un volumen de 20 ml por caja.

Evaluaciones

Las evaluaciones fueron realizadas a los 30 y 60 días después de cosecha, consistiendo en determinar el porcentaje de frutos con presencia de pudrición.

Ensayos aplicación pre cosecha Cv Thompson

En un segundo ensayo en uva de mesa, en el mismo predio, donde solo se realizo aplicación pre cosecha de las 3 mezclas y se tuvo un control químico, consistente en aplicación de tebuconazole, por electrostática en packing.

Las evaluaciones se realizaron a los 45 y 60 días de almacenaje, determinándose porcentaje de pudriciones presentes.

ETAPA 3. FORMULACION

Ensayo: Medio de Cultivo

Para esta evaluación, se comparo la productividad de cada cepa, en relación a la cepa de *Trichoderma harzianum* cepa Queule, producidas en un fermentador solido con una mezcla de sustratos estándar. Para esto se estableció un diseño completamente al azar, donde los tratamientos fueron cada una de las cepas. Evaluándose tiempo de esporulación, tiempo de cosecha y conidias por gramo de sustrato producidas por cepa, se considera aceptable para escalamiento comercial toda cepa, que tenga una producción no menor a un 20% de la productividad de la cepa control y que no demore más de 2 días respecto a la misma cepa para momento de cosecha.

Ensayo: Temperatura

Para esta evaluación, se comparo la productividad de cada cepa, en función de la temperatura, evaluándose 4 temperaturas, 20, 25, 30 y 35°C, determinándose la temperatura optima, a través de regresión lineal de la cantidad de conidias por gramo obtenidas al 5to día de cosecha, luego de lo cual, se estableció el polinomio explicativo de la curva de producción y se estableció por segunda derivada la temperatura optima, siendo aceptable temperaturas entre 20 y 30°C.

Formulación

Dada la identidad de todas las cepas obtenidas y forma de uso evaluadas, se estableció como formulación definitiva una formulación liquida, evaluando 5 tipos de aditivos para incrementar estabilidad, para lo que a partir del día 30 se evalúo cada 15 días, se evalúo:

- -. Cambio de color
- -. Cambios de olor
- -. Disminución de porcentaje de viabilidad, respecto a control sin aditivos y calidad inicial. Esto en 4 temperaturas, 4, 15, 20 y 25° C.

Ensayos de adición del formulado

A. Cambio de pH

- 1. Preparar solución mezcla 1 1x10⁹ (conteo entre 40 y 79) usando agua de pozo, agua destilada y agua destilada estéril.
- 2. Para cada tipo de agua llenar 18 tubos falcon de 50 mL con 30 mL de la solución. Separar 6 tubos y añadir gotas de ácido sulfúrico hasta llegar a pH 3. Ocupar elementos de seguridad al manipular el ácido sulfúrico.
- 3. Hacer lo mismo con otros 6 tubos hasta llegar a pH 4.
- 4. Se repitió con los 6 tubos restantes sin modificar el pH. (Controles mezcla 1 T0P-T0D-T0DE)
- 5. Se registró conteo de cada tubo.
- 6. De cada tratamiento dejar 3 a temperatura ambiente y 3 a 4°C.
- 7. Rotular de acuerdo a la tabla (Hoja 2).
- 8. Se evaluó cada 15 días, se realizaron conteo de conidias, siembra en PDA y pruebas de competencia (ver hoja siguiente)

D. Agua oxigenada

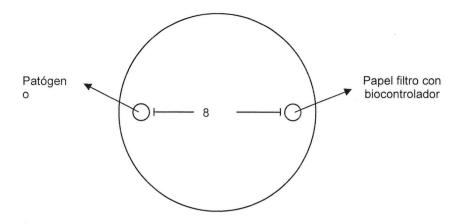
- 1. Se preparó concentrado de mezcla 1. Se separó un tubo y se agregó agua y concentrado para obtener 30 mL de solución 1x10⁹. Se anotaron los volúmenes que se ocuparon.
- 2. Se separaron 18 tubos y se agregó agua según el cálculo que se hizo, llenando 6 con agua de pozo, 6 con agua destilada y 6 con agua destilada estéril.
- 3. Se agregó a cada uno 150 μL de agua oxigenada (H_2O_2) de 20 volúmenes. Esto corresponde a un 0,5% de H_2O_2 .
- 4. Se hizo lo mismo con los tubos restantes agregando 300 μ L (1%), 900 μ L (3%) y 1500 μ L (5%), de forma que quede como en la tabla (Hoja 2)

- 5. Completar todos los tubos con el volumen de concentrado que se determinó al principio.
- 6. De cada tratamiento de 6 se dejaron 3 a temperatura ambiente y 3 a 4°C.
- 7. Se evaluó cada 15 días. Realizar conteo de conidias, siembra en PDA y pruebas de competencia (ver hoja 3).

<u>pH</u>

TRATAMIENTO	AGUA	рН
TA1	Pozo	3
TA2	Destilada	. 3
TA3	Destilada estéril	3
TA4	Pozo	4
TA5	Destilada	4
TA6	Destilada estéril	4

Agua oxigenada


TRATAMIENTO	AGUA	CONC. H ₂ O ₂
TD1	Pozo	0,5
TD2	Pozo	1
TD3	Pozo	3
TD4	Pozo	5
TD5	Destilada	0,5
TD6	Destilada	1
TD7	Destilada	3
TD8	Destilada	5
TD9	Destilada estéril	0,5
TD10	Destilada estéril	1
TD11	Destilada estéril	3
TD12	Destilada estéril	5

Controles

T0P	TR+ Agua Pozo	
TOD	TR+ Agua Destilada	
T0DE	TR+ Agua Destilada estéril	

COMPETENCIAS:

Para cada cepa humedecer un círculo de papel de 0,7 mm estéril con 100 μL de la solución comercial y sembrar, usando pinzas, en un costado de la placa de PDA. A 8 cm de distancia sembrar un disco con *Botrytis*, tal como aparece en la figura. Preparar 5 réplicas de cada competencia, 3 de control Botrytis y 3 de control mezcla 1. Dejar incubar a 25°C. Medir crecimiento cada 2 días.

ETAPA 4. REGISTRO SAG

Ensayos de Toxicidad y características fisicoquímicas

Estos ensayos fueron enviados hacer y están en proceso, nos queda esperar los resultados para conocer la toxicidad oral, dérmica e inhalatoria del presente formulado, aunque estas mezclas por ser microorganismos no presentan toxicidad, salvo algunas especies, pero no las utilizadas en este ensayo.

Elaboración de hoja de seguridad y ficha técnica.

Estas se adjuntan en el Anexo 1, aun no están terminadas ya que falta la parte de toxicidad y definir bien el nombre del formulado.

Preparación de dossier de solicitud.

La preparación del dossier también depende de los resultados de loa análisis de toxicidad, por lo cual aún no está terminado, a la espera de estos datos.

PRINCIPALES PROBLEMAS METODOLÓGICOS ENFRENTADOS

Los principales problemas enfrentados en este proyecto, fue la falta de capacidad instalada en Chile, para una rápida identificación de los organismos, lo que implica la necesidad de realizar secuenciamientos en Korea, lo que atrasa en forma significativa el proceso de toxicología y registro SAG, en especial por lo singular de los lugares de colecta, existiendo organismos detectados que solo ha podido ser parcialmente identificados a nivel de género y otros no ha encontrado correspondencia, en los bancos genéticos, dado esto pese a que algunas de estas cepas, muestran buenos niveles de control, se opto por no llevarlas a las pruebas de campo, dado que si fueran organismos nuevos para la ciencia, implica la necesidad de realizar su perfil toxicológico y eco toxicológico completo, lo que para el mercado Chileno es inviable.

En otros aspectos del desarrollo del proyecto, no se han encontrado problemas, diferentes a los propios de este tipo de investigación, los que se han superado en forma eficiente y no han significado mayores retrasos.

3. ACTIVIDADES EJECUTADAS

ETAPA 1. PROSPECCION

Recolección y reproducción de cepas de extremófilos de bajas temperaturas (ETB).

Los lugares de recolección han sido cámaras de frío, líneas de parking, pozos de vaciado de fruta, sitios de descarga de fruta desde el campo y de salida a cámaras de frío y frigoríficos en general, así como ambientes naturales, donde se den condiciones de frío permanente (media anual de temperatura menor a 8° C) y frío temporal (media invernal de temperatura menor a 8° C). Esto ha permitido obtener extremófilos de baja temperatura (ETB), que son capaces de desarrollar todo su ciclo a temperaturas menores a 8°C y microorganismos que podrán soportar temperaturas superiores. La recolección se ha realizado en los meses de verano, con el fin de asegurar la existencia de las condiciones de frío durante todo el año. Los lugares de búsqueda han sido glaciares, nieves eternas, campos de hielo, donde se han recolectado muestras de agua, suelo, nieve y tejido vegetal, de varias alturas y profundidades.

Recolección y aislación de patógenos de postcosecha.

Los microorganismos fitopatógenos de postcosecha, se han obtenido desde aislaciones de fruta en almacenaje con síntomas y signos de las enfermedades que producen estos patógenos, así como de muestras donadas por laboratorios de Fitopatología Vegetal. Las muestras han sido sometidas a los procesos estándar de aislación, cultivo *in vitro* y almacenaje.

Reproducción in vitro de ETB.

Los aislamientos de extremófilos se han realizado en medios de cultivo simples, agar papa dextrosa para hongos, levaduras y agar nutriente para bacterias, de manera de evitar la necesidad de sistemas de producción y manipulación complejos. No obstante, algunas muestras obtenidas desde la Antártica, se han cultivado en medios específicos, tales como LB y R2A. La reproducción de ETB se ha efectuado a bajas temperaturas, 0°, 1°, 4° y 10°C, y a temperatura ambiente, 25°C.

Identificación de patógenos y de ETB (familia o género).

La identificación de microorganismos patógenos se ha realizado por medio de protocolos estándar, basándose en características morfológicas, para el reconocimiento de género de los patógenos utilizados. Para la identificación de ETB seleccionados, se utilizarán procedimientos similares a los usados en la caracterización de patógenos, junto con análisis moleculares correspondientes.

Evaluación de la capacidad inhibitoria in vitro de cepas nativas de ETB para aislados de AF/PP

Ensayo I. Actividad Inhibitoria

Para llevar a cabo el ensayo de actividad inhibitoria de microorganismos seleccionados, ya sea bacterias, levaduras y hongos, se ha realizado lo siguiente.

De cultivos puros, tanto de ETB como de patógenos, se extrae con ayuda de un sacabocado para ser colocados en medio agar papa dextrosa (levaduras y hongos) y en agar nutriente (bacterias), cultivos duales.

El crecimiento de cada microorganismo se evalúa cada 72 horas, por 20 a 30 días o hasta que uno de los dos microorganismos invada al otro. Se preparan 3 repeticiones de cada uno, más dos controles de cada patógeno y del organismo ETB. Cada ensayo se repite a 4, 10 y 25°C.

Ensayo III (nuevo). Actividad inhibitoria mediante liberación de compuestos volátiles

De cultivos puros de patógenos, se extrae un disco de micelio, el cual se sobrepone a otra placa petri con total crecimiento de ETB. Se colocan una encima de otra, se sellan con Parafilm y se incuban a 4, 10 y 25°C. Se mide el crecimiento del patógeno frente a los ETB seleccionados, de la primera etapa *in vitro* (cultivo dual) para cada temperatura. Se mide cada 5-7 días, según la temperatura, y al cabo de 20 días aproximadamente, se concluye el ensayo.

Ensayos in vivo.

Ensayo IV. Mezclas pre-post inoculación

Se ha realizado una modificación a este ensayo en las primeras pruebas, ya que según los resultados obtenidos en pruebas paralelas, se ha optado por realizar sólo ensayos de carácter preventivo, es decir, aplicaciones pre-inoculación de patógenos. Para el caso de limones, manzanas y cerezas, no se han realizado mezclas de cepas, sólo aplicación de controladores individuales. En el caso de cerezas, se probaron dosis de los controladores. En los ensayos más recientes con arándanos, sí se realizaron aplicaciones de controladores solos, mezclas de éstos y diferentes dosis.

ETAPA EVALUACIÓN.-

Evaluación en condiciones comerciales.-

Evaluación en cámara refrigerada.-

Durante estos ocho meses, se han realizado dos ensayos en cámara de frío en pomáceas: peras Abatte Fettel y manzanas Scarlett, a 0°C., donde se han evaluado cepas solas y sus mezclas, principalmente para *Botrytis cinerea y P. expansum*. Estos ensayos se han evaluado por 50 a 90 días, y se ha evaluado la incidencia de pudriciones asociadas a los patógenos predominantes; en el caso de las peras, éstas no fueron inoculadas, sino, se esperó la aparición de síntomas y signos, que según historial de la exportadora, corresponderían a *Alternaria* spp. y *B. cinerea*, sin embargo, según la identificación morfológica, el principal patógeno correspondió a *Stemphyllium* spp. En el caso de las manzanas, éstas sí fueron inoculadas y se les dieron todas las condiciones para que esta fruta se enfermara, para realmente probar el real efecto de los biocontroladores aplicados preventivamente.

Validación en condiciones comerciales.-

Estos ensayos se han realizado en manzanas, donde el objetivo general es evaluar la aplicación de tratamientos biológicos basados en hongos extremófilos provenientes de ambientes fríos en periodos de pre y postcosecha y la combinación de ambas épocas sobre el control de enfermedades de postcosecha.

En este ensayo se evaluó la incidencia y severidad de diferentes enfermedades de postcosecha, además de medir sólidos solubles y presión para ver si había algún efecto de estas enfermedades sobre estas cualidades organolépticas de la fruta.

En uva de mesa también se evaluó incidencia y severidad de las enfermedades de Postcosecha, la variedad usada fue Flame. Se realizaron ensayos de aplicación en campo y papel de embalaje en cv. Flame. La fruta fue cosechada y luego guardada en las cámaras de la Universidad de Talca. Las evaluaciones fueron realizadas a los 30 y 60 días después de cosecha, consistiendo en determinar el porcentaje de frutos con presencia de pudrición.

En cerezas Del Monte, se evaluó el efecto de control de distintos fungicidas para el control de pudriciones de postcosecha, sobre cepas patogénicas. Los frutos fueron sanitizados y luego se les realizo una herida para ser sumergidos en una suspensión con cada uno de los patógenos.

Posteriormente se mantuvieron 24 horas en cámara húmeda y luego a se realizaron los tratamientos, mediante inmersión de los frutos en solución con las dosis respectivas. La fruta se sacó y se guardó en las mismas cajas cosecheras blancas de 8 kilos en frío a 0°C por 24 horas. La evaluación se realizará a los 30 días de almacenaje, evaluando frutos sanos y frutos con pudrición.

