MINISTERIO DE AGRICULTURA FONDO DE INVESTIGACION AGROPECUARIA

EL CANELO : UNA ALTERNATIVA DE DESARROLLO PARA LA DECIMA REGION

VOLUMEN IV

RESULTADOS

JEFE PROYECTO

PATRICIO CORVALAN V.

AUTORES

LEONARDO ARAYA V.
RODOLFO CALQUIN R.
PATRICIO CORVALAN V.
VERONICA LOEWE M.
SILVIA NIEBUHR D.

SANTIAGO DE CHILE 1 9 8 7

UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS AGRARIAS Y FORESTALES
DEPARTAMENTO DE MANEJO DE RECURSOS FORESTALES

		٠٠٠ حـ حـ
		, , ,
		•

I N D I C E

			PAG.
·	SUP	ERFICIES	1
	1. 2.	Superficie cubierta por el área de estudio Superficies por estratos de asociación de	2
	<i>L</i> •	Superficies por estratos de asociación de series de suelo	2
	3 -	Superficies por usos de la tierra	3
	4.	Superficies por zonas, estratos de asocia-	Ü
		ción de series de suelo y usos de la tierra	4
	5. 6.	Superficies por zonas y clases de sitio	10
	0.	Superficies por zonas, estratos de asocia - ción de series de suelo y clase de sitio	13
	7.	Superficie por zonas, estratos de asocia -	1 3
	·	ción de serie de suelo, uso de la tierra y	
		clases de sitio	1 5
II.	TAM	AÑO DE LA MUESTRA	27
			2,
	1.	Estudio de sitio y productividad	28
	2.	Estudios de regeneración	30
III.	SIT	10	32
	1.	Altura dominante y édad de las unidades de	
	•	registro	33
	2.	Agrupación de parcelas de igual desarrollo en altura	4.1
	3.	Cartografía de grupos	41 41
	4.	Construcción de series cronológicas	44
	5 •	Selección del modelo altura-edad por grupos	48
	6.	Determinación de la edad clave	51
	7.	Construcción de curvas guías e índices de	52
	8.	sitio por grupos de altura	56
	9.	Clases de sitio	59
	10.	Relación índice de sitio - variables ambien	60
		tales	
	10.1	Modelo predictor del índice de sitio en la	60
		zona continental	_
	10.2	Modelo predictor del índice de sitio en la zona insular	62
	11.	Cartografía de clases de sitio	63
			ں ت

				PAG
IV.	PRO	DUCTI	VIDAD	66
	1.	Func rea	iones estimadoras de volumen por hectá-	67
	1.1		ciones correctoras del estimador de al-	67
	1.2		a en pie	68
	2. 3.		iones de rendimiento por clase de sitio ión de rendimiento alternativo	72 83
٧.	EST	IMADO	RES POBLACIONALES	88
VI.	DIA	GNOST	ICO DE LA REGENERACION NATURAL	92
	1.		idad de plántulas	93
	2. 3.	La r	ificación de calidad de las plántulas . egeneración de canelo en relación a fac	105 106
	4.	La r	s ambientalesegeneración de canelo en relación a fac	111
	5.	Rela	s vegetacionales	113
	,		ción de la vegetación	
	6.		en y forma de las plántulas	116
	7.		dad	118
	8.	Vigo	r de las plántulas	119
	9.	Cond la r	iciones óptimas para el desarrollo de egeneración natural de canelo	120
	10.		nos alcances sobre el manejo de los re-	121
ANEXO	Nō	t :	Estadísticas de promedios, desvíos y coeficientes de variación de la altura y edad dominante a nivel de parcelas y estratos	132
ANEXO	Ио	2 :	Conformación definitiva de los grupos de altura	139
ANEXO	Nō (3 :	Ajuste modelo exponencial modificada por parcela independientemente	144

					PAG
ANEXO	Иб	4	:	Ajuste modelo exponencial modificada por parcelas, con tasa común de crecimiento en el grupo, índice y clase de sitio	1 50
ANEXO	ΝΘ	5	*	Características ambientales por grupo de altura y ajuste de alturas por parcela	156
ANEXO	Иδ	6	•	Volumen por parcela, especie, edad y clase de sitio	165
ANEXO	Иδ	7	:	Indices de producción calculados con funciones de rendimiento : Chapman - Richards y predicción de árboles dominantes	169
ANEXO	NΩ	8	:	Dendrograma	173
ANEXO	Nδ	9	:	Matriz presencia-ausencia y nombres científicos de las especies encontra - das	175
ANEXO	Иδ	10	:	Cifras promedios de clareo y suplementación	180

		÷ †

SUPERFICIES Ι.

1. Superficie cubierta por el área de estudio

La superficie cubierta por el área de estudio es aproximadamente de 394.900 hectáreas.

Su distribución por zonas es la siguiente:

CUADRO N^{o} 1 : Superficies por zonas

Zona	Superficie (ha)	%
Continental Insular	233.500 161.400	59,1 40,9
Total	394.900	100,0

2. Superficies por estratos de asociación de series de suelo

La superficie cubierta en el estudio se estratificó en 10 unidades de asociación de series de suelo, con 5 unidades por zona.

Sus superficies son las siguientes :

CUADRO № 2 : Superficies por estratos y zonas

Zona	Estrato	Superficie (ha)	Zona (%)	Total (%)
Continental	I II II	56.500 45.100 19.700 85.000 27.200	24,2 19,3 8,4 36,4 11,7	14,3 11,4 5,0 21,5 6,9
Subtot	Subtotal		100,0	59,1
Insular	X IX AIII AII	13.200 30.000 56.500 54.700 7.000	8,2 18,6 35,0 33,9 4,3	3,3 7,6 14,3 13,9 1,8
Subtot	Subtotal		100,0	40,9
Tota		394.900	-	100,0

3. Superficies por usos de la tierra

Desde otro punto de vista, la ocupación de las tierras según usos potenciales para el cultivo de Canelo es la siguiente:

CUADRO N^{o} 3 : Superficies por tipos de uso y zonas (ha)

Zona	Tipo	T. 4 . 7		
	Urbano-agricola	Forestal	Marginal	Total
Continental Insular	78.600 49.000	137.300 103.900	17.600 8.500	233.500 161.400
Total	127.600	241.200	26.100	394.900

Se observa con claridad que la superficie útil para el Proyecto es mayoritaria (61,1% del total), teniendo proporciones muy equivalentes en las dos zonas (58,8% en el Continente y 64,4% en la Isla).

