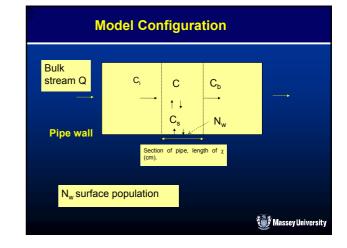
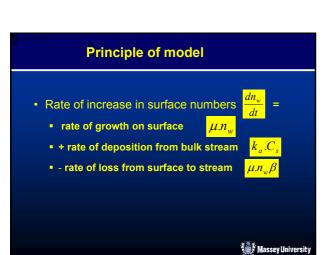


Topic of discussion

- Mathematical model for microbial contamination in a liquid food processing line
- · Aim of model:
 - Predict microbial contamination trends
 - Decide when to start cleaning
 - Estimate run length
- Case study: Thermophile contamination in a milk tubular heat exchanger


Microbial contamination and adhesion In most food process lines Product residence time is short (1/2 hr) Not enough time for large bacteria growth Surface attachment necessary to allow growth over extended periods


Massey University

Two possible methods of attachment

Entrapment in fouling layers

Biofilm formation

$\frac{dn_w}{dt} = \mu.n_w.(1-\beta) + k_a.C_s$

Rate of bacteria change on wall

- β proportion of bacteria lost from wall to stream
- μ specific rate of growth of bacteria
- K_a adhesion rate constant

Rate of contamination to stream

$$\frac{dC_b}{dt_*} = \frac{Q}{V}(C_i - C_b) + \frac{A}{V}(\beta.\mu.n_w - k_a.C_s) + C.\mu$$

- Rate of change in bulk flow
- Net flow in and out of section
- Rate of release from wall
- Rate of attachment to wall
- Rate of growth in the bulk flow

Differences with previous work

- Principle applies to all interactions between surface deposits and liquid streams
 - Not confined to thermophiles
 - Applies to both biofilms and fouling layers
 - Only surface population interacts with stream
 - Total population in fouling layer irrelevant
 - · Langeveld et al (1994) unsuccessful use of total population
 - Nature of surface does not impact
 - · De Jong and Aantrekker models for biofilms only

How to apply the model (1)

- 1. Estimate surface population n_w
- Estimate bulk contamination C_b
- **Data input**
 - Flowrate Q
 - Inlet concentration C_i
 - Hold up V

How to apply the model (2)

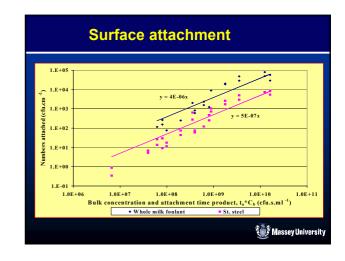
- Parameters determined by independent experiments
 - β proportion of bacteria lost from wall to stream
 - μ specific rate of growth of bacteria
 - · K_a adhesion rate constant

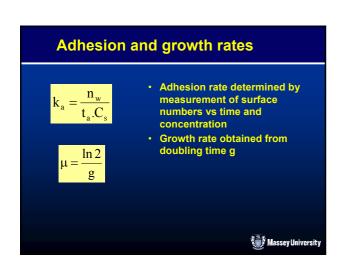
Equipment

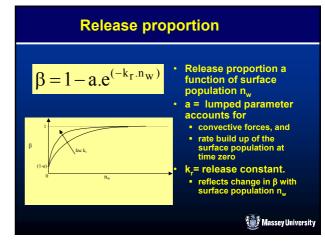
- Milk powder pilot plant
 - 40-60 l/h whole milk feed

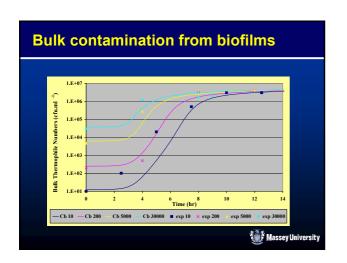
 - Fully computerised and Fix-D-Macs display Fouling rig with 6 MPHE for surface enumeration

 - 2 parallel banks of 3 each THE
 - Quick heating by DSI to focus growth on fouling rig and THE
 - Up to 24 hrs runs
 - Up to 2000 plate counts per


Materials and methods


· Surface enumeration


- Swabbing
 - · Incomplete (low) recovery
 - · Not representative of surface
 - higher numbers with fouling layers than biofilms
- Confocalscanning laser micrography
 - Dye with Syto 13
 - · Good distribution of bacteria
 - · Poor resolution from small fouling fragments (initiation period)
 - Underestimate
 - Only counts large colonies
 - · Expensive and time consuming



Materials and methods Impedance measurement Equipment: MiniTrac 4000 impedance monitor (SyLab, MBH, Purkersdorf, Austria Efficient Reliable (large amount of data for statistical analysis) Enumeration in liquid samples Plate count