Los otros ensayos que se están llevando a cabo en este minuto, son en cerezos y arándanos, estos últimos dos cultivos están almacenados en frio, para ser evaluados a los 15, 30, 45 y 60 días post cosecha, con el fin de evaluar incidencia (presencia de pudriciones) y severidad (tamaño de lesión).

ETAPA FORMULACIÓN.-

Esta etapa está concluida, se realizaron todos los ensayos correspondientes a la formulación del producto, ensayos de medio de cultivos, temperatura, Ph, oxigenación, integración de parámetros y aquellos relacionados con el tipo de formulado, acarreador, almacenaje y envase.

ETAPA DE REGISTRO SAG.-

Esta etapa aun está en proceso, debido a que los análisis de toxicidad aun no están listos y necesitamos dicha información para poder seguir con nuestro registro.

DIFUSIÓN .-

Se realizó la primera charla de difusión de avances del proyecto, desde la recolección de cepas hasta la presentación de resultados de ensayos comerciales, la cual se efectuó el 1º de Septiembre de 2010 en la Universidad Católica del Maule, la cual contó con la presentación de tesis de pregrado en que se han utilizado cepas de extremófilos, dictada por el Decano de la Facultad de Ciencias Agrarias de dicha casa de estudios, el Sr. Nelson Loyola. Luego, continuó una presentación del Coordinador del proyecto, Eduardo Donoso, con respecto a pruebas *in vitro* y luego, Catalina Radrigán, realizó una presentación de los resultados en diferentes frutas de exportación, tanto en condiciones *in vivo* y comerciales. La asistencia fue cercana a 45 personas, todas ligadas al mundo de la investigación y de comercialización de fruta de exportación, especialmente, exportadoras de las más grandes del país, con las cuales hemos trabajado en conjunto y otras nuevas, interesadas en conocer los resultados. Luego, se realizó un cóctel de convivencia donde se intercambiaron opiniones, difusión de posters presentados anteriormente en Simposios, Congresos Científicos, entre otros, y se planificaron nuevos ensayos comerciales, para el siguiente período.

Está pendiente la charla de entrega de resultados finales, la cual se realizara una vez que concluyan los ensayos en arándano y cereza que están en plena ejecución.

Una vez que tengamos todos nuestros resultados, se elaborara un boletín divulgativo del proyecto con las consideraciones finales.

ANÁLISIS DE BRECHA

Obj.	Actividad	Fecha proyectada	Fecha realización	Resultado	Observaciones
-	Etapa Prospección				
	Aislación de cepas de ETB clase 1	Dic /07- Mar/08	Ene/08- Abr/08	Colección cepas de ETB clase 1	Se ha logrado una
					colección de cepas puras
					de diferentes ETB.
	Aislación de cepas de ETB clase 2	Abr /08-Jun/08	Mar/08- Jun/08	Colección cepas de ETB clase 2	Se ha logrado una
					colección de cepas puras
					de diferentes ETB.
	Aislación de patógenos de postcosecha.	Dic /07-Sep 08	Dic/07- Jul/08	Colección patógenos	Se tiene una colección de
					patógenos de
					postcosecha.
	Reproducción in vitro de ETB	Dic /07- Dic/08	Ene/08- Jul/08	Metodología de cultivo en condiciones de	Se ha logrado aislar y
				laboratorio	reproducir bajo diferentes
					métodos de cultivo los ETB
					seleccionados
	Identificación de patógenos (especie) y	Sep/08- Dic/08	Abr/08	Listado de colección	Se ha logrado
	de ETB				identificación de patógenos
	(Tamilia o genero)				a nivel de género.
2	Evaluación <i>in vitro</i>	May/08- Oct/ 08	May/08- Jul/08		
2.1	Ensayo I. Actividad Inhibitoria.	May/08-Jul/ 08	May/08- Jun/09	Cepas con actividad inhibitoria	Los resultados arrojaron
	A STATE OF THE PARTY OF THE PAR				diferencias entre los
					diferentes hongos con
					(Botrytis, Neofabraea,
					Penicillium y Rhizopus).
2.1.1	Ensayo II. MIC. Mínima concentración	Jul/08- Ago/ 08	30/lng- Jun/ 00	Cepas seleccionadas por concentración	Este ensayo no se realizó,
	inhibitoria.			mínima	probando en fruta distintas
					dosis.
2.1.2	Ensayo III. Determinación del efecto de	Ago/08-Oct/ 08	Sept/09-Dic/10	Mezcla de cepas seleccionadas	Esta etapa se está
	combinaciones entre cepas.			(10)	realizando pero
					directamente en la fruta.
2.2.1	Ensayo IV. Mezclas pre-post	Nov/08- Feb/09	Nov/08-Dic/10	Mezclas de cepas seleccionadas in vivo	Los ensayos ratificaron el
	inoculación.			Numero de mezclas (5)	carácter preventivo de los
					biocontroladores.
2.2.2	Ensayo V. Mezclas huerto-packing	Feb/09- May/09	Dic/10-Marz/11	Mezclas de cepas seleccionadas, en	Se seleccionaron 2
				condiciones controladas Número de mezclas	mezclas de cepas de ETB
				(3)	para el formulado.

2.3	Evaluación en condiciones comerciales	May/09-Sep/11	Dic/08- Dic/11	Selección de cepas para pudriciones en manzanas, limones, peras, cerezas, uva, arándanos, entre otros.	aciones con y lación de patóge frio, en manzar as, uva de me lanos, limones y pe
2.3.2	Ensayo VII. Validación en condiciones comerciales	Ene/11-Sep/11	Dic-09-Dic/11	Disminución en perdidas por enfermedades de postcosecha Porcentaje control (30-50%)	Se han realizado las validaciones comerciales.
8	Etapa Formulación				
	Ensayo: Medio de Cultivo	May/09- Ag/09	Mar/11-Oct/11	Determinación de medio óptimo (unidades de producción =25)	
	Ensayo: Temperatura	Sept/09- Oct/09	Mar/11-Oct/11	Determinación de tº óptima	Estos ensayos se
	Ensayo: pH	No/09-Dic/09	Mar/11-Oct/11	Determinación de pH óptimo	determination todas las
	Ensayo: Oxigenación	Ene10/Feb 10	Mar/11-Oct/11		consideraciones del
	Ensayo: Integración de parámetros	Mar/10-May 10	Mar/11-Oct/11	Protocolo de producción en biodigestor (si se adecúa)	formulado.
3.2	Extracción de Biocontroladores	May/10- Sep/10	Mar/11-Oct/11		
	Ensayo: Selección estructura y estado de inóculo	May 10/Jul 10	Jul/10 -Oct/11	Determinación de UFC necesarias para el formulado;	Se estableció un promedio de 10 ⁹ ufc/mL de suspensión acuosa.
	Ensayo: método de extracción	Jul10/Sept 10	Mar/11-Oct/11	Porcentaje (al menos 50%)	
3.3	Formulación				
3.3.1	Ensayo XV: Tipo de formulado	Sep/10- Nov 10	Jul/10 -Oct/11	Líquido, polvo, sachet, entre otros.	La formulación definitiva es de tipo liquida.
	Ensayo XVI: Selección de acarreador	Dic/10-Ene 11	Dic/10-Ene 11	Formulado	
3.4	Almacenaje				Estos ensayos se
	Ensayo: Envase	Oct/10- Oct 11	Oct/10- Oct 11	Envase	realizaron, obteniendo
	Condiciones y tiempo de almacenaje	Ene/11- Oct/11	Ene/11- Oct/11	Tiempo establecido de almacenaje previas pruebas.	resultados favorables.
4	Etapa Registro SAG				
4.1	Ensayos de toxicidad y características físicoquímicos	Jul/10-Nov/10	Sep/11-Enero/ 12		
4.2	Ensayo toxicidad aguda oral, dérmica e inhalatoria	Jul/10-Nov/10	Sep/11-Enero/ 12	Determinación de niveles de toxicidad aguda: Certificado de toxicidad	Esta etapa aun se encuentra en proceso, va
4.3	Determinaciones físicoquímicas	Ene11/Mar 11	Sep/11-Enero/ 12	Certificado de caract. Físico-químicas	que estamos en espera de
4.4	Elaboración de ficha técnica, hoja de seguridad, etiqueta	Dic 10/Mar 11	May/11- Dic/ 11	Hoja de seguridad, Ficha técnica, Etiqueta potencial	los resultados de los análisis de toxicidad de
4.5	Preparación de dossier de solicitud	Ene 11/Jul11	May/11-Dic/11	Ingreso de solicitud a SAG	nuestras cepas.

υ Ω	Difusión				
5.1	Elaboración de página web del proyecto	Dic08/Ene 09	60/unf	Página web con información del proyecto, avances, asistencia a congresos, charlas.	Se encuentra dentro de la página web de la empresa, un link con la información del proyecto.
5.2	Charlas, días de campo, participación seminarios, reunión asesores, equipos técnicos empresas.	Feb /09- /Oct 11	Feb /09- /Oct 11	Charla de difusión con presentación de resultados finales del proyecto.	Esta charla aun no se realiza, a la espera de los últimos resultados de los ensayos aun en ejecución y de la parte de toxicidad que aun sigue pendiente.
5.3	Participación en congresos científico,	Nov/09- Oct/11	Sept/10- Nov/10		En el proyecto se participó de seminarios, congresos, charlas y reuniones técnicas.
4.0	Elaboración de boletín divulgativo de los resultados del proyecto.	Jun 11/ Oct 11	Oct 11-Nov 11	200 unidades impresas	Estos boletines serán impresos una vez se tengan los últimos resultados del proyecto.

4. RESULTADOS

A la fecha del cierre de este informe, se cuenta con una colección de cepas biocontroladoras con alta capacidad de control preventivo de las principales enfermedades de postcosecha.

Durante este período, se han realizado los ensayos que competen a la parte de validación comercial, donde se han probado las mejores mezclas de biocontroladores seleccionadas.

A su vez la parte de la etapa de formulación esta realizada, con todos los ensayos programados según carta Gantt, ensayos de. Medios de cultivo, temperatura, pH, oxigenación, integración de parámetros. En lo que respecta específicamente al formulado, se realizo la selección de acarreador, almacenaje, envase y condiciones y tiempo de almacenaje.

En la etapa de registro Sag, lo que quedaría pendiente a la fecha es la parte de análisis de toxicidad.

Por lo tanto, se puede establecer, que las actividades realizadas se ajustan al nivel de avance esperado para la finalización de este proyecto.

ETAPA 1. PROSPECCION

Recolección y reproducción de cepas de extremófilos de bajas temperaturas (ETB).

La zona geográfica de recolección de muestras comprende desde la Región Metropolitana hasta la XI región de Aysén, incluida la Antártica chilena.

Durante este tiempo se han recolectado cerca de 200 a 300 muestras de suelo, agua, nieve, morrena, sedimentos de lagunas, entre otros, más muestras de microorganismos aislados desde paredes, líneas de selección de fruta, cámaras de frío, cajas de fruta, entre otras.

La colección de bacterias, levaduras y hongos se encuentran en refrigeradores a 4°C hasta el momento de ser utilizados para las pruebas de competencia e inhibición, debidamente rotuladas.

Además, muestras provenientes de la Antártica chilena, se encuentran congeladas a - 18°C (Anexo 1).

Los microorganismos que muestren potencial controlador se almacenan en incubadores a 4°C, para posteriormente, ser trasladados al tanque de nitrógeno líquido a -196°C.

Recolección y aislación de patógenos de postcosecha.

La colección de patógenos se ha mantenido en incubadores a 4°C y se está renovando constantemente, repicando para evitar contaminación. Hasta el momento, contamos con los siguientes patógenos identificados hasta nivel de género:

- Colletotrichum
- Botryosphaeria
- Aspergillus
- Geotrichum
- Penicillium
- Alternaria
- Botrytis
- Neofabrea

Además, contamos con otros patógenos que si bien no son propiamente de postcosecha, se tienen dentro de esta colección, tales como *Pestalotia, Verticillium*, entre otros.

Reproducción in vitro de ETB.

Se han evaluado 38 biocontroladores en total, desde el inicio del proyecto en los ocho patógenos de post-cosecha. A continuación, se presenta la lista de éstos:

Biocontroladores	
Agua diablillo Playa	
9 Teno	
Isla Rey Jorge	
Tripak Cenkiwi	
211 A	
1 Agua Nieve	
1 Limón	
Agua Diablillo	
XLIII	
VXI Leones	
T5	
XXIII B G. Sucio	
T4 Sedimento Coyhaique	
Agua T2	
T1 XVV	
12 Glaciar Sucio	
Muestra 9	
Sulico 4	
XLVI	
Sedimento L. Maule	
XIV G. Sucio	
Macerado	
Embalaje	
Orilla 3	4
9 Glaciar Sucio	
XIX G. Sucio	ME
8 Sedimento bajo nieve	
11 Glaciar Sucio	

XVIII G. Sucio	
Chorgul RN	34
XXVI	
Los Queñes	
4 Sillahur	
5 Vilches	
52 Leones	
Cámara 1	
LVIII Río Baker	
LXIV G. Leones	

De éstos, se han seleccionado, veintidós ETB, los cuales se repican periódicamente, al igual que los que no se están utilizando constantemente, para mantener la colección, ya que hay ETB que funcionan a temperaturas mayores, los cuales se probarán en mezclas huerto-packing. Estos ETB se conservan en agar papa dextrosa a 4°C y otras muestras se guardan en nitrógeno líquido.

Identificación de patógenos y de ETB (familia o género).

Se tiene una colección de patógenos identificados, tales como:

- Colletotrichum
- Botryosphaeria
- Aspergillus
- Geotrichum
- Penicillium
- Alternaria
- Botrytis
- Neofabrea
- Alternaria (nuevo)

Falta llegar a determinar la especie mediante técnicas moleculares, de lo cual estamos a la espera de las últimas muestras enviadas a secuenciar.

Evaluación de la capacidad inhibitoria in vitro de cepas nativas de ETB para aislados de AF/PP:

Ensayo I. Actividad Inhibitoria

Este ensayo, se realizó a 4, 10 y 25°C y se evaluó cada 72 horas, hasta completar 30 días de incubación o hasta que hubiese invasión por parte de cualquiera de los dos microorganismos. Los patógenos testeados en la primera etapa del proyecto corresponden a *Coletotrichum, Botryosphaeria, Aspergillus y Geotrichum.*

En cuanto a los resultados obtenidos, se puede establecer que ninguno de los 10 hongos con potencial controlador fue capaz de invadir a los cuatro patógenos testeados a 4°C, pero sí se registraron diferencias significativas en cuanto a crecimiento, indicando su capacidad inhibitoria más que por competencia.