En términos generales se puede indicar que la estructura de usos de la tierra es muy homogénea en el área, no existiendo proporcionalmente una zona preferencial donde claramente prevalezca el uso forestal sobre otros usos alternativos.

4. Superficies por zonas, estratos de asociación de series de suelo y usos de la tierra

Una desagregación de las cifras anteriores se observa en el siguiente cuadro.

CUADRO № 4 : Superficies por zonas, estratos y usos de la tierra (ha)

Zona	Usos		Takal				
20118	0505	I	II	III	ΙV	V	Total
	Urbano-Agrīcola	38.800	7.200	3.700	13.300	15.600	78.600
Continental	Forestal	13.300	37.200	15.300	60.500	11.000	137.300
	Marginal	4.400	700	700	11.200	600	17.600
Su	btotal	56.500	45.100	19.700	85.000	27.200	233.500
Zona	Usos		Total				
	0505	٧I	VII	VIII	IX	Х	10:31
	Urbano-Agricola	4.300	12.600	2.900	27.900	1.300	49.000
Insular	Forestal	7.900	16.500	47.900	25.900	5.700	103.900
	Marginal	1.000	900	5.700	900		8.500
Su	btotal	13.200	30.000	56.500	54.700	7.000	161.400

En orden de interés decreciente por magnitud, los estratos mas importantes para el Proyecto son : IV, VIII, II, IX, VII, III, I, V, VI y X, acumulando los tres primeros, más del 60% del total del área de interés.

;

La estructura porcentual de los estratos por tipos de uso se advierte en el Cuadro N° 5.

CUADRO № 5 : Estructura porcentual de estratos por usos de la tierra (%)

Zona	Usos		T.A.1				
	0505	I	ΙΙ	III	IV	٧	Total
	Urbano-Agricola	58,7	16,0	18,8	15,6	57,4	33,7
Continental	Forestal	23,5	82,5	77,7	71,2	40.4	58.8
	Marginal	7,8	1,5	3,5	13,2	2,2	7,5
Sı	ubtotal	100,0	100,0	100,0	100,0	100,0	100,0
Zona	Usos	ESTRATO					
	0505	٧I	VII	VIII	ΙX	X	Total
	Urbano-Agricola	32,6	42,0	5,1	51,0	18,6	30,4
Insular	Forestal	59,8	55,0	84,8	47,3	81,4	64,4
	Marginal	7,6	3,0	10,1	1,7	-	5,2
Sı	ıbtotal	100,0	100,0	100,0	100,0	100,0	100,0

De estas cifras se deduce que si bien agregadamente las zo nas son de estructura de uso similar, su composición por estratos -que de alguna forma reflejan la calidad de los terrenos- no es así.

En efecto, en la zona Continental contrasta el estrato I, que dispone un 68,7% de tierra agricola fundamentalmente respecto al estrato IV que sólo aporta un 15,6% de terre - nos de esa calidad. Análogamente, el estrato VII en la zona insular tiene un 42% de tierras agrícolas contra un 5,1%

que dispone el estrato VIII.

En otras palabras, si bien cuantitativamente se indicó un orden de prioridad para los estratos, éste cualitativamente, desde un punto de vista agrícola, tiene otra jerarquía (en orden decreciente): I, V, IX, VII, VI, III, X, II, IV y VIII.

Sin embargo, la verdadera importancia para este proyecto, se observará en los cuadros de superficie por clase de sitio y estrato que más adelante se indican.

A otro nivel de desagregación de cifras, se puede observar la proporción de superficies por zonas y uso actual de la tierra más detallado, en el Cuadro Nº 6.

CUADRO № 6 : Proporción de superficies por zonas y uso actual detallado (Sup. en ha)

USOS		Z 0	Total	*		
	Contin.	%	Insular	%	10.91	*
SIN INTERES	78.600	33,7	49.000	30,3	127.600	32,3
1. Urbano	2.600	1,1	900	0,5	3.500	0,9
2. Agrícola	76.000	32,6	48.100	29,8	124.100	31,4
DE INTERES	137.300	58,8	103.900	64,4	241.200	61,1
3. Praderas	21.200	9,1	15.000	9,3	36.200	9,2
4. Matorrales	38.200	15,4	29.700	18,4	67.900	17,2
5. Renovales	19.500	8,3	4.700	2,9	24.200	6,1
6. Bosque explotado con		İ	j	j		ĺ
mezcla de renovales	27.100	11,6	26.400	16,4	53.500	13,5
Bosque explotado	27.800	11,9	19.400	12,0	47.200	12,0
8. Bosque poco interv.	3.500	1,5	8.700	5,4	12.200	3,1
MARGINAL	17.600	7,5	8.500	5,3	26.100	6,6
9. Bosques inundados	300	$\overline{0,1}$			300	$\overline{0,1}$
T. Turberas	200	0,1	4.900	3,0	5.100	1,3
Ñ. Ñadis hiperhúmedos	6.900	3,0	900	0,6	7.800	2,0
C. Sector de Vega	3.300	1,4		_	3.300	0,8
M. Sectores anegados	3.700	1,6	1.700	1,1	5.400	1,3
Playa	1.500	0,6	400	0,2	1.900	0,5
Agua	1.700	0,7	600	0,4	2.300	0,6
TOTAL	233.500	100,0	161.400	100,0	394.900	100,0

Como se indicara antes, la estructura de usos entre zonas no difiere notablemente.