A 10°C tampoco invadieron a los patógenos, a excepción de tres controladores (XLVI, Macerado hoja manzano y Embalaje fruta Linares) que sí lograron invadir a Geotrichum. A este mismo patógeno, lo invadieron a 25°C estos tres ETB más cuatro más, desde los 7 días de incubación, hasta los 30 días de evaluación final. Los únicos casos donde el patógeno, en este caso *Geotrichum*, invadió a dos ETB (XIV Glaciar sucio y XV Glaciar Sucio) fue a 25°C.

En el caso de *Aspergillus*, éste no fue capaz de crecer a 4°C, lo que fue importante para que los ETB pudieran crecer más del doble que el patógeno. De este modo, a 4 y 10°C se observó sólo detención del crecimiento de los patógenos produciendo cierto grado de inhibición, pero no se logró invasión de ETB sobre los patógenos.

En el caso de Geotrichum, éste sí resultó invadido a 10 y 25°C, por siete de los 10 ETB probados, al cabo de 30 días de incubación, aun cuando, la cepa "Sedimento Laguna Maule" invadió al patógeno siete días desde incubación a 25°C.

Estos resultados preeliminares arrojan diferencias entre los diferentes hongos con potencial controlador como para seguir utilizando aquellos que en esta etapa, hayan mostrado un mayor crecimiento, provocando efectos inhibitorios y por invasión.

Cuadro 1. Efecto biocontrolador de 10 ETB, sobre los patógenos *Coletotrichum spp.*, *Botryosphaeria spp.*, *Aspergillus spp.*, *Geotrichum spp.* a 4°C.

Temperatura 4°C	Controlador	Coletotrichum	Controlador	Botryosphaeria	Controlador	Aspergillus	Controlador	Geotrichum
Silico 4 Puerto Tranquilo	32,83 *	10,5	20,5	15,25	45,75 *	0	14,75	16
XLVI	26,2 *	5,5	13,75	2,5	47,25 *	0	43,75 *	10,5
Sedimento Laguna Maule	10,7 *	16,0	3,25	14	0	0	0 *	11,25
XIV Glaciar sucio	18,3	8,5	8,5	5,5	20 *	2,75	23	17
Macerado hoja manzano	57,2 *	12,8	33	17	50,5 *	0	54,25 *	14,75
XV Glaciar sucio	0,0 *	16,5	4,5	18,5	0	0	4,75 *	10
Embalaje fruta Linares	65,7*	10,0	12,5	9,5	37,25 *	0	43 *	10
Orilla 3 Pto. Tranquilo	6,0	2,2	6,75	9,5	6,5	0	0 *	10,25
9 Glaciar sucio	5,5*	0,0	4,75	5,75	0	0	0 *	11
XIX Glaciar Sucio	14,3	15,3	10	12,75	6,75 *	0	5,5 *	10,5

^(*) en cada columna indica diferencias significativas entre las medias del crecimiento del controlador y cada patógeno según Tukey (*P*<0,05).

Cuadro 2. Efecto biocontrolador de 10 ETB, sobre los patógenos *Coletotrichum spp.*, *Botryosphaeria spp.*, *Aspergillus spp.*, *Geotrichum spp.* a 10°C.

Temperatura 10°C	Controlador	Coletotrichum	Controlador	Botryosphaeria	Controlador	Aspergillus	Controlador	Geotrichum
Silico 4 Puerto Tranquilo	55,5 *	16,2	27,75	51,25	47,75 *	0	38,5 *	20,75
XLVI	23,7	28,7	44,75	28,75	68 *	0	90 *	14,75
Sedimento Laguna Maule	25,2	19,7	14,5	31	30,25 *	12	18,25	22,25
XIV Glaciar sucio	35,0 *	22,7	15,75	32,75	41	19,75	32,5	30
Macerado hoja manzano	66,5 *	19,5	49,25	50	64,75 *	0	90 *	21,25

XV Glaciar sucio	0,0*	27,8	2,75 *	48,5	9,5	9,75	0 *	36,25
Embalaje fruta Linares	0,0	0,0	23,25	· 21	0	0	90 *	14,75
Orilla 3 Pto. Tranquilo	7,3	1,8	21	30,75	34 *	15,75	22,25	26,5
9 Glaciar sucio	11,2	3,3	13,25	19,5	39,25	24,5	40,75 *	21,25
XIX Glaciar Sucio	24,0	22,2	30,75	28	30	24,5	24,25 *	34

^(*) en cada columna indica diferencias significativas entre las medias del crecimiento del controlador y cada patógeno según Tukey (*P*<0,05).

Cuadro 3. Efecto biocontrolador de 10 ETB, sobre los patógenos *Coletotrichum spp.*, *Botryosphaeria spp.*, *Aspergillus spp.*, *Geotrichum spp.* a 25°C.

Temperatura 25°C	Controlador	Coletotrichum	Controlador	Botryosphaeria	Controlador	Aspergillus	Controlador	Geotrichum
Silico 4 Puerto Tranquilo	56,3 *	20,3	30,25	40,75	42,5	. 34,5	39	14,5
XLVI	40,0 *	9,7	31,5	32,25	36	39,75	90 *	26,25
Sedimento Laguna Maule	0,0	0,0	0	0	0	0	90 *	16,5
XIV Glaciar sucio	42,3 *	13,3	18,75	38	0	0	28,25 *	90
Macerado hoja manzano	0,0	0,0	43,75	36,25	49,25	32	90 *	25,5
XV Glaciar sucio	2,3 *	40,3	0	0	0	0	19,75 *	90
Embalaje fruta Linares	0,0	0,0	39	28,75	0	0	90 *	24
Orilla 3 Pto. Tranquilo	0,0	0,0	32,675	24	0	0	90 *	18,5
9 Glaciar sucio	0,0	0,0	50,25 *	22,25	51 *	23,75	90 *	17,25
XIX Glaciar Sucio	0,0	0,0	22,25	42,75	26,5 *	53	90 *	32,25

^(*) en cada columna indica diferencias significativas entre las medias del crecimiento del controlador y cada patógeno según Tukey (*P*<0,05).

Se evaluaron otros patógenos, los cuales correspondieron a: *Botrytis, Neofabraea, Penicillium y Rhizopus.*

Estos resultados arrojaron diferencias entre los diferentes hongos con potencial controlador como para seguir utilizando aquellos que en esta etapa, hayan mostrado un mayor crecimiento, provocando efectos inhibitorios y por invasión.

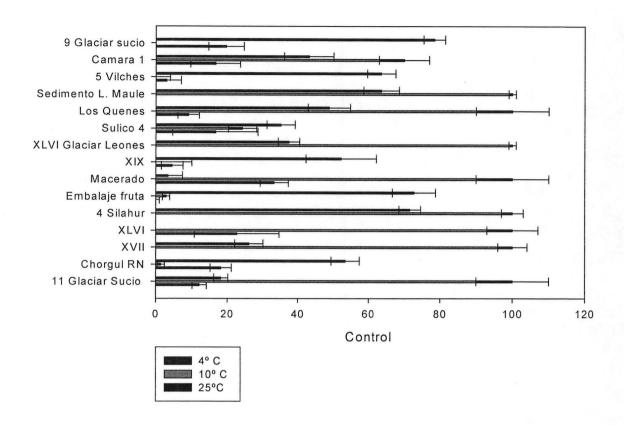


Figura 1. Efecto biocontrolador a 4, 10 y 25°C, sobre Botrytis sp.

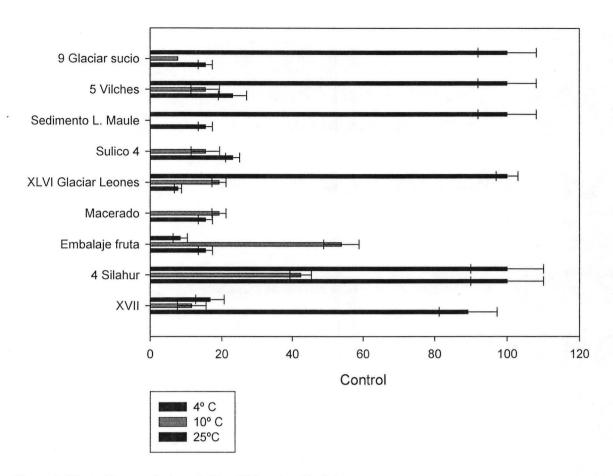


Figura 2. Efecto biocontrolador a 4, 10 y 25°C, sobre Neofabrea sp.

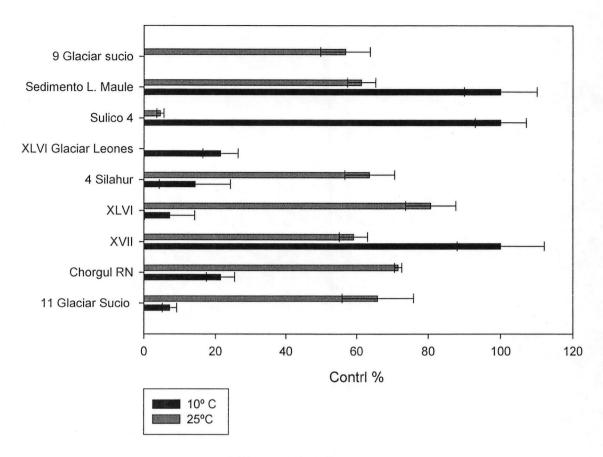


Figura 3. Efecto biocontrolador a 4, 10 y 25°C, sobre *Penicilium* spp.

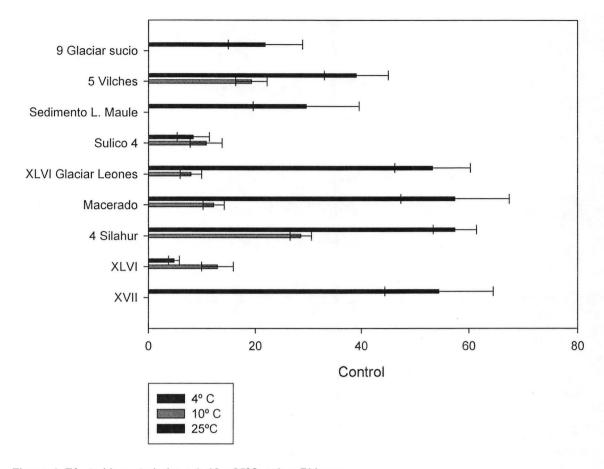


Figura 4. Efecto biocontrolador a 4, 10 y 25°C, sobre Rhizopus sp.

Además, se han realizado nuevas pruebas de inhibición y competencia con 9 cepas de biocontroladores, tales como se observan en los siguientes cuadros.

Cuadro 4. Efecto biocontrolador de 10 ETB, sobre los patógenos: *Botrytis cinerea, y Aspergillus sp.* a 4°C.

4°C	Controlador	Aspergillus	Controlador	Botrytis
VXI GLACIAR LEONES	S 11,25 0		11,5	48,75
T5	48,25	0	13,75 *	0
XXIII B GLACIAR SUCIO	11,5	0	24,25	28,5
MUESTRA 9	16,5	0	0	0
T4 SEDIMENTO COYHAIQUE	0	0	0	45,5
AGUA T2	0	0	0	52,5
XVV	0	0	0	54,25
T1 XVV	9,75	0	8,5 *	0
12 GLACIAR SUCIO	0	0	0	0
XLVI Glaciar Leones			17	46,25
Control Aspergillus		0		
Control Botrytis				4.33

(*) en cada columna indica diferencias significativas entre las medias del crecimiento del controlador y cada patógeno según Tukey (*P*<0,05).

Cuadro 5. Efecto biocontrolador de 10 ETB, sobre los patógenos: *Botrytis cinerea, y Aspergillus sp.* a 10°C.

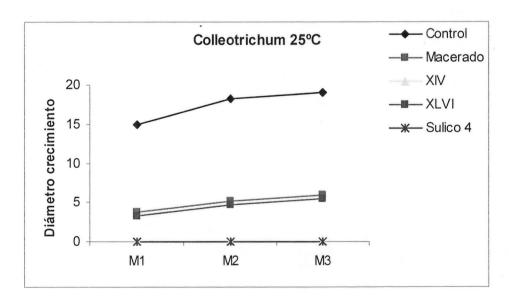
10°C	Controlador	Aspergillus	Controlador	Botrytis
VXI GLACIAR				
LEONES	27,25 *	0	90 *	6,95
T5	70,25 *	0	0	55,75
XXIII B GLACIAR SUCIO	34,75*	0	2 .	5,975
MUESTRA 9	32,5 *	0	0	5,775
T4 SEDIMENTO COYHAIQUE	0	0	0	90
AGUA T2	0	9,25	0	90
XVV	0	11,25	0	90
T1 XVV	15,5	6	0,975	6,875
12 GLACIAR SUCIO	51,75 *	0	0	3,925
XLVI Glaciar Leones	-	-	2,2	4,5
Control Aspergillus		12		
Control Botrytis	**************************************			7,75

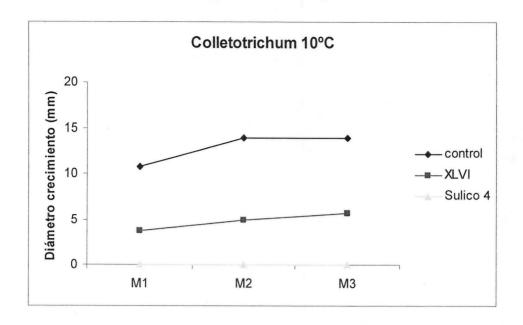
^(*) en cada columna indica diferencias significativas entre las medias del crecimiento del controlador y cada patógeno según Tukey (*P*<0,05).

Cuadro 6. Efecto biocontrolador de 10 ETB, sobre los patógenos: *Botrytis cinerea, y Aspergillus sp.* a 25°C.

25°C	Controlador	Aspergillus	Controlador	Botrytis
VXI GLACIAR		1011		
LEONES	9,25	90	90 *	5,35
T5	20	90	1,75	4,075
XXIII B GLACIAR SUCIO	9,75	90	90 *	3,675
MUESTRA 9	10,5	90	3,525	5,325
T4 SEDIMENTO COYHAIQUE	8,75	90	3,85	4,4
AGUA T2	0	90	1,25	90
XVV	9,25	80	2,15	5,675
T1 XVV	10	80	3,225	4,675
12 GLACIAR SUCIO	14,5	80	3,4	3,8
XLVI Glaciar				
Leones	-	-	1,8	4,45
Control Aspergillus		90		1
Control Botrytis				7,75

^(*) en cada columna indica diferencias significativas entre las medias del crecimiento del controlador y cada patógeno según Tukey (*P*<0,05).


Para el caso de *Aspergillus*, no se pueden sacar conclusiones de inhibición, ya que el control del patógeno no creció a 4°C. Para *Botrytis* en cambio, sí hubo efecto inhibitorio del patógeno frente a T5 y T1 XVV, seleccionándose estos 2 microorganismos para seguir con ensayos de etapas posteriores.