La distribución porcentual de los terrenos con usos de interés para canelo son también a nivel agregado muy similares entre las zonas, difiriendo fundamentalmente en el grado de intervención de los bosques, ya que en la zona continental se encuentra un porcentaje muy bajo de bosque poco intervenido (1,5%) en relación a la zona insular que aún mantiene un porcentaje interesante (5,4%). Como reflejo de lo anterior, se observa una mayor participación de reno vales en la zona continental, siendo muy baja la de la zona insular.

La explicación del fenómeno anterior tiene una interpretación obvia: la presión que ejerce el hombre sobre los terrenos más poblados y de mayor accesibilidad es mucho mayor que en los terrenos más alejados.

A nivel de cifras absolutas es interesante observar que del total de terrenos de interés para Canelo (241.200 ha) el 43,2% lo constituyen terrenos fuertemente intervenidos, en los cuales no existe cobertura arbórea.

De los resultados de regeneración natural que más adelante se indicarán se deducirá lo significativo de esta cifra ya que implicará el restablecimiento artificial de las poblaciones de Canelo que allí se desee cultivar. Si se agrega a lo anterior que los renovales que pudieran incorporarse a la actividad económica lo harían con intervenciones a tala rasa, se alcanzará un porcentaje a manejar artificial mente cercano al 50% del total.

Otros alcances de interés que se deducen del Cuadro N^{o} 6 son :

- La baja cantidad de renovales existentes en la zona de estudio, lo cual fue corroborado en la campaña de terre no, siendo la cifra total de 24.200 ha. Si se considera que la información fotográfica más actualizada que se utilizó es de 1982 y la actual presión de uso por re novales de canelo en la zona es alta, se deduce que ese porcentaje en la práctica debe ser más bajo aún.
- También se debe destacar la existencia de unas 100.700 ha de bosque explotado en la zona, cifra base para proyectar cualquier actividad de manejo silvícola, y que co
 mo se indica más adelante y en la introducción del informe metodológico de este estudio, de alguna forma cons
 tituye un punto de partida favorable para la regenera ción, pero un importante obstáculo si no se busca un aprovechamiento económico de las existencias residuales.

Detallando aún más las cifras de superficie por zona, tipos de usos de la tierra y estratos, se muestra a continuación el Cuadro № 7.

CUADRO N° 7 : Superficie por estratos de asociación de series de suelo y uso actual detallado (ha)

 Zona	Usos*	Γ	7074				
20118	0505"	Ĭ	II	III	IA	V	TOTAL
	SIN INTERES	38.800	7.200	3.700	13.300	15.600	78.600
	1. Urbano	500	1.700	<u> </u>	400	13.000	2.600
	2. Agrícola	38.300	5.500	3.700	12.900	15.600	76.000
] = g . 	00.500	3.300	3.700	12.900	13.000	70.000
	DE INTERES	13.300	37.200	15.300	60.500	11.000	137.300
	3. Praderas	1.700	6.800	500	$\frac{00.500}{11.600}$	600	21.200
	4. Matorrales	3.800	13.000	1.700	14.900	4.800	38.200
	5. Renovales	4.600	1.400	1.000	7.800	4.700	19.500
	6. Bosque explotado con	11000	1.400	1.000	1.000	1 4.700	19.500
	mezcla de renovales	1.400	5.500	3.300	16.700	200	27.100
CONTINENTAL	7. Bosque explotado	1.800	10.000	7.000	8.300	700	1
	8. Bosque poco interv.	1.000	500	1.800] /00	27.800
	or ousque poet facely:	ļ 	300	1.800	1.200	j	3.500
	MARGINAL	4.400	700	700	11.200	600	17.600
	9. Bosques inundados	300			1111200		300
	T. Turberas	100			100		200
	Ñ. Ñadis hiperhúmedos		300	[6.600	<u> </u>	6.900
	C. Sector de Vega	<u></u>			3.300	<u></u>	3.300
	M. Sectores anegados	3.400			300		3.700
	Playa	100	200	400	700	100	1
	Agua	500	200	300	200	500	1.500
		300				300	1.700
Zona	Usos*	V I	VII	STRAT	0 I X	Х	TOTAL
	OTH THYPOGO					^ -	
	SIN INTERES	4.300	12.600	2.900	27.900	1.300	49.000
	1. Urbano		700		200		900
İ	2. Agrícola	4.300	11.900	2.900	27.700	1.300	48.100
	DE INTERES	7.900	16.500	47.900	25 000	700	100 000
	3. Praderas	1.400	2.200	4.500	25.900 4.400	$\frac{5.700}{2.500}$	103.900
ļ	4. Matorrales	2.500	4.600	6.200	15.000		15.000
ļ	5. Renovales	100	1.700	1.200		1.400	29.700
ļ	6. Bosque explotado con	. 100	1.700	1.200	1.700		4.700
	mezcla de renovales	2.500	2.700	10 600	, 500		00.400
INSULAR	7. Bosque explotado	I	ſ	18.600	1.500	1.100	26.400
7,100,2,4,1	8. Bosque poco interv.	1.100	4.300	10.900	2.400	700	19.400
	o. busque puco interv.	300	1.000	6.500	900		8.700
	MARGINAL	1.000	900	5.700	900		8.500
	9. Bosques inundados			3.700	300		0.500
ļ	I. Turberas	200		4.700			/ 000
	Ñ. Ñadis hiperhúmedos	300		600			4.900
	C. Sector de Vega			- 000	j		900
į	M. Sectores anegados	500	800	300	100		1 700
ļ	Playa	300		300	100		1.700
ļ	Agua	j	100	<u>,</u> i	300		400
1	nyua	i	i	100	500		600

^{*} Aún cuando originalmente existen unidades cartográficas definidas como combinaciones de usos forestales (Ej. : 4/5, 3/4, etc), para efectos de mensura se ha clasificado la unidad según el uso predominante, para evitar un análisis demasiado detallado.