En el caso de 10°C, hubo cinco controladores que lograron inhibir crecimiento de *Aspergillus*, tales como: VXI G. Leones, T5, XXIII B G. Sucio, Muestra 9 y 12 G. Sucio. Para *Botrytis cinerea*, en cambio, sólo el primero, VXI G. Leones, logró cubrir la placa e invadir al patógeno.

Como se observa en el cuadro 3, los microorganismos seleccionados no lograron controlar a *Aspergillus* a 25°C, pero sí a *Botrytis cinerea*, para el caso de VXI G. Leones y XXIII B Glaciar Sucio. Estos resultados nos indica que ciertas cepas funcionan mejor a ciertas temperaturas y frente a determinados patógenos, por lo que se lleva este registro para seguir con las nuevas evaluaciones.

Ensayos in vitro con liberación de sustancias volátiles de ETB.-

A continuación, se observan los gráficos de ensayos con microorganismos seleccionados de pruebas de competencia e inhibición, para los siguientes patógenos, a 4, 10 y 25°C, según corresponda: *Colletotrichum, Botryosphaeria, Aspergillus, Geotrichum, Botrytis cinerea.y Rhizopus.*

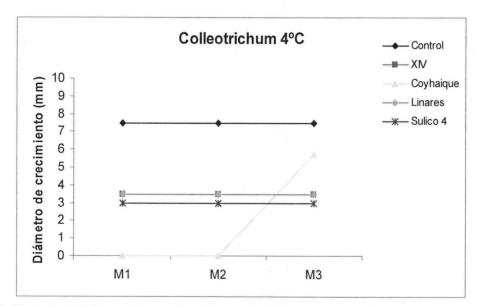
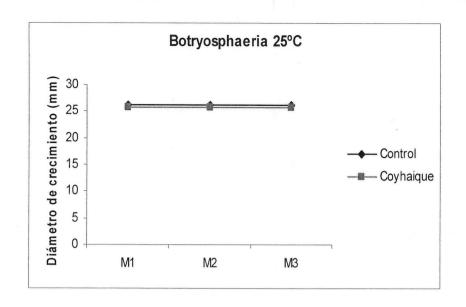
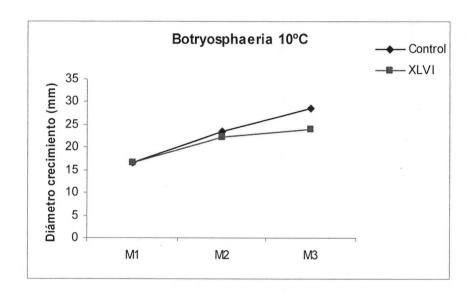
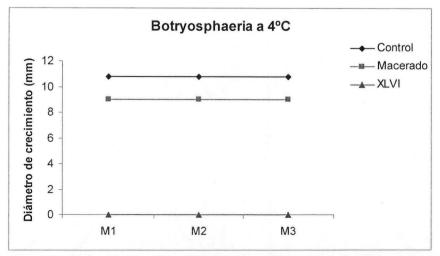
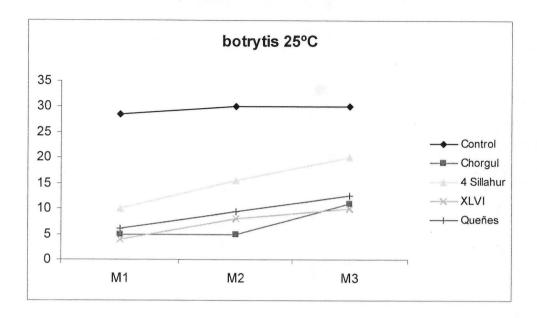





Figura 5. Efecto de volátiles en el crecimiento in vitro de Colletotrichum sp. a tres temperaturas.

En la Figura 5 se aprecia que una de las mejores cepas en cuanto a liberación de compuestos inhibidores de *Coletotrichum* fue la cepa Sulico 4, inhibiéndolo totalmente a 25 y 10°C, y parcialmente (3mm) contra el control (8mm) a 4°C. La cepa XIV también mostró diferencias con el control a 25 y 4°C, indicando la posibilidad de control en temperaturas bajas de almacenaje y de anaquel (t° ambiente).



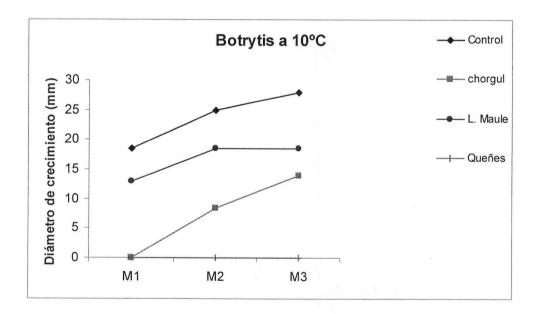


Figura 6. Efecto de liberación de volátiles por parte de biocontroladores frente a *Botryosphaeria sp.* a 25, 10 y 4°C.

Para el hongo *Botryosphaeria sp.*, fue el único de los controladores evaluados que resultó distinto del control fue la cepa XLVI, que a 4°C logró inhibir completamente el crecimiento de este patógeno, demostrando su alta capacidad de control.

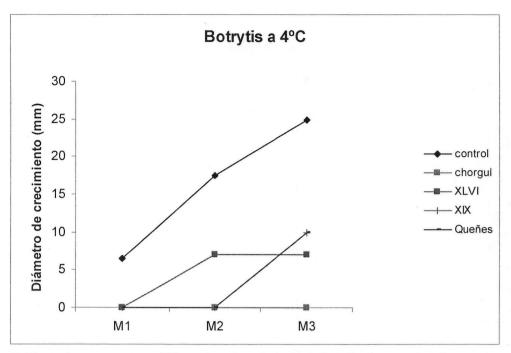
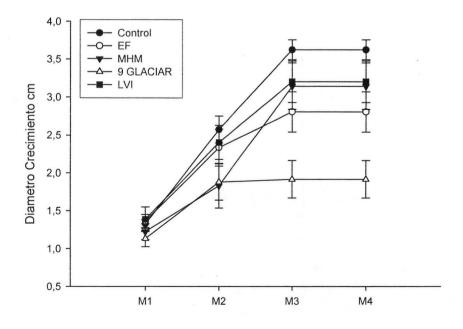
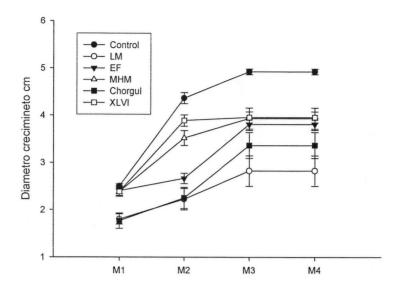
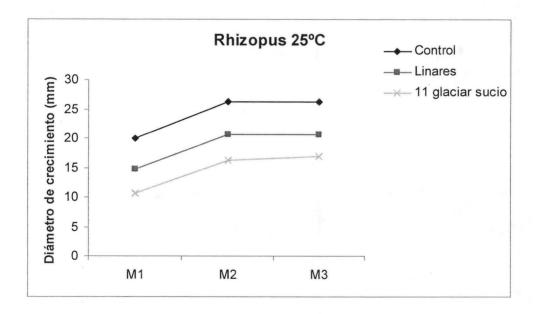
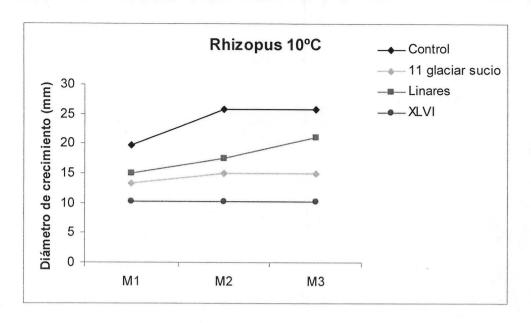



Figura 7. Efecto de compuestos volátiles sobre el crecimiento de Botrytis cinerea a tres temperaturas.


En el caso de *Botrytis cinerea*, también se obtuvieron buenos resultados, al observar que a 25°C, la cepa Chorgul, XLVI y Queñes fueron diferentes al control (p<0.05). A 10°C, los tres biocontroladores de la Figura 3, resultaron distintos del control y a 4°C, los cuatro biocontroladores resultaron diferentes el control del hongo, y se puede observar que la cepa Chorgul y XIX lograron inhibir totalmente a *Botrytis* (p<0.05).


Figura 8. Efecto de biocontroladores por liberación de sustancia volátiles sobre el crecimiento de *Aspergillus sp.* a 25°C.


En Aspergillus a temperatura ambiente, las cepas MHM y XLVI fueron las mejores cepas a temperatura ambiente (Figura 8).

En cuanto a *Geotrichum*, todas las cepas fueron iguales entre sí a excepción de Chorgul y LM, pero siempre el crecimiento del patógeno frente a todos los bioncontroladores fue menor que el control (Figura 9).

Figura 9. Efecto de sustancias volátiles de biocontroladores sobre el crecimiento de *Geotrichum sp.* a 25°C.

Figura 10. Efecto de liberación de sustancias volátiles por parte de biocontroladores sobre el crecimiento de *Rhizopus sp.* a dos temperaturas.

Por último, *Rhizopus* vio afectado su crecimiento *in vitro*, principalmente por el microorganismo 11 Glaciar Sucio y Embalaje a 25°C. Cuando la prueba se realizó a 10°C, destacó la cepa XLVI, inhibiendo en más de la mitad el crecimiento de este hongo, el cual tiene un amplio rango de hospederos.

Además, se realizó un análisis de varianza de medidas repetidas en el tiempo, donde *Botryosphaeria* a 25°C, no se observaron diferencias. A 10°C, sólo hubo efecto del tiempo y de la interacción de éste con los tratamientos (p= 0.006). Para el caso de 4°C, sólo hubo efecto de los tratamientos (p< 0.05).

En Coletotrichum, a 25° no se observó efecto de los tratamientos a las tres temperaturas; sólo se vio un efecto significativo del tiempo (10 y 4°C) y de la interacción de ambos factores a 4°C.

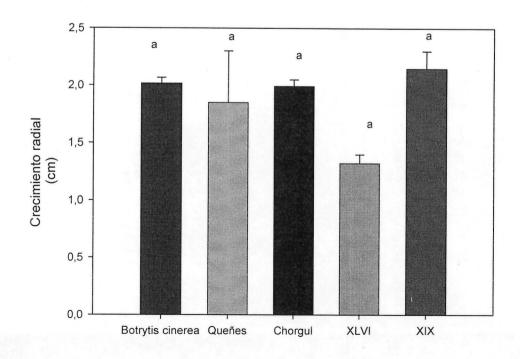
Para el caso de *Botrytis*, sí hubo efecto de los tratamientos, del tiempo y su interacción a las tres temperaturas (p< 0,05).

En Aspergillus y Geotrichum, donde sólo se realizó el ensayo a 25°C, también hubo efecto de los tratamientos, del tiempo y de la interacción (p<0,05).

Finalmente, en *Rhizopus*, donde se realizaron pruebas con volátiles a 25 y 10°C, también se observó la misma situación.

Ensayo III. Sustancias difusibles

Los ensayos realizados durante este período, se ajustan más al efecto de sustancias volátiles, ya que siempre se dejó el ETB frente al patógeno, aunque esta vez, separados por un disco de papel celofán.


Lamentablemente, ninguno de los ETB utilizados sobre *Botrytis cinerea, Colletotrichum spp., Botryosphaeria spp. y Rhizopus spp.*, arrojó diferencias significativas con respecto al control según Tukey (p> 0,2).

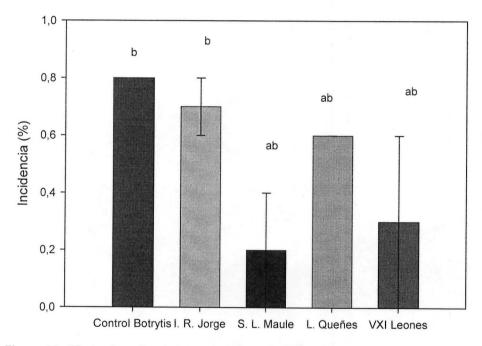
A continuación, se presenta un cuadro con patógenos, temperatura y ETB utilizados:

Temperatura	Agente causal (patógeno)	Biocontroladores (ETB)	*
4°C /25°C/10°C	Botrytis cinerea	Queñes	n.s
4°C /25°C/10°C	Botrytis cinerea	Chorgul	n.s
4°C /25°C/10°C	Botrytis cinerea	XLVI Leones	n.s
4°C		XIX	n.s
		<u> </u>	n.s
25°C/10°C/4 °C	Colletotrichum spp.	Sulico 4	n.s
25°C/ 4°C	Colletotrichum spp.	XIV	n.s
25°C	Colletotrichum spp.	Macerado	n.s
4°C	Colletotrichum spp.	Embalaje	n.s
25/10°C	Rhizopus spp.	XLVI Leones	n.s
25°C	Rhizopus spp.	Embalaje	n.s
25°C	Rhizopus spp.	11 Glaciar s	n.s
4°C	Botryosphaeria spp.	XLVI Leones	n.s

Como ejemplo, se adjunta Figura 0, con respecto al crecimiento de *Botrytis cinerea* frente a los 4 ETB.

Inhibición de crecimiento de Botrytis cinerea frente a sustancia volátiles de ETB

Figura 11. Efecto inhibitorio de crecimiento de *Botrytis cinerea* a 4°C por efecto de sustancias volátiles de biocontroladores. Letras iguales indican que no existen diferencias significativas entre tratamientos (p= 0,208). Barras indican error estándar.


Evaluación de la capacidad inhibitoria in vivo de cepas nativas de ETB para aislados de AF/PP

Ensayo IV. Mezclas pre-post inoculación:

Manzanas/ Botrytis cinerea:

En este caso, se hicieron dos ensayos: pre y post-inoculación del patógeno.

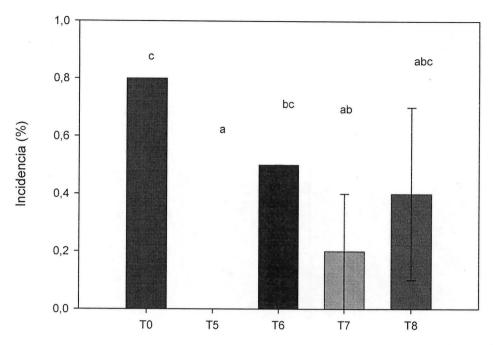

Efecto de aplicaciones preventivas de biocontroladores

Figura 12. Efecto de aplicaciones preventivas de ETB sobre manzanas posteriormente inoculadas con *Botrytis cinerea* en cámaras húmedas. Letras distintas indican diferencias significativas según Tukey (p< 0,001). Barras indican error estándar.