5. Superficies por zonas y clases de sitio

Como resultado final del estudio de índices y clases de sitio y productividad, se muestra a continuación el agregado de superficies por clases de sitio y zonas, en el Cuadro Nº 8.

CUADRO Nº 8 : Superficie por clases de sitio y productividad por zona (ha)

Zona		Total					
20114	1	2	3	4	5	6	lotal
Continental	+	5.800	37.700	69.200	15.600	9.000	137.300
Insular	2.700	8.200	20.400	65.900	5.900	800	103.900
Total	2.700	14.000	58.100	135.100	21.500	9.800	241.200

Considerando que las clases de sitio y productividad son el índice más relevante para medir la potencialidad de los terrenos, la importancia de este cuadro es obvia.

La distribución de superficies por clases de sitio es de tipo normal, acumulando el mayor porcentaje de superficies las clases medias, siendo escasa la disponibilidad de terrenos de condiciones de sitio extremas.

Basta con indicar que a nivel de toda el área, la clase de sitio promedio (como índice numérico de la calidad) es de 3,78.

Su desagregación por zonas genera como índices promedios 3,89 para la zona continental y 3,64 para la zona insular,

indicando así que en promedio es de mejor calidad esta ú $\underline{1}$ tima zona para el crecimiento de canelo.

La composición porcentual de las superficies por clase de sitio y zonas se observa en el Cuadro N^{o} 9.

CUADRO № 9 : Porcentaje de superficies por zonas y clases de sitio (%)

Clases de	Zona		7.4.1
sitio	Continental	Insular	Total
1	-	2,6	1,1
2	4,2	7,9	5,8
3	27,5	19,6	24,1
4	50,4	63,4	56,0
5	11,4	5,7	8,9
6	6,5	0,8	4,1
Total	100,0	100,0	100,0

Se observa el claro dominio de la clase de sitio 4, siendo prácticamente el doble que la clase 3. A su vez, la clase 3 es casi el triple que la clase 5, siendo estas tres clases las predominantes.

Utilizando otro perfil de análisis, esto es, suponer una utilización priorizada de los terrenos de acuerdo a su productividad, se puede lograr las siguientes superficies acumuladas en orden descendente de calidad.

CUADRO № 10 : Superficies acumuladas por zonas y clases de sitio (ha)

Zona	Clases de Sitio									
20114	1	2	3	4	5	6				
Continental	 -	5.800	43.500	112.700	128.300	137.300				
Insular	2.700	10.900	31.300	97.200	103.100	103.900				
Total	2.700	16.700	74.800	209.900	231.400	241.200				

A partir de los supuestos de racionalidad de uso en términos de la calidad de la tierra, se observó que si bien hasta la clase de sitio 2 la zona insular es más importante que la continental, a partir de la clase de sitio 3 en adelante habrá mayor disponibilidad de terrenos en la zona continental, aún cuando las diferencias no son notables.

Las mismas cifras, en términos porcentuales se muestran en el Cuadro N° 11.

CUADRO Nº 11: Superficies porcentuales acumuladas por zonas y clases de sitio (%)

Zona	Clases de sitio							
20114	1	2	3	4	5	6		
Continental	 -	4,2	31,7	82,1	93,4	100,0		
Insular	2,6	10,5	30,1	93,6	99,2	100,0		
Total	1,1	6,9	31,0	87,0	95,9	100,0		

Nuevamente se manifiesta la clara preponderancia de la clase de sitio 4 ya que cualquier proyecto de utilización del recurso para disponer de una importante superficie de abastecimiento requerirá su uso.

6. Superficies por zonas, estratos de asociación de series de suelo y clase de sitio

En una visión resumida se muestra a continuación la super ficie por zonas, estratos de asociación de series de suelo y clase de sitio.

 $\underline{\text{CUADRO NO}}$ 12 : Superficies por zona, estrato y clase de sitio (ha)

Zona	Clase de		E	STRA	F O		
	sitio	1	II	III	ΙV	V	· Total
]		 					
İ	2	¦	¦	}	4.600	1.200	5.800
Continental	3	1.400	700	13.800	18.100	3.700	37.700
	i 4	10.600	14.800	<u></u>	37.700	6.100	69.200
	5	1.300	12.700	1.500	100	<u> </u>	15.600
	6		9.000	 	i 	[9.000
Subto	tal	13.300	37.200	15.300	60.500	11.000	137.300
Zona	Clase de						
	sitio	۷I	VII	IIIV	IX	Х	Total
	1			2.300	400		2.700
j	2	800	2.000	600	3.700	1.100	8.200
Insular	3	2.300	10.100	500	5.700	1.800	20.400
	4	2.000	4.300	43.600	14.000	2.000	65.900
ĺ	5	2.500	100	900	2.100	300	5.900
	6	300			~	500	800
Subtotal		7.900	16.500	47.900	25.900	5.700	103.900

Considerando solo un análisis a nivel de las clases de s \underline{i} tio 3 y 4, que son las más abundantes, destacan en el con

tinental el estrato IV que agrega 55.800 ha de esa calidad. En la zona insular es el estrato VIII el que agrega mayor superficie del tipo indicado, con un total de 44.100 ha. Es decir, del total potencial los estratos IV y VIII representan el 41,4% de las clases de sitio más abundantes.

Para evaluar la relación de calidad de sitio por estrato se presenta el Cuadro N° 12 que muestra el índice de cla se de sitio promedio por zona y estrato.

CUADRO Nº 13 : Indice promedio por clase de sitio según zona y estrato

Zona		7-4-3							
20114	I	ΙΙ	III	ΙV	V	Total			
Continental	4,0	4,8	3,2	3,6	3,4	3,9			
		Estrato							
	VI	IIV	VIII	IX	Х	Total			
Insular	3,9	3,2	3,8	3,5	3,5	3,6			

Esto revela que cualitativamente los estratos de mayor in terés son el III y VII con los índices de mejor calidad (3,2). En un segundo nivel de importancia se encuentran los estratos V, IX, X y IV con índices entre 3,4 y 3,6.