En relación al efecto preventivo de ETB's sobre la incidencia de fruta con Pudrición gris, se observa que Sedimento Laguna Maule, Queñes y VXI leones, logran reducir la incidencia de *Botrytis cinerea* en manzanas desde un 80 a un 20%, situación que permite seguir trabajando con estos ETB en futuras pruebas.

Efecto de aplicaciones curativas de biocontroladores en manzanas

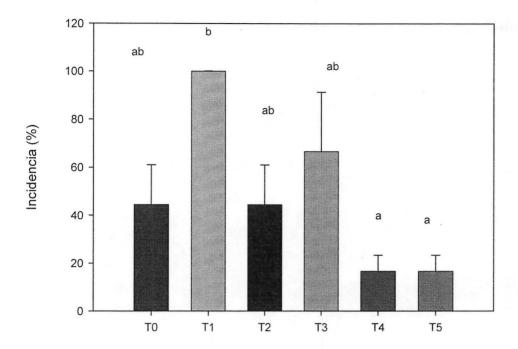
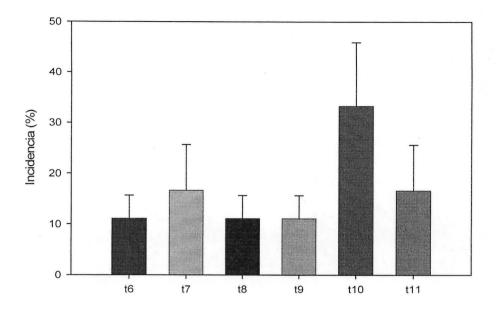


Figura 13. Efecto de aplicaciones curativas de ETB sobre manzanas posteriormente inoculadas con *Botrytis cinerea* en cámaras húmedas. Letras distintas indican diferencias significativas según Tukey (p< 0,001). Barras indican error estándar.

En el caso de aplicaciones curativas, los mejores tratamientos resultaron ser Isla Rey Jorge, el cual, no mostró signos de pudrición, el cual resultó ser igual estadísticamente que Los Queñes y VXI Leones, ambos capaces de bajar incidencia de *Botrytis cinerea* de manera preventiva.

Manzanas/ Colletotrichum spp. y Penicillium spp. en frío.-

Incidencia de *Penicillium* spp. en manzanas con heridas


Figura 14. Efecto de biocontroladores sobre pudriciones causadas por *Penicillium* spp. en manzanas guardadas en frío por 90 días. Letras distintas indican diferencias significativas entre tratamientos según Tukey (p= 0,014). Barras indican error estándar.

Cuando se realizaron heridas a la fruta, se observa que los mejores controladores que lograron reducir la incidencia del patógeno en manzanas al cabo de 90 días en frío, resultaron ser 11 Glaciar sucio (T4) y Embalaje (T5), los cuales, si bien fueron estadísticamente iguales al control, lograron disminuir la presencia de *Penicilllium spp.*a la mitad (± 20%). De la figura 3, se desprende también que Macerado (T1), no logró frenar, ni inhibir al patógeno, observándose un 100 % de pudriciones en la fruta.

Al realizar el análisis de varianza en el tiempo, se observan diferencias al día 30, 60 y 90, este último, sólo logró que T4 y T5 mostrarán un 17% de pudrición, cuando la fruta de todos los demás tratamientos se encontraban totalmente enfermos.

Es interesante destacar el poder biocontrolador de T4 y T5, ya que *Penicillium* spp. necesita heridas para enfermar la fruta, y a pesar, de haber realizado daño en la fruta, lograron mantener niveles de incidencia que no superaron el 20% al cabo de 3 meses en frío.

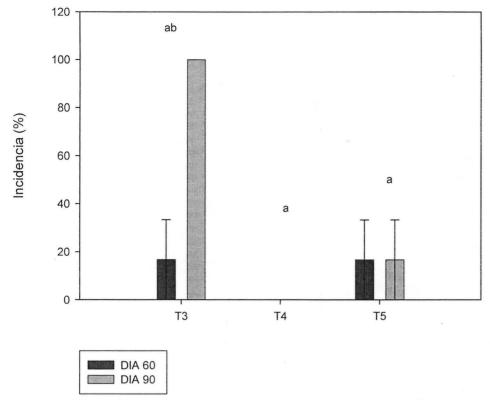

Incidencia de Penicilliumspp. en manzanas sin heridas

Figura 15. Efecto de biocontroladores sobre pudriciones causadas por *Penicillium* spp. en manzanas guardadas en frío por 90 días. No existen diferencias significativas entre tratamientos según Tukey (p= 0,69. Barras indican error estándar.

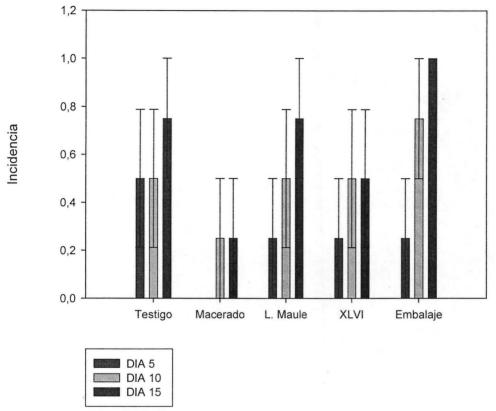
La situación es completamente diferente cuando se observa la Figura 15, donde la fruta no recibió heridas, y no hubo diferencias significativas entre el Control de *Penicillium* spp. y los ETB. Al cabo de 90 días en frío, sólo 11 G.Sucio (T10) fue el que obtuvo un 100% de incidencia en la fruta, y todos los demás ETB, mantuvieron un rango de 17% de pudrición. Esta situación es importante recalcar, ya que en el caso con heridas, éste fue uno de los mejores controladores y ahora, en este ensayo, actuó de una forma diametralmente opuesta; a pesar de esto, no fue diferente del control.

Cuando se analizó el efecto del tiempo, se observó que la fruta se mantuvo igual estadísticamente a los 30 y 60 días, produciéndose un quiebre al final del ensayo, día 90 (p< 0,001).

Figura 16. Efecto de biocontroladores sobre pudriciones causadas por *Penicillium* spp. en manzanas con heridas guardadas en frío por 90 días. Letras distintas indican diferencias significativas entre tratamientos según Tukey (p= 0,008). Barras indican error estándar.

En el caso de *Colletotrichum spp.*, sólo hubo diferencias significativas para el caso de manzanas con heridas, ya que cuando no se realizaron daños, ningún tratamiento mostró pudriciones causadas por este patógeno.

En este caso, el control con Colletotrichum spp. tampoco se enfermó, por lo que se grafican sólo estos tres tratamientos (T3= Los Queñes/ T4= 11 Glaciar Sucio /T5= Embalaje).

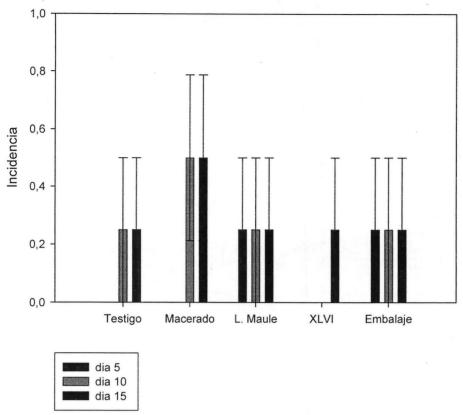

Al realizar el efecto del tiempo, la fruta estaba igual estadísticamente al día 30 y 60, cambiando al día 90 en frío.

Cabe destacar que nuevamente 11 Glaciar Sucio, mostró su potencial como ETB, ya que la fruta no se enfermó, ni siquiera al día 90 y resultó ser estadísticamente igual que la cepa Embalaje (T5).

Limones/Penicillium spp.

Efecto de biocontroladores sobre *Penicillium digitatum* en limonescon heridas

Cámaras húmedas


Figura 17. Efecto de biocontroladores sobre pudriciones causadas por *Penicillium* digitatum en limones con heridas en cámaras húmedas. No existen diferencias significativas entre tratamientos según Tukey (p= 0,51). Barras indican error estándar.

Este ensayo no arrojó diferencias entre tratamientos, con y sin heridas (p= 0,55), lo cual puede deberse al supuesto mejor efecto biocontrolador de estas cepas a temperaturas más bajas. De igual manera, se observa una tendencia de la cepa Macerado a inhibir la pudrición causada por *Penicillium digitatum*, reduciendo en un 30% la incidencia de la enfermedad, aun cuando ésta no alcanzó a ser diferente del control inoculado.

La misma situación se observa en la Figura 18, cuando los limones no tuvieron heridas, observándose un nivel de incidencia menor, provocado por la falta de puntos de entrada del patógeno, quien es un hongo de penetración indirecta.

Según el análisis de varianza en el tiempo, la fruta se mantuvo estadísticamente igual al cabo de 5 y 10 días, y luego, no hubo diferencias entre las pudriciones ocurridas entre el día 10 y al final del ensayo, 15 días con alta humedad y temperatura, tanto para limones con y sin heridas.

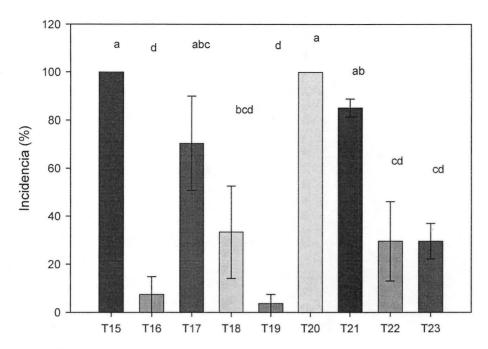

Efecto de biocontroladores sobre *Penicillium digitatum* en limones sin heridas Cámaras húmedas

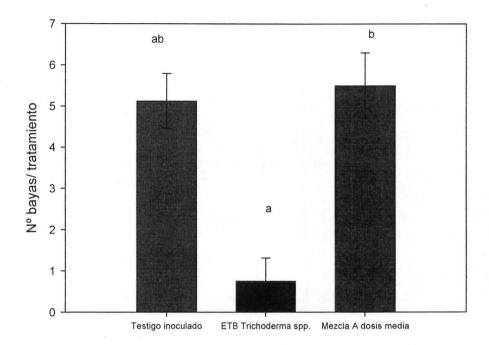
Figura 18. Efecto de biocontroladores sobre pudriciones causadas por *Penicillium* digitatum en limones sin heridas en cámaras húmedas. No existen diferencias significativas entre tratamientos según Tukey (p= 0,91). Barras indican error estándar.

Cerezas/ Penicillium spp.

La incidencia de pudriciones se realizó en base a *Penicillium* spp., ya que fue el patógeno que predominó en la fruta, superando en todos los casos la presencia de *Botrytis cinerea*, a los 30, 40 y 50 días en frío. Los datos se analizaron según un análisis de varianza de medidas repetidas en el tiempo y las medias se separaron según Tukey (p< 0,05).

Figura 19. Efecto de dos biocontroladores y tres dosis de éstos sobre pudriciones causadas por *Penicillium* spp. en cerezas Brook guardadas en frío. Letras distintas indican diferencias significativas entre tratamientos según Tukey (p< 0,0001). Barras indican error estándar.

En este caso, el análisis se realizó para los dos ETB seleccionados, Isla Rey Jorge y Agua Diablillo, cada una de ellas a dosis baja, media y alta, junto con el control del patógeno (T15).

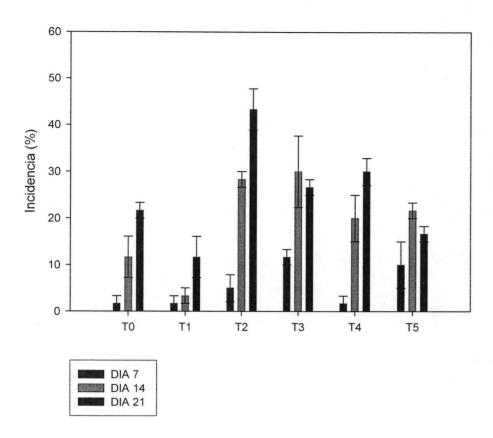

El resto de las mezclas testigos de ETB, demostraron su objetivo, es decir, que estas cepas no son capaces de crecer sobre la fruta, en este caso, cerezas.

Lo interesante de este ensayo, es que el T16 (Agua Diablillo 10⁹ufc/mL) y el T19 (Agua Diablillo 10⁶ufc/mL), resultaron ser el mejor ETB y a la dosis más alta y más baja, corroborando el potencial de esta cepa en el control de *Penicillium* spp. a 4°C.

Al analizar el efecto del tiempo sobre las pudriciones, al día 30 los valores son bajos y estadísticamente diferentes del día 50 y 60, indicando que los ETB logran reducir las pudriciones hasta el día 60 a bajas temperaturas, momento en que los productos químicos, dejan de ejercer su efecto curativo; es decir, estos ETB, tienen una mayor persistencia en la fruta, alargando el período de protección.

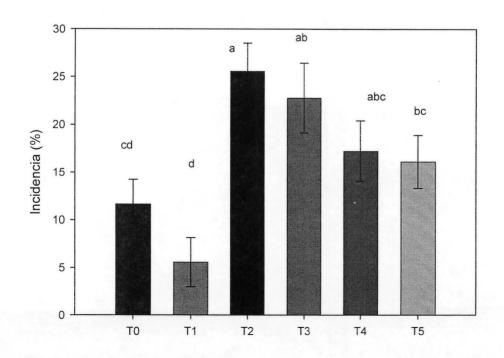
Arándanos/Botrytis cinerea- Penicillium spp- Botryosphaeria spp.

Incidencia de Botrytis cinerea en arándanos en frío


Figura 20. Efecto de biocontroladores solos, mezclas y dosis sobre pudriciones causadas por *Botrytis cinerea* en arándanos guardados en frío. Letras distintas indican diferencias significativas entre tratamientos según Tukey (p= 0,051). Barras indican error estándar.

Este ensayo se encuentra en acción, sin embargo, en la Figura 20 se presentan algunos resultados al cabo de 20 días en frío, donde el mejor tratamiento hasta la fecha es ETB *Trichoderma* spp., en comparación con la mezcla A a dosis media, que resultó ser estadísticamente igual que el testigo inoculado.

Este ensayo se continuará evaluando al menos hasta 45 días en frío o hasta que la fruta ya no se encuentre apta para el consumo.


Arándanos orgánicos sin inoculación.-

Incidencia de pudriciones en arándanos orgánicos a 0°C

Figura 21. Efecto en el tiempo de sucralosa, dos ETB y la mezcla de éstos sobre pudriciones causadas por *Botrytis cinerea* en arándanos a 0°C. Barras indican error estándar.

Incidencia de pudriciones de postcosecha en arándanos

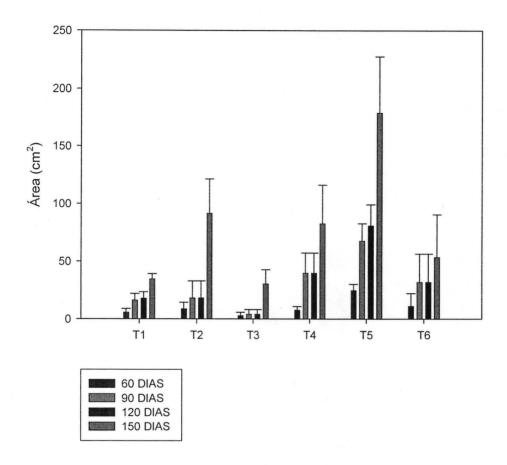
Figura 22. Efecto de sucralosa, dos ETB y la mezcla de éstos sobre pudriciones causadas por *Botrytis cinerea* en arándanos a 0°C. Letras distintas indican diferencias significativas entre tratamientos según Tukey (p< 0,0001). Barras indican error estándar.

Al observar la Figura 21 y 22, se aprecia que las pudriciones van aumentando a medida que aumenta el tiempo de guarda en frío, siendo estadísticamente iguales las pudriciones entre el día 7 y 14; siendo distintas que las del día 21.

Los tratamientos que contienen ETB, corresponden a T2 y T3 (Trichoderma spp. y *Bacillus* spp., respectivamente), junto con T4 y T5, los cuales además contienen sucralosa.

En cuanto a la incidencia de Pudrición gris en arándanos, se observa que el tratamiento que tiene sólo sucralosa sólo alcanza un 5% de frutos dañados, en comparación con el resto de los tratamientos.

Analizando sólo los tratamientos que contienen ETB, el T5 (Sucralosa + *Bacillus* spp.), es el que se comporta estadísticamente igual al testigo absoluto.


Esta situación es algo inesperada, ya que el hongo *Trichoderma* spp. ha presentado efectos inhibitorios sobre *Botrytis cinerea*, por lo que se incluirá esta cepa en otro ensayo con el mismo patógeno y verificar su potencial uso como botriticida.

Evaluación de la capacidad inhibitoria en condiciones comerciales de cepas nativas de ETB para aislados de AF/PP.

Ensayo VI. Ensayos en cámara

Manzanas Fuji

Efecto de biocontroladores sobre pudriciones de postcosecha en manzanas Fuji

Figura 23. Efecto en el tiempo de biocontroladores sobre pudriciones en postcosecha de manzanas Fuji a 0°C. Barras indican error estándar.

Efecto de biocontroladores sobre tamaño de pudriciones de postcosecha en manzanas Fuji 150 días en frío

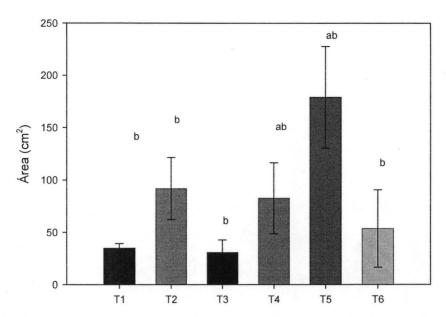
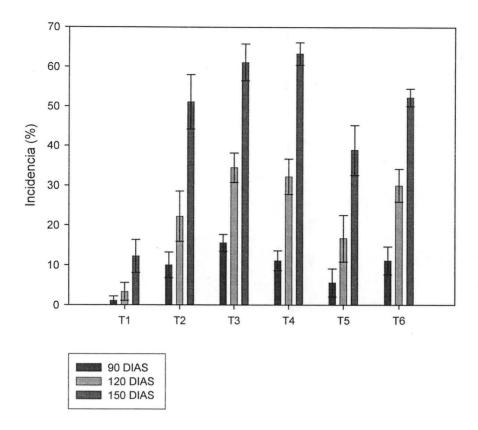


Figura 24. Efecto de biocontroladores sobre pudriciones en postcosecha de manzanas Fuji a 0°C. Al cabo de 150 días en frío. Letras distintas indican diferencias significativas entre tratamientos según Tukey (p= 0,0039). Barras indican error estándar.


En cuanto al tamaño de lesiones, al cabo de 5 meses a 0°C, tres cepas de ETB lograron igualar al manejo químico de la exportadora (penbotec), es decir, Sedimento Laguna Maule, Los Queñes y 4 Sillahur.

Este resultado en variedad Fuji, es un excelente resultado, ya que demuestra la capacidad de estas cepas en el control de pudriciones, las que mayoritariamente fueron causadas por *Penicillium* spp. y *Botrytis cinerea*.

Ahora corresponde continuar ensayos en frío con estos tres biocontroladores y realizar combinación de cepas y dosis, con el fin de ir acercándose a un formulado comercial.

Manzanas Pink Lady

Efecto de biocontroladores sobre pudriciones de postcosecha en manzanas Pink Lady

Figura 25. Efecto en el tiempo de biocontroladores sobre pudriciones en postcosecha de manzanas Pink lady a 0°C. Barras indican error estándar.

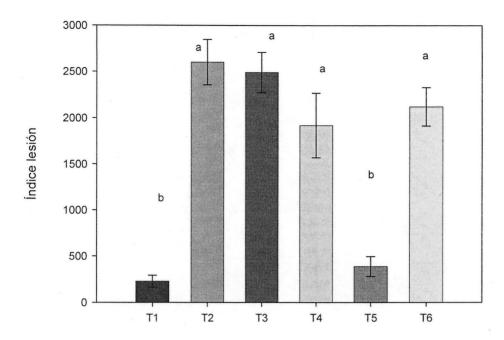
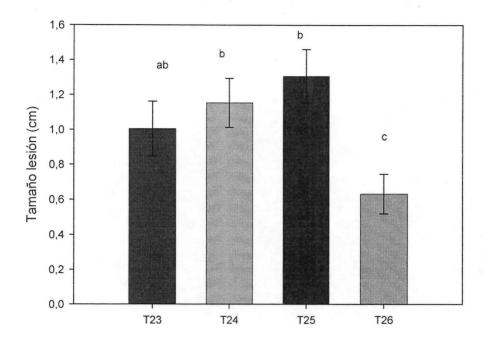


Figura 26. Efecto de biocontroladores sobre pudriciones en postcosecha de manzanas Pink Lady a 0°C. Letras distintas indican diferencias significativas entre tratamientos según Tukey (p< 0,001). Barras indican error estándar.


En el caso de la variedad Pink lady, al final del ensayo, es decir, después de 5 meses enfrío, la cepa Cámara 1 resultó ser estadísticamente igual que el manejo químico (Penbotec), en cuanto a un índice de lesión, asociado al tamaño promedio de lesiones de cada tratamiento por el número de lesiones.

Este resultado permite seleccionar esta cepa como futuro biocontrolador de agentes causales de pudriciones de postcosecha, causadas principalmente por *Neofabrea* spp. y *Botryosphaeria* spp., patógenos predominantes en esta variedad de manzanas.

Este ensayo demuestra la importancia de la susceptibilidad varietal en cuanto al ataque de patógenos y el efecto de un mismo controlador sobre hongos fitopatógenos diferentes.

Limones.-

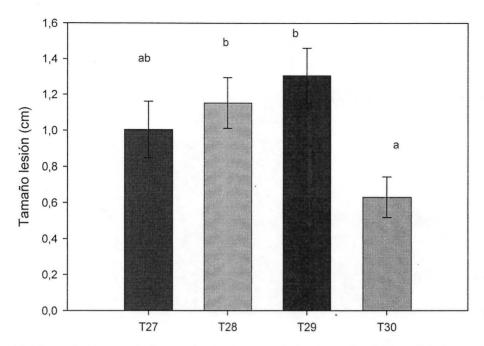

Efecto de aplicaciones preventivas de biocontroladores sobre limones en postcosecha

Figura 27. Efecto de biocontroladores sobre lesiones ocasionadas por *Penicillium digitatum* en limones bajo condiciones comerciales (0°C) al cabo de 15 días. Letras distintas indican diferencias significativas entre tratamientos, según Tukey. Barras indican error estándar.

En la Figura 27, se observa que al cabo de 15 días en frío, el tratamiento que mostró menor tamaño de lesión fue la cepa Sulico 4 (T26), según Tukey (p= 0,006). El resto de los controladores no presentaron diferencias significativas entre ellos.

En el caso de aplicaciones curativas (Figura 28), se presenta un patrón similar, en cuanto a que nuevamente Sulico 4 fue la cepa que obtuvo menor tamaño de lesión a causa de *P. digitatum*, al igual que la cepa XVIII que resultó ser estadísticamente igual a Sulico 4 (p= 0,006).

Figura 28. Efecto de biocontroladores sobre lesiones ocasionadas por *Penicillium digitatum* en limones bajo condiciones comerciales (0°C) al cabo de 15 días. Letras distintas indican diferencias significativas entre tratamientos. Barras indican error estándar.

Efecto de aplicaciones preventivas sobre Penicillium digitatum en limones en postcosecha

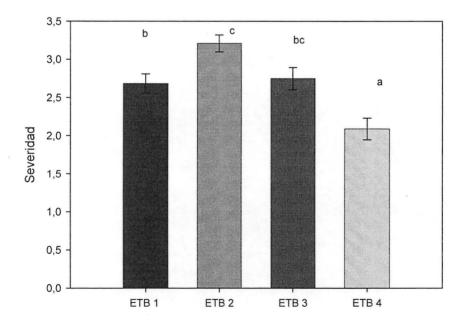
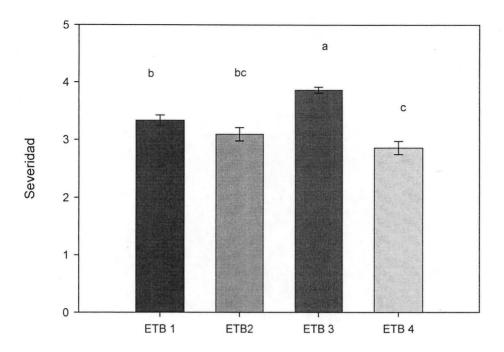


Figura 29. Efecto de biocontroladores sobre lesiones ocasionadas por *Penicillium digitatum* en limones bajo condiciones comerciales (0°C) al cabo de 30 días, según escala de severidad: 0= sano; 1= maceración; 2= micelio blanco; 3= micelio blanco más esporulación verde; 4= fruto totalmente esporulado. Letras distintas indican diferencias significativas entre tratamientos. Barras indican error estándar.

Este ensayo se evaluó hasta el día 30, donde se separaron los frutos de cada tratamiento según una escala de severidad. La figura 29 y 30, representan en valor absoluto los promedios de cada tratamiento al cabo de un mes en cámara de frío, indicando que la columna que presente el menor valor, es el tratamiento con menor severidad.

De este modo, para el caso de aplicaciones preventivas, nuevamente Sulico 4 fue la cepa que presentó menor severidad, logrando llegar sólo a nivel 2, el cual corresponde a aparición de micelio blanco.


En el caso de aplicaciones curativas, la cepa Sulico 4 resultó ser estadísticamente igual que la cepa Chorgul, logrando niveles de severidad entre 3 y 4.

Estos resultados demuestran que aplicaciones preventivas de ETB logran disminuir el tamaño de lesiones causadas por *Penicillium digitatum* y reducir la severidad del daño, al comparlas con aplicaciones curativas.

Cuando se compara cada ETB y el momento de aplicación (Figura 31), sólo la cepa Chorgul se comporta de manera similar tanto antes y después de la inoculación con el patógeno, lo que puede servir para tener una cepa dentro de la colección que actúe independiente del momento de aplicación.

El resto de las cepas, actúan estadísticamente diferentes según el momento de aplicación.

Efecto de aplicaciones curativas de biocontroladores sobre *Penicillium digitatum* en limones en postcosecha

Figura 30. Efecto de biocontroladores sobre lesiones ocasionadas por *Penicillium digitatum* en limones bajo condiciones comerciales (0°C) al cabo de 30 días, según escala de severidad: 0= sano; 1= maceración; 2= micelio blanco; 3= micelio blanco más esporulación verde; 4= fruto totalmente esporulado. Letras distintas indican diferencias significativas entre tratamientos. Barras indican error estándar.

Efecto de aplicaciones preventivas y curativas de biocontroladores

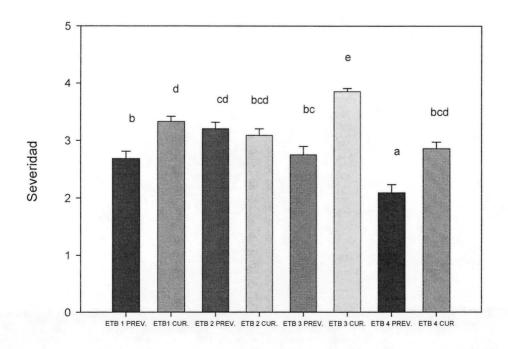


Figura 31. Efecto de aplicaciones preventivas y curativas de biocontroladores sobre lesiones ocasionadas por *Penicillium digitatum* en limones bajo condiciones comerciales (0°C) al cabo de 30 días, según escala de severidad: 0= sano; 1= maceración; 2= micelio blanco; 3= micelio blanco más esporulación verde; 4= fruto totalmente esporulado. Letras distintas indican diferencias significativas entre tratamientos. Barras indican error estándar.

Peras/ Stemphyllium spp.

En principio, se debe señalar que los biocontroladores seleccionados para este ensayo resultaron ser los que presentaron mejores condiciones de competencia frente a *Alternaria* y *Botrytis*, y no para el patógeno que realmente estaba causando las pudriciones. Bajo este escenario, se presenta un cuadro con los mejores tratamientos por momento de evaluación:

Cuadro 7. Mejores biocontroladores y mezclas en cada fecha de evaluación de peras Abatte Fettel en cámara de frío.

35 días	55 días	90 días
XXIII B Glaciar Sucio	Macerado	XLVI Leones
Agua diablillo playa	XLVI Leones	Agua diablillo playa
Embalaje	XXIII B Glaciar Sucio	Embalaje
Trichodermas + Bacillus	XLIII	Agua diablillo + Macerado+Isla Rey Jorge+ Sulico 4
	Embalaje	XLVI Glaciar Leones + XX III B. Glaciar Sucio + Macerado +Isla Rey Jorge
	Agua diablillo + Macerado+Isla Rey Jorge+ Sulico 4	Macerado+ Sulico 4 + XIX + Embalaje

Cuadro 8. Promedio de los mejores controladores al cabo de 90 días en frío.

Tratamientos	%
XLVI Leones	10
Agua diablillo playa	10
Embalaje	7,8
XLVI Glaciar Leones + XX III B. Glaciar Sucio + Macerado +Isla Rey Jorge	8,9
Macerado+ Sulico 4 + XIX + Embalaje	6,7
Trichodermas + Bacillus	4,4
Testigo absoluto	20,0

Además, se debe hacer mención que al parecer, existe un daño por frío, ya que al final de la evaluación, se observó una gran cantidad de peras con aparente daño por temperatura.