En un tercer nivel se ubican los estratos I y VI con indices de 3,8 a 4,0.

El último estrato en calidad es el II con índice medio de 4,8.

Este cuadro muestra una clara relación con las descripciones de asociaciones de serie de suelo realizadas en la

preestratificación, concordando plenamente en términos de la calidad, presentando así una alta eficiencia para el di seño de muestra.

7. Superficie por zonas, estratos de asociación de serie de suelo, uso de la tierra y clases de sitio

El nivel más detallado de la información de superficies se logró cruzando la información de estratos de asociación de series de suelo, uso de la tierra y clases de sitio por zonas.

La información está contenida en los Cuadros Nº 14 al 24.

No existe superficie de clase de sitio 1 en la zona cont \underline{i} nental.

CUADRO Nº 14: Superficie para la clase de sitio 2, zona continental, por estratos y clases de uso (ha)

Usos	<u> </u>		Est	rato		Total
0505	I	ΙI	III	IA	V	Total
Sin interés	<u> </u>	 _	-	1.500	1.400	2.900
1	-	¦ -	 			
2	 ~	¦		1.500	1.400	2.900
De interés 3	 - -	 _	 _	4.600	1.200	5.800 300
4			_	300	600	900
5	<u> </u>			100	600	700
5	_		_	2.600	_	2.600
7	_	_		1.300	_	1.300
8	_	_	_	-	_	1.500
<u> </u>	 	 				
Marginales	¦ - '	-	-	400	-	400
¦ 9	¦ - ı	-	-	-	-	-
¦ ĭ .	-		~	-	-	-
¦ Ñ '	-	-	-	-	_	-
! 	-	-	-	-	_	-
С	-	-	-	-	~	-
Agua	¦	¦				-
Playa	-	-	_	400	_	400
Total		_	_	6.500	2.600	9.100

CUADRO № 15 : Superficie para la clse de sitio 3, zona continental, por estratos y clases de uso (ha)

11		ESTRATO							
Usos	I	ΙΙ	III	IA	V	Total			
Sin interés	4.400	100	1.400	4.600	5.000	15.500			
1				200		200			
2	4.400	100	1.400	4.400	5.000	15.300			
De interés	1.400	700	13.800	18.100	3.700	37.700			
3	100		500	3.100		3.700			
4	300	200	1.300	3.000	1.800	6.600			
5	700	100	800	3.000	1.900	5.500			
5	300	300	3.000	7.700	_	11.300			
7	-	100	6.400	100	_	δ.600			
8	-	_	1.800	1.200	-	3.000			
Marqinales	500	<u> </u>	400	4.100	500	5.500			
9	_	!							
T	-	¦ '_ '		100	_	100			
Ñ	_	 -		100	_	100			
М	500	! <u>-</u>		300	_	800			
С	_	 -		3.300	500	3.800			
Agua	-	 - ,	200		_	200			
Playa	-	 -	200	300	_	500			
Total	6.300	800	15.600	26.800	9.200	58.700			

 $\underline{\text{CUADRO N}^{Q}}$ 16 : Superficie para la clase de sitio 4, zona continental, por estratos y clase de uso

Usos		E S	T R A	1 0		Total	
0202	I	ΙΙ	III	ΙV	V	10141	
 Sin interés	33.800	1.200	_	7.100	9.200	51.300	
1	500			200		700	
2	33.300	1.200	<u>-</u>	6.900	9.200	50.600	
De interés	10.600	14.800	_	37.700	5.100	69.200	
3	1.500	1.000	<u>.</u>	8.200	600	11.300	
4	3.400	2.600	 	11.500	2.400	19.900	
5	2.800	800	 	4.700	2.200	10.500	
6	1.100	3.000	-	6.400	200	10.700	
7	1.500	6.900	-	6.900	700	16.300	
8	300	500	-			500	
Marginales	3.100	100	_	6.700	100	10.000	
9	300		! -			300	
Ţ			-				
Ñ			<u> </u>	6.500		6.500	
М	2.300		l ! –		 	2.300	
С			-				
Agua	400	100	¦ –	200	 	700	
Playa	100		-	-	100	200	
Total	47.500	16.100	_	51.500	15.400	130.500	

CUADRO Nº 17 : Superficie para la clase de sitio 5, zona continental, por estratos y clases de uso (ha)

Usos		ESTRATO							
USOS	I	II	III	ΙV	٧	Total			
Sin interés	600	5.600	2.300	100	_	8.600			
1	!	1.600			<u> </u>	1.500			
2	600	4.000	2.300	100	ļ <u></u>	7.000			
] 1				 				
De interés	1.300	12.700	1.500	100	¦ -	15.600			
3	100	4.200	-		 •	4.300			
<i>l</i> ₄	100	5.700	400	100	¦ -	6.300			
5	1.100	400	200	-	! -	1.700			
6	-	1.600	300	_	!	1.900			
7	_	800	600	-	-	1.400			
8	-	 	-	-	 -				
Homeine)	900	500	300			1 500			
Marginales	800	<u>500</u>	300	-	-	1.600			
9	100		i - i	_	i -				
Ī	100		_	-	i -	100			
Ñ		300	- :	-	i -	300			
M	600		- '		i -	600			
С	-		-	-	i -				
Agua	100		100	-	-	200			
Playa	-	200	200	-	¦ -	400			
Total	2.700	18.800	4.100	200	-	25.800			

CUADRO Nº 18 : Superficie para la clase de sitio 6, zona continental, por estrato y clases de uso (ha)

Usos		ES	TRATO			Total
0505	Ī	II	III	ΙV	٧	10141
Sin interés	_	300		_		300
1	! _	100	_	_	! _	100
2	_	200	!	ļ <u>.</u>	! _	200
De interés	-	9.000	-	-	 -	9.000
3	-	1.600		_	¦	1.600
4	-	4.500		-	-	4.500
5	-	100	-	-	¦	100
6	-	600	-		-	600
7	-	2.200	-		¦ - '	2.200
8	-	-	-	-	 -	-
Marginales	_	100	_	_	_	100
9	_		_ !	=	_	
1	_		_		_	- }
Ñ	_	_	-	_	-	-
H M	-	_	~	-	-	_
С		! - ,	-	-	_	-
Agua	- 1	100	_	-	-	100
Playa	_ '	_	 	-	-	<u>-</u>
Total	1	9.400	_		-	9.400