Manzanas 2010/2011

En este ensayo, tanto el factor tratamiento (P< 0,001), como momento (P< 0,0001) y la interacción (P< 0,001), de estos mostraron efectos significativos sobre incidencia. Así en la tabla n° se observa que a los 30 días no hubo diferencias significativas entre los tratamientos, mientras que a partir de los 60 días, así hasta el día 120, los

tratamientos mezcla 2 y mezcla1 no presentan diferencias significativas con el control químico, siendo notorio que la mezcla 1 tiene un mejor desempeño cuando es aplicada post cosecha, mientras que la mezcla 2 tienen un mejor desempeño en su acción pre cosecha, ambas mejoran su desempeño cuando se aplican tanto pre como post cosecha, mientras que la mezcla 1, mientras que la mezcla 3, mostró el peor desempeño. Dado lo anterior, para temporada 2011/2012, se plantea un ensayo, ya bajo registro experimental, que considere la paliación pre cosecha de la mezcla 2 y post cosecha de la mezcla 1 y la combinación con el tratamiento químico.

Factor tratamiento	Factor momento	30 días	60 días	90 días	120 días	150 días
control	precosecha	0%	8% a	13% ab	12% c	20% с
control	post cosecha	2%	5% ab	10% b	18% bc	20% с
control	pre+post	0%	2% b	3% с	25% b	28% с
mezcla 3	precosecha	0%	3% b	13% ab	23% b	62% a
mezcla 3	post cosecha	0%	3% b	5% c	25% b	35% b
mezcla 3	pre+post	2%	3% b	12% ab	45% a	53% a
mezcla 2	precosecha	0%	5% ab	7% bc	15% c	23% с
mezcla 2	post cosecha	2%	3% b	8% bc	23% b	38% b
mezcla 2	pre+post	5%	7% a	17% a	38% a	43% ab
mezcla 1	precosecha	0%	3% b	5% c	13% с	33% b
Mezcla1	post cosecha	0%	0% b	2% с	13% c	35% b
mezcla 1	pre+post	3%	5% ab	10% b	23% b	28% с

En cuanto a la variación de las variables de calidad, en presión, solo el factor momento dio un efecto significativo (P< 0,05), donde las aplicaciones de pre+post cosecha, tuvieron la menor disminución de presión, (tabla xx). En sólidos solubles, solo el factores tratamiento (P< 0,05) y la interacción tuvieron un efecto significativo (P< 0,05), donde mezcla 1 aplicada en post cosecha, mostró el mayor incremento, diferenciándose estadísticamente solo de control pre cosecha y mezcla 3 precosecha, que fueron las únicas con una disminución significativa de los sólidos soluble.

Momento	Delta presión	
precosecha	(4.94)	а
post cosecha	(4.69)	ab
pre+post	(4.37)	b

Factor tratamiento	Factor momento	Variación ss		
control	precosecha	(0.27)	b	
control	post cosecha	0.50	ab	
control	pre+post	0.57	ab	
mezcla 3	precosecha	(0.40)	b	
mezcla 3	post cosecha	0.13	ab	
mezcla 3	pre+post	0.73	ab	
mezcla 2	precosecha	0.80	ab	
mezcla 2	post cosecha	0.27	ab	

mezcla 2	pre+post	0.40	ab
mezcla 1	precosecha	0.40	ab
mezcla 1	post cosecha	1.27	а
mezcla 1	pre+post	0.80	ab

Arándanos 2011/2012

Este ensayo, se encuentra en ejecución, teniendo los datos de la primera evaluación, para fin de año.

Cerezo 2010/2011

Después de 60 días de almacenaje, las frutas inoculadas, fueron evaluadas para los distintos patógenos, presentando los tratamientos diferencias significativas (P< 0,05), al igual que los patógenos (P< 0,001), sin interacción entre estos factores.

Como se ve en la tabla xx, Penicillium fue el patógeno que genero mayores niveles de daño, y con menor nivel de control por parte de los productos testeados. El tratamiento químico, fue el que mostró mejor nivel de control, seguido por la mezcla 1, mientras que la mezcla 2, no presento diferencias con el control absoluto, en cuanto a Botrytis, fue el más susceptible a los tratamientos, logrando en este caso la mezcla 1 el mejor nivel de control, diferenciándose tanto de control químico, como de mezcla 2, sin diferencias entre estos. En cladosporium, se dio el mismo patrón que en Botrytis.

	Penicillium		Botrytis		Cladospori	um
Mezcla 1	46%	b	0%	С	8%	С
Mezcla 2	63%	ab	17%	b	25%	b
Control químico	22%	С	17%	b	24%	b
Control absoluto	83%	а	30%	а	45%	а

Cerezos 2011/2012

Este ensayo, se encuentra montado en campo y en etapa de evaluación.

Uva de Mesa.- 2010/2011

Ensayos aplicación campo y papel de embalaje Cv Flame:

En esto ensayo, se observó una interacción, entre los factores tratamientos y momento de aplicación P< 0,05, donde el control químico presento el menor nivel de pudriciones a los 30 días, sin diferencias significativas con la mezcla 1 en aplicada en cualquier momento y mezcla 2 cuando se aplicó al papel, sin tener efecto la aplicación en pre cosecha.

Tratamientos	Momento	Incidencia 30 días	Incidencia 60 días.
			11%
Control químico		3% с	b
			5%
Mezcla 1	solo pre cosecha	8% bc	С
			7%
Mezcla 1	solo papel	3% c	bc
×		3%	7%
Mezcla 1	pre y papel	С	bc
		11%	13%
Mezcla 2	solo pre cosecha	b	ab
		2%	5%
Mezcla 2	solo papel	С	С
		4%	28%
Mezcla 2	pre y papel	C	a

Ensayos aplicación pre cosecha Cv Thompson

En este ensayo, se observó nuevamente que la mezcla 2, presento el mejor desempeño aplicada en pre cosecha, logrando el mismo nivel de control de tebuconazole aplicado en post cosecha (control químico) P< 0,001.

Tratamiento	Incidencia pudr	Incidencia pudriciones 45 días Ir		iciones 60 días
Control químico	15%	Α	18%	b
Mezcla 1	12%	ab	26%	а
Mezcla 2	9%	В	16%	b
Mezcla 3	11%	ab	20%	ab

Etapa Producción y Formulación

Ensayo: Medio de Cultivo y temperatura

En tiempo de esporulación y tiempo de cosecha, solo 2 cepas tienen tiempos similares a la cepa de referencia, los tiempos están dentro de la factibilidad comercial, para su escalamiento, lo mismo ocurre en producción, lo que debe ser contrastado con las temperaturas de producción, lo que podría permite incrementar los niveles de producción de las cepas menos productivas. De todas formas los parámetros obtenidos, indican que es factible comercialmente el escalamiento comercial, de los formulados en base a las cepas seleccionadas.

Сера	tiempo esporulación		Tiempo cosecha		conidias/		temperatura optima	
T h Queule	3	а	5	а	6.00E+11	а	27	а
Cámara 1 (Hypocrea virens)	3	а	5	а	7.20E+11	а	24	b
4 Sillahur	4	b	7	b	1.20E+11	ab	20	b
Macerado	4	b	7	b	8.50E+10	b	16.5	С
Sedimento Laguna Maule Hypocrea virens	5	С	8	b	8.00E+10	b	17.3	С

XLVI Glaciar Leones Bionectria								b
ochroleuca	4	b	6	ab	1.80E+11	ab	18	c

<u>Formulación</u>

Los datos indican, que la formulación, no debería almacenarse por más de 30 días a 4° C y menos de 15 a 25° C, mientras que la mezcla 2, p

Parámetros	4° C	25° c
tiempo para cambio de color	45	15
tiempo para cambio olor	45	30
% variación 15 días	0%	1,3%
% variación día 30	5%	6%
% variación día 45	23%	35%

<u>Cuadro comparativo de los resultados esperados en la propuesta de proyecto y los alcanzados finalmente.</u>

	Resultado o producto	Descripción	Indicador de	Nº del	Resultado Final Obtenido
N°	Nombre		cumplimiento	objetivo asociado	
1	Colección de agentes causales de pudriciones de postcosecha en fruta de exportación y de cepas nativas de ETB.	Número de cepas, de extremófilos de bajas temperaturas. Aislados de cada uno de las especies más importantes de patógenos de postcosecha.	de ETB 4 asilados de cada	1	Se recolectaron 200 a 300 muestras de distintos lugares (suelo, agua, nieve, líneas de selección de fruta, cámaras de frio, entre otras), para aislar 165 cepas de microorganismos, las que fueron evaluadas.
2	Evaluación de cepas	Cepas seleccionadas para el control de AF/PP	10 cepas evaluadas in vitro/patógeno 5 cepas evaluadas in vivo/patógeno. 3 cepas evaluadas en almacenaje/patógeno. 1 cepas o combinación de estas/patógeno. Momento de aplicación. Dosis Nivel de control	2	Se han evaluado 38 biocontroladores en los 8 patógenos, in vitro, de los cuales se han seleccionado 22 ETB, de estos algunos se probaron en mezclas huerto-packing. Los ensayos de momento de aplicación y formulación obtuvieron buenos resultados, lo cual indica que se podría realizar 2 formulados tanto para pre como postcosecha, con un almacenamiento de más de 30 días, en formulación liquida.
3	Sistema de producción	Metodología, sistema de producción masivo y formulado de ETB.	Etiqueta, ficha técnica y hoja de seguridad del producto. Y unidades producidas	3	Se han establecido el sistema de producción, generando la ficha técnica tentativa y hoja de seguridad de este nuevo formulado.
4	Difusión	Boletín Divulgativo Página web Resumen seminarios y congresos Días de campo y charlas	Impresión del boletín. Página web Resumen seminarios y congresos Lista de participante	4	En anexos se encuentra toda la información divulgada durante este proyecto, así como la participación a seminarios y congresos.
5	Registro SAG del Formulado.	Presentación de dossier de solicitud de registro SAG	Ingreso de antecedentes a sistema de evaluación del SAG.	5	Este punto está en proceso, ya que se está a la espera de los análisis de toxicidad, una vez con estos datos podremos empezar nuestro Registro Sag, esto se espera concluir para el 2013.

5. FICHAS TECNICAS Y ANALISIS ECONOMICOS

<u>Se genero la siguiente ficha técnica para los siguientes frutales: Manzano, cítricos, vid, arándano y cerezo</u>

Cuadro 1. Recomendaciones de uso de Trichodermas para el control de las enfermedades Pudrición gris: *Botrytis cinérea* y Corazón mohoso: *Alternaria alternata*.

Cultivo	Patógenos	Dosis
Manzano	Botrytis cinerea, Alternaria alternata Neofabre alba Botryosphaeria sp.	1 lt /ha. 5% de flor, plena flor y caída de pétalos.
Cítricos.	Botrytis cinerea, Penicillium	1- 2 lt/ha en brotación y post-cosecha.
Vid	Botrytis cinerea	1-2 It/ha en 80% flor, apriete racimo y pinta y luego en base a condiciones
Arándano	Botrytis cinerea	1.5 lt/ha con condiciones desde floración.
Cerezo	Botrytis cinerea	1.5 lt/ha con condiciones desde floración

Compatibilidad con agroquímicos

Los Trichodermas no son compatibles con fungicidas recomendados para Fusariosis, *Bacillus thuringiensis* o *Bacillus subtilis*.

No mezclar con otros plaguicidas sin realizar antes una prueba de compatibilidad.

Almacenaje:

Los formulados de Trichodermas deben ser almacenados a 4° C por un máximo de 30 días. Mantener en su envase original, con su respectiva etiqueta.

Toxicidad:

Estos formulados de trichodermas, corresponden al grupo IV de toxicidad, no presentando en condiciones normales efecto nocivo sobre mamíferos, aves o peces. Pese a lo anterior, existe el riesgo de alergias y conjuntivitis, por lo que los aplicadores deben usar lentes y mascarillas, así como guantes y trajes que eviten el contacto del producto concentrado con piel y mucosas.

Forma de aplicación

Durante el proyecto se lograron seleccionar dos mezclas de microorganismos realizando dos formulaciones, una en polvo para pre y post cosecha y una liquida solo para postcosecha.

Análisis económico actualizado

En este caso y en el análisis de sensibilidad, se mantienen los mismos supuestos presentados al comenzar este proyecto.

Variable	Unidad de medida	Valor inicial	Valor final	Descripción
Precio de venta	Pesos/unidad	35,000	45.000	Se considera un incremento del precio de venta de un 5%, los primeros 6 años y luego se mantiene fijo
Costo de Producción variables	Pesos/unidad	15,000	15,000	Se considera el costo de producción como fijo, ya que el avance tecnológico tendería a mantenerlo o disminuir este costo.
Unidades vendidas	Unidades de producción (Kg o litros)	1,500	5,009	Se considero un 20% de incremento de las ventas los primeros 5 años y un 10% los 5 restantes.
Costos fijos de producción	Pesos/año	24,000,000	28,682,222	Se considero un incremento de un 2% anual. Este costo incluye personal, instalaciones y mantencion y renovación de equipos.

Análisis de sensibilidad

Variable	Unidad de medida	Valor en la evaluación	Valor en la sensibilización	TIR	VAN
Disminución Precio de venta	porcentaje	35.000	28.000 (-20%)	20.5%	69,530,215
Disminución volumen de venta	porcentaje	1.500	1.200 (-20%)	24.0%	98,217,675
Aumento costos fijos	porcentaje	24,000,000	31,200,000 (+30%)	29.5%	171,898,168

Análisis de las perspectivas del rubro, actividad o unidad productiva desarrollada, después de finalizado el proyecto.

Las perspectivas de este nuevo formulado, está enfocado en controlar hongos causantes de pudriciones de postcosecha en frutas de exportación, provenientes tanto de huertos, líneas de embalaje, cámaras de frio y de ambientes naturales. Los frutales en los cuales este biocontrolador funciono efectivamente, fue en manzanas, cerezo y uva.

Dado que los compuestos químicos actualmente en uso son poco efectivos y además están siendo cuestionados por sus impactos ambientales y en salud humana, por lo que este bio controlador se estaría posesionando como la mejor alternativa, para el control de pudriciones de postcosecha en fruta de exportación.

La producción y formulado del producto se realizara por Bio Insumos Nativa Ltda. quienes poseen una red de distribución entre las regiones I y X, por lo que se asegura una disponibilidad a lo largo del país. En cuanto a producción, la empresa estaría en condiciones de producir 20.000 litros del formulado anualmente.

Se considera un costo por hectárea de unos \$45.000 pesos.

Descripción estratégias de marketing de productos, procesos o servicios

La estrategia de marketing para este bio controlador está centrada en charlas de difusión con agricultores, reuniones con asesores de los cultivos involucrados y entrega de muestras del formulado, para la realización de pruebas de campo con agricultores.