CUADRO Nº 19: Superficie para la clase de sitio 1, zona insular, por estratos y clases de uso

1	_		Estrato			<u> </u>
ปรอธ	VI	VII	VIII	IX	X	Total
·		1	· · · · · · · · · · · · · · · · · · ·			
Sin interés	i -	i -	¦ -	1.300	¦ -	1.300
1	-	¦ -	! 	¦ -	-	¦ -
2	-		-	1.300	¦ -	1.300
[l İ	! 	i	i I	!
De interés	-	¦ ~	2.300	400	l -	2.700
¦ 3	¦ -	¦ -	400	100	! -	500
¦ 4	<u> </u>	¦	! –	200	} 	200
¦ 5	¦ - ;		_	100	-	100
l 6	¦ - ¦	-	200	 	-	200
7	¦ -	i - i	1.700	_	¦	1.700
l 8	<u> </u>	¦	~	<u> </u>	_	_
 				<u> </u>	ļ	
 Marginales	¦ -	 -	-	-	_	_
l 9	! -	¦		-	-	_
Ţ	- :	-	-	-	-	_
1 N	 -	- 1	-	-		-
М	_	-		-	_	_
C	_	_	-	_	_ ;	_
l Agua	_	_	<u> </u>	_		
Playa	_		_	_	_	_
ļ						
Total	 -	_	2.300	1.700	-	4.000

 $\frac{\texttt{CUADRO N} = 20}{\texttt{uso (ha)}}: \quad \text{Superficie para la clase de sitio 2, zona insular, por estratos y clase de uso (ha)}$

Usos			Estrato			Total
0505	VI	VII	VIII	IX	Х	lotai
Sin interés	1.100	600	_	600	800	3.100
1				100		100
2	1.100	600		500	800	3.000
De interés	900	2.000	600	3.700	1.100	8.200
	800	400	100	900	1.100	$\frac{8.200}{1.400}$
3	-	l			200	
4	200	300	400	500	300	1.700
5	-	-	100	200	-	300
6	400	200	-	500	400	1.500
7	200	1.000	-	700	400	2.300
8	-	100		900	-	1.000
Marginales	-	_	_	-	_	
9	_	-	_		_	
Ţ	~	-		_		
Ñ	_	 -	! – :	 	_	
K	-	-	-	<u></u>	-	~ -
С	-		-	-	-	
Agua	-	<u> </u>	 -	-	-	
Playa	-	<u>-</u>	~	<u>-</u>	-	
Total	1.900	2.600	600	4.300	1.900	11.300

CUADRO Nº 21 : Superficie para la clase de sitio 3, zona insular, por estratos y clase de uso (ha)

		Estrato						
Usos	VΪ	VII	VIII	IX	Х	Total		
Sin interés	2.100	9.200	100	7.600	100	19.100		
¦ 1		700			¦	700		
2	2.100	8.500	100	7.600	100	18.400		
 De interés	2.300	10.100	500	5.700	1.800	20.400		
¦ 3	200	1.300	100	900	1.400	3.900		
4	500	2.900	200	3.100	100	6.800		
5	- :	1.400	_	200	_	1.600		
6	900	1.700	 -	600	100	3.300		
7	600	2.000	200	900	200	3.900		
8	100	800	_		-	900		
Marginales	_	400	_	400	_	800		
9	_		-		_			
τ			-	 				
Ñ	-		-		-			
M	- }	300	-		-	300		
C	- 1		-		-			
Agua	-		-	200	-	200		
Playa		100	-	200	-	300		
Total	4.400	19.700	600	13.700	1.900	40.300		

CUADRO Nº 22 : Superficie para la clase de sitio 4, zona insular, por estratos y clase de uso (ha)

1			Estrato			
Usos	٧I	VII	VIII	IX	X	Total
Sin interés	500	2.600	2.800	18.300	100	23.500
1				100	<u> </u>	100
2	500	2.600	2.800	18.200	100	23.500
]	1.000	2.000	10.200	100	23.300
De interés	2.000	4.300	43.600	14.000	2.000	63.600
l 3	100	400	3.900	1.100	1.000	6.400
4	300	1.400	5.500	11.000	400	18.100
5	100	300	1.100	1.200		2.600
6	1.100	800	17.900	300	500	19.500
7	300	1.300	9.000	400	100	10.700
8	100	100	6.200		_	6.300
! !					 	
Marginales	-	500	5.500	500	-	δ.500
9	-				- ,	
Ţ	-		4.500		<u>.</u> .	4.500
Ñ	- ,	- ,	600		_	600
¦ M	<u> </u>	500	300	100	 	900
l c	-	-			-	
Agua	-	-	100	300	-	400
Playa	_	_	<u></u>	100	-	100
Total	2.500	7.400	51.900	32.800	2.100	93.700

CUADRO Nº 23 : Superficie para la clase de sitio 5, zona insular, por estratos y clases de uso (ha)

11		Total				
Usos	۷I	VII	VIII	IX	Χ	lotal
Sin interés	600	200	_	100	_	900
1			ļ <u>-</u>		_	
2	600	200	~*	100	-	900
De interés	2.500	100	900	2.100	300	5.800
3	900	100		1.400		2.400
4	1.500	 -	100	200	300	2.000
5	<u> </u>	! _	_	-	_	[
6	-	¦ –	500	100		600
7	<u>.</u>	¦ -		400	-	400
8	100	 <u>-</u>	300		-	400
 Marginales	1.000	_	200	<u>-</u>		1.300
9		i -		_	_	
l ī	200	_	200	ļ <u>-</u>	_	400
Ñ	300	<u> </u>		<u> </u>	-	300
l M	500	¦ _	_	l –		500
C	_	} _	<u> </u>	_	_	-
l Agua -	-	 ~	 	 -	-	100
Playa	 <u>-</u>	-	_	-	_	_
Total	4.100	300	1.100	2.200	300	8.000

 $\frac{\text{CUADRO N} \circ 24}{\text{uso (ha)}}$: Superficie para la clase de sitio 6, zona insular, por estratos y clases de

Usos		Total				
USOS	VI	VII	VIII	ΙX	Χ	lotal
Sin interés	_	_	<u>.</u>	- ,	300	300
1	-	-	-	¦ -	-	-
l 2 	 -	~	 -	 <u>-</u>	300	300
De interés	300	_		_	500	800
3	200	_			100	300
4			_	~ :	300	300
l 5				-	_	_
6	100	_	_	_ :	100	200
ļ ₇	_	_	! <u>-</u>	¦ _	_	-
 8	 <u>-</u>	-	 	 <u>-</u>	, -	
Marginales	_	_	_	_		_
9	_	-			_	-
Ţ	_		~	ļ _	_	
ļ _Ñ	_		_	_	_	_
ļ _M			<u> </u>	ļ <u>-</u>	_	_
l c	_	_	-	ļ -	_	
 Agua	- '	_	-	-	-	_
Playa	 -	 	 -	 -	-	-
Total	300	_	-	-	800	1.100

II. TAMAÑO DE LA MUESTRA

des de registro estuvieron limitadas por la posibilidad de encontrar renovales de canelo aptos para hacer el estudio. Ello debido entre otras cosas a que muchos de los renova - les marcados como "seleccionados" en la práctica no eran completamente compatibles con la definición de unidades de registro.

De esta forma hay 4 conglomerados vacíos, o sea, no existían renováles de canelo aptos para la muestra en el entor no de las 400 ha sobre la unidad de muestreo. En general, en las áreas de Puerto Montt, camino a Calbuco y Quemchi, no hubo grandes dificultades, ya que existían renovales en abundancia. En el sector de Maullín-Caelmapu, los renovales eran escasos. En Ancud eran abundantes, pero estaban la gran mayoría intervenidos. En el área de Castro eran muy escasos.

En la Isla de Chiloé el canelo es una madera muy usada y por lo mismo muy perseguida, incluso los diámetros peque ños, que se usan para hacer tijerales de casas y galpones. Esta presión sobre el canelo es tan alta que es probable que en la actualidad la existencia real de renovales de canelo sea bastante inferior a las cifras indicadas en este informe como renovales. Se debe considerar que la informa ción con que se construyó en este trabajo la cartografía de uso actual más reciente data de 1982.

En términos cuantitativos, la información dendrométrica collectada se puede observar en el siguiente cuadro resumen.

1. Estudio de sitio y productividad

Como resultado del proceso de asignación de unidades mues trales y de registro, se observa el siguiente desglose por zona y estrato.

CUADRO № 25 : Tamaño de la muestra por zona y estrato

		Unidades	de Muestreo	Unidades de Registro		
Zona	Estrato	Asignadas	Efectivamente	Asignadas	Efectivamente	
		por diseño	realizadas	por diseño	realizadas	
	I	5	5	15	10	
	II	7	7	21	17	
Continental	HII	5	5	15	13	
	IV	11	10	33	22	
	٧	5	5	15	10	
	VI	5	4	15	10	
ļ	VII	5	5	15	10	
Insular	VIII	8	9	24	20	
	ΙX	7	6	21	14	
	Х	5	5	15	10	
TOTAL		63	61	189	136	

En términos del compromiso original (53 unidades muestrales), se muestreó un 15% adicional, no siendo así en términos de las unidades de registro, las cuales disminuye ron un 15%.

Con respecto al diseño inicial, se muestreó con un 5% y 28% de insuficiencia para las unidades de muestreo y las unidades de registro, respectivamente.

La explicación de las diferencias se debe a que las unida

CUADRO Nº 26 : Información dendrométrica colectada en la muestra por zona y estrato

		Número total de árboles muestra							
Zona	Estrato	Todas las especies	Canelo	Canelos voltea dos y trozados cada 2,44 m	Canelos m <u>e</u> didos c/r <u>e</u> lascopio	Canelos volte <u>a</u> dos con análi- sis de tallo			
	l I	378	222	13	22	30			
	l II	562	464	23	55	51			
Continental	III	606	467	23	43	39			
	IV	1.064	l 795	39	40	66			
	i v	429	299	14	19	30			
Subtot	al	3.039	2.247	112	179	216			
	VI	586	443	23	30	30			
	VII	538	413	19	25	30			
Insular	VIII	1.354	1.176	52	52	60			
	IX	839	635	29	18	41			
	i x	579	472	21	12	30			
Subtot	al	3.896	3.139	144	137	191			
Tota	1	6.935	5.386	256	316	407			

Este último tipo de árboles volteados y trozados para aná lisis de tallo generó un total de 1.124 rodelas que permitieron realizar las medidas cronodendrométricas.

2. Estudios de regeneración

La muestra para regeneración distribuida por asociación de series de suelo y uso actual de la tierra es la siguiente :

CUADRO Nº 27 : Distribución de la muestra de regeneración por zonas, estrato y uso

			Númer	o de parce	las		
Zona	Estrato	Pradera	Matorral	Renoval	Bosque explot	Bosque po cointerv	Total
	l I	 -	3	3	2		8
	II	l 1	2	1	1	-	5
Continental	III	1	2	2	4	_	9
	I I A	f 1 -	4 .	3	5	-	12
	l v	<u>-</u>	1	1	2	-	4
Subtot	al	2	12	10	14	- 1	38
	IV	-	3	3	1	_	7
	VII	 -	3	5	1	1 1	10
Insular	AIII	1 1	4	6	6	2	19
	I IX	2	2	3	2	¦	9
	X	1	1	2	1	-	5
Subtot	al	4	13	19	11	3	50
Tota	l	6	25	29	25	3	88

En la práctica, se distribuyó la muestra homogéneamente en todos los estratos existentes. Los casilleros vacíos se de ben a la no existencia de superficie de esas características.