Este producto por sus características, se espera que no presente restricciones para su uso en ningunos de los sistemas de certificación usados actualmente.

6. IMPACTOS Y LOGROS DEL PROYECTO

PRODUCTIVOS:

Impactos Productivos, Económicos y Comerciales

Logro	Al inicio del Proyecto	Al final del proyecto	Diferencial
Formación de empresa o unidades de negocio	Uso de productos de pre cosecha, para aplicaciones en post cosecha con bajo nivel de acción.	Generación de unidad de negocio y producción para el desarrollo y futura comercialización de dos formulados	Desarrollo de producto específico para post cosecha.
Producción (por producto)	No existía producción de insumos para post cosecha.	Sistema de producción establecido, con capacidad para producir 5000 dosis anuales de formulación para aplicación pre cosecha y proyecto de desarrollo para dispositivo de post cosecha.	Una formulación definida para pre cosecha. Una en desarrollo para post Y proyecto de I+D para generación de dispositivo para embalaje.
Costos de producción	No se podía determinar al inicio del proyecto	Precio de venta de \$45.000	Precio adecuado a nivel de control, dosis y relación con competidores.
Ventas y/o Ingresos	No aplica	No se han realizado ventas	
Nacional	No aplica		
Internacional	No aplica		
Convenios comerciales	No existían convenios con empresas externas.	Acuerdo de confidencialidad para internacionalización de los resultados.	

Impactos Sociales

Logro	Al inicio del Proyecto	Al final del proyecto	Diferencial
Nivel de empleo anual	2 técnico 1 Agrónomo contratados por proyecto	3 técnicos 2 Agrónomo incluidos en el staff de la empresa	Incremento en 1 técnico y 1 agrónomo y traspaso de trabajo temporal a fijo.
Nuevos empleos generados	3	5	3 técnicos jornada completa, y dos agrónomos jornada completa.
Productores o unidades de negocio replicadas	0		No aplica

Impactos Tecnológicos

Logro		Numero			
	Nuevo en mercado	Nuevo en la empresa	Mejorado		
Producto	3	3		Dos formulados líquidos Un dispositivo en fase inicial de desarrollo	
Proceso	0	1		Proceso para producción de los formulados líquidos.	
Servicio	No aplica	No aplica			

Propiedad Intelectual	Número	Detalle
Patentes		
Solicitudes de patente		
Intención de patentar	3	3 formulados con sus usos.
Secreto industrial	2	Sistema de producción y formulación.
Resultado no patentable	1	Recomendaciones de uso
Resultado interés público	1	Alternativa de control químico por ETB.

Logro	Número	Detalle
Convenio o alianza tecnológica	1	Acuerdo de confidencialidad para internacionalización de resultados.
Generación nuevos proyectos	1	Perfil FIA convocatorio 2011 aprobado para generación de dispositivo de embalaje.

Impactos Científicos

Logro	Número	Detalle (Citas, título, descripción)	
Publicaciones	0	No se publicara hasta presentar solicitudes de patentes	
(Por Ranking)			
Eventos de divulgación científica	7	Seminarios, simposios, congresos, charlas y reuniones técnicas.	
Integración a redes de investigación			

Impactos en Formación

Logro	Numero	Detalle (Título, grado, lugar, institución)
Tesis pregrado	2	Efecto De Compuestos Volátiles De Organismos Extremófilos, Sobre El Cultivo <i>In Vitro</i> De Aspegillus Niger Y Geotrichum Sp., Título De Ingeniero Agrónomo, Universidad De Talca.
		Evaluación De La Aplicación De Microorganismos Extremófilos En El Control De Enfermedades De Postcosecha En Manzana. Título De Ingeniero Agrónomo,

		Universidad Católica Del Maule, Curicó.	
Tesis postgrado			
Pasantías			
Cursos capacitación	le		

7. PROBLEMAS ENFRENTADOS DURANTE EL PROYECTO

Legales:

No se presentaron problemas de esta índole.

Técnicos:

Los principales problemas técnicos enfrentados en este proyecto, fue la falta de capacidad instalada en Chile, para una rápida identificación de los organismos, lo que implica la necesidad de realizar secuenciamientos en Korea, lo que atrasa en forma significativa el proceso de toxicología y registro SAG, en especial por lo singular de los lugares de colecta, existiendo organismos detectados que solo ha podido ser parcialmente identificados a nivel de género y otros no ha encontrado correspondencia, en los bancos genéticos, dado esto pese a que algunas de estas cepas, muestran buenos niveles de control, se opto por no llevarlas a las pruebas de campo, dado que si fueran organismos nuevos para la ciencia, implica la necesidad de realizar su perfil toxicológico y eco toxicológico completo, lo que para el mercado Chileno es inviable. En otros aspectos del desarrollo del proyecto, no se han encontrado problemas, diferentes a los propios de este tipo de investigación, los que se han superado en forma eficiente y no han significado mayores retrasos.

Administrativos

No se presentaron problemas administrativos.

Gestión

No se presentaron problemas de gestión.

Medidas tomadas para enfrentar cada uno de ellos

Con el fin de completar la identificación de los microorganismos se han secuenciado otros fragmentos de DNA y se están terminando las pruebas bioquímicas.

8. OTROS ASPECTOS DE INTERES

Con los resultados de este proyecto, en el cual se logró seleccionar una amplia colección de microorganismos, con capacidad de control sobre un gran rango de patógenos, a distintas temperaturas, se podrán realizar distintas alternativas de control para nuevas enfermedades. Además que se lograron niveles de control similares a la de fungicidas químicos, lo que es una gran aporte y una alternativa biológica para la industria.

La ejecución de este proyecto, ha generado un alto interés de la industria, tanto a nivel de productores y exportadoras, que gentilmente han aportado con fruta, instalaciones y tiempo de su personal, para el desarrollo de ensayos de campo, como Del Monte, Unifrutti, Copefrut, Sub sole, Greenvic entre otras, y también de empresas transnacionales de distinto rubros, para poder internacionalizar esta tecnología.

Se obtuvieron datos que dan sustento al desarrollo, de un dispositivo que permita la utilización en embalajes, de los hongos seleccionados por su capacidad de liberar volátiles, lo que se evidencia en la aprobación del perfil FIA, convocatoria 2011, que se encuentra aprobado y en proceso de elaboración de la propuesta definitiva.

9. CONCLUSIONES Y RECOMENDACIONES

Las principales conclusiones que se desprenden del presente proyecto son:

- -. Se cuenta con una amplia colección de microorganismos, con capacidad de control sobre un gran rango de patógenos, a distintas temperaturas, lo que se presenta como un gran activo para la búsqueda de alternativas de control, para nuevas enfermedades de plantas cultivadas.
- -. Se da sustento a la hipótesis, que los ambientes con condiciones frías estables, entregaron mayor cantidad de organismos con capacidades de control significativas, que los ambientes con temperaturas más variables.
- -. Se logró seleccionar dos mezclas de microorganismos, que son la base para dos formulaciones de un producto de control de patógenos de post cosecha, de manzana, cerezo y uva, con respaldo de ensayos a nivel comercial, teniendo una formulación para ser aplicada pre cosecha y otra en post cosecha.
- -. Se lograron niveles de control similares a la de fungicidas químicos, lo que es una gran aporte, dado que el uso de estos compuestos, está cuestionado en forma muy especial en post cosecha, donde se está usando una baja variedad de sustancias activas y en forma subdosificadas, por lo que el generar una alternativa o complemento biológico, es un gran aporte a la industria.
- -. Existe factibilidad de generar productos comerciales, dado por los niveles de control de enfermedades, el alto interés de las empresas exportadoras (se trabajó con 3 de las más grandes de Chile), la ausencia de limitaciones importantes para la producción y formulación, lo que implica que estas dos formulaciones deberían estar en el mercado con su registro SAG a mediados de 2013.
- -. Se establecieron las bases para el desarrollo, de productos no planteados originalmente en el proyecto, como es la obtención de datos que dan sustento al desarrollo, de un dispositivo que permita la utilización en embalajes, de los hongos seleccionados por su capacidad de liberar volátiles, lo que se evidencia en la aprobación del perfil FIA, convocatoria 2011, que se encuentra aprobado y en proceso de elaboración de la propuesta definitiva.

IV. INFORME DE DIFUSIÓN

ETAPA 5. DIFUSION

Tipo evento Nume		detalle
Presentación en congresos y seminarios	4	Congreso Latinoamericano de Fitopatología, en este se expusieron 2 trabajos orales - 2009. Congreso Agronómico de Chile, donde se expusieron 2 trabajos en formato de poster en 60°- 2009. Simposio de Control Biológico, Chillan., donde se expusieron 2 trabajos en formato de poster en 60° 2009. Congreso de Fitopatología SOCHIFIT 2010.
Organización de seminarios	1	Seminario de Difusión del proyecto, UCM, Curicó, Chile.
Dia de campos o reuniones técnicas	4	Reuniones técnicas con equipo técnico exportadora Del Monte – Unifrutti – 2010. Simposio Internacional de Agricultura Orgánica, Chillan, con presentación de trabajo en limones – Septiembre 2010. Reunión técnica equipo técnico exportadora Copefrut, 2009 Reunión técnica equipo técnico exportadora Del Monte, 2009
Boletin de difusión	1 con 200 copias impresas	Boletín divulgativo del proyecto, con 200 unidades impresas. (está pendiente a la espera de los últimos resultados) y visto bueno de buffet de abogados de patentes.

En este periodo se está a la espera de los últimos resultados, una vez en nuestro poder, se realizara la última charla de entrega de resultados y se elaborara el boletín divulgativo con los resultados generados de este proyecto, previo a su difusión se obtendrá el visto bueno del buffet de abogados en cargados del patentamiento.

V. ANEXOS

FICHA TECNICA

Formulación Liquida para Post -cosecha

Fabricante: BIO-Insumos Nativa Ltda. **Nombre:** ETB para Post-cosecha

Ingrediente activo: cámara 1, Trichoderma virens, 4 sillahur, macerado.

Concentración: No definida aun.

Formulación: Liquida (Suspensión concentrada) Dirección: Parcela Antilhue Lote 4 B2, Maule, Talca.

Nombre común: Trichoderma.

Características Principales:

Formulado líquido para combatir enfermedades fúngicas de pre y postcosecha en los cultivos de: Manzano, peral, cerezo, arándano y uva de mesa.

ASPECTOS RELACIONADOS CON SU UTILIDAD

Organismos nocivos controlados (Nombre común y científico): Pudrición gris: *Botrytis cinerea*; Corazón mohoso: *Alternaria alternata*.

Cultivo	Patógenos	Dosis
Manzano	Botrytis cinerea, Alternaria alternata Neofabre alba Botryosphaeria sp.	1 lt /ha. 5% de flor, plena flor y caída de pétalos.
Cítricos.	Botrytis cinerea, Penicillium	1- 2 lt/ha en brotación y post-cosecha.
Vid	Botrytis cinerea	1-2 It/ha en 80% flor, apriete racimo y pinta y luego en base a condiciones
Arándano	Botrytis cinerea	1.5 lt/ha con condiciones desde floración.
Cerezo	Botrytis cinerea	1.5 lt/ha con condiciones desde floración

MANTENER FUERA DEL ALCANCE DE LOS NIÑOS Y DE PERSONAS INEXPERTAS. NO TRANSPORTAR NI ALMACENAR CON ALIMENTOS.

Teléfonos de Contacto: Bio Insumos Nativa Ltda. 71-970696/71-970698 RITA: (2) 777 1994 / 6619414

HOJA DE SEGURIDAD

Formulación Liquida para Post -cosecha

IDENTIDAD DE LA SUBSTANCIA ACTIVA

Fabricante: BIO-Insumos Nativa Ltda.

Nombre: ETB para Post -cosecha

Registro SAG:

Dirección: Parcela Antilhue Lote 4 B2, Maule, Talca.

Nombre común: Trichoderma, mezclas: cámara 1, Trichoderma virens, 4 sillahur, macerado.

Nombre científico:

Grado de pureza (contenido mínimo de substancia activa): 100% de pureza con 1x 10⁹ Unidades formadoras de colonias/ ml (UFC /ml).

ASPECTOS RELACIONADOS CON SU UTILIDAD

Cultivo	Patógenos	Dosis
Manzano	Botrytis cinerea, Alternaria alternata Neofabre alba Botryosphaeria sp.	1 lt /ha. 5% de flor, plena flor y caída de pétalos.
Cítricos.	Botrytis cinerea, Penicillium	1- 2 lt/ha en brotación y post-cosecha.
Vid	Botrytis cinerea	1-2 It/ha en 80% flor, apriete racimo y pinta y luego en base a condiciones
Arándano	Botrytis cinerea	1.5 lt/ha con condiciones desde floración.
Cerezo	Botrytis cinerea	1.5 lt/ha con condiciones desde floración

INFORMACION CON RESPECTO A LA SEGURIDAD.

Método de destrucción, eliminación o inutilización del plaguicida. Destrucción o eliminación del plaguicida por temperaturas superiores a 50° C por más de 2 horas.

Identidad de los productos de combustión originados en caso de incendio. No genera productos de combustión tóxicos, solo CO2, lo único que generaría compuestos tóxicos es el envase de platico.

Procedimientos de limpieza y descontaminación de los equipos de aplicación. Lavado con agua limpia dos veces.

Métodos recomendados y precauciones de manejo durante su manipulación, almacenamiento, transporte y en caso de incendio o derrame. Manipulación del concentrado con guantes, a 4° C por 60 días, y por 15 días a temperatura ambiente. En caso de incendio no hay protocolos específicos necesarios y en caso de derrame solo lavado con agua corriente del concentrado.

Información sobre equipos de protección individual. Solo se requiere el equipo básico de aplicación, traje, mascarilla simple, antiparras, guantes y botas.

Procedimientos para la destrucción de la substancia activa y para su descontaminación: Puede ser destruida en forma física por aplicar temperaturas mayores a 75 ° C por 1 hora.

FORMA DE APLICACIÓN.

Por aspersión al follaje y por riego tecnificado o aspersión para aplicaciones al suelo, buscando llegar a las raíces. Las mejores horas de aplicación son a las horas más frescas de la mañana y la tarde en verano y en invierno a las de mayor temperatura.

COMPATIBILIDADES

Las cepas de Biocontroladores de ETB, utilizadas por Bio- Insumos Nativa, presentan compatibilidad probada experimentalmente con los siguientes insumos.

Frente a cualquier duda, sugerimos enviar muestras de los productos a utilizar a Bio-Insumos Nativa, para determinar su grado de compatibilidad.

MANTENER FUERA DEL ALCANCE DE LOS NIÑOS Y DE PERSONAS INEXPERTAS.

NO TRANSPORTAR NI ALMACENAR CON ALIMENTOS.

Teléfonos de Contacto: Bio Insumos Nativa Ltda. 71-970696 RITA: (2) 777 1994 / 6619414