III. SITIO

1. Altura dominante y edad de las unidades de registro

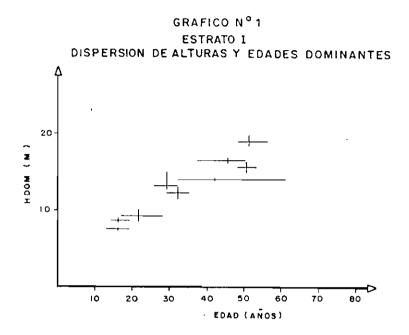
Los resultados de altura dominante y edad de las parcelas (unidades de registro) se observan en el siguiente cuadro.

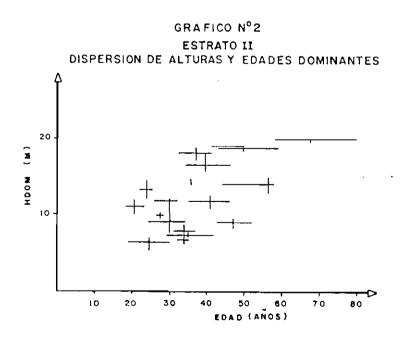
CUADRO Nº 28 : Parámetros medios y de dispersión de altura dominante y edad por zona y estrato

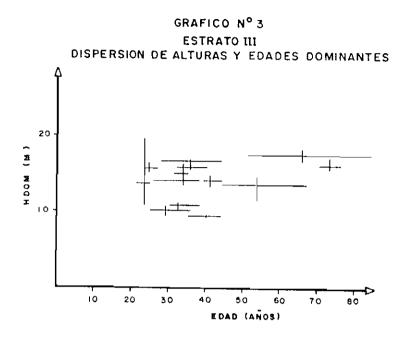
	Ţ	Altu	ra dominante	Edad	
Zona	Estrato	Promedio	Coeficiente de variación media	Promedio	Coeficiente de variación media
<u> </u>		(m)	(%)	(años)	(%)
	l I	13,2	2,91	33,9	10,39
	l II	12,4	4,22	37,5	8,00
Continente	III	13,8	5,06	40,2	8,88
	i IV	13,7	3,55	33,1	7,82
	٧	13,5	2,98	32,8	11,44
	VI	13,8	3,98	36,3	10,26
	VII	15,0	3,45	33,0	6,71
Insular	VIII	14,6	3,54	34,0	6,47
	IX	14,8	3,19	34,0	7,52
	l X	14,5	3,03	40,6	7,90

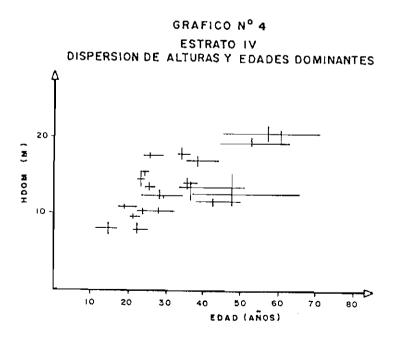
Estas cifras corresponden al promedio de las alturas dom<u>i</u> nantes y coeficientes de variación dentro de las parcelas de un mismo estrato, por lo cual no deben interpretarse como entre parcelas.

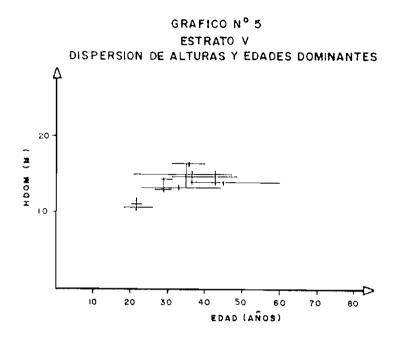
Todo esto es para indicar el grado de heterogeneidad in terna de las variables altura dominante y edad de las par
celas y no para realizar estimaciones poblacionales. De
la simple inspección de cifras se deduce que entre estratos la muestra es relativamente homogénea con pocas varia
ciones entre alturas medias y edades medias, lo cual per

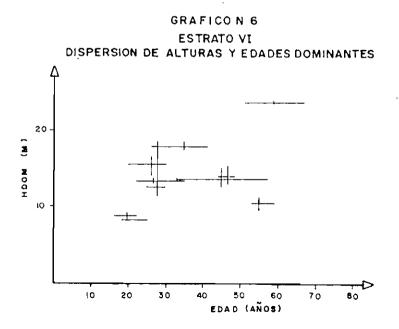

mite realizar las comparaciones posteriores con mayor pr $\underline{\underline{e}}$ cisión.

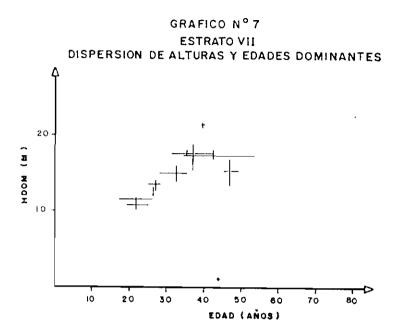

Se debe destacar por otro lado la notoria diferencia en la dispersión interna de las parcelas entre la altura do minante, cuyos desvíos en promedio son más bajos que los de la edad media dominante.

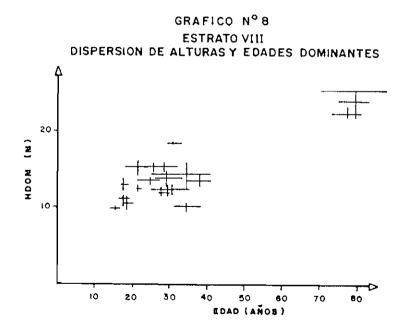

Ello indica de alguna forma un grado de disetaneidad entre los árboles dominantes, que en algunos casos sobrepasa los 30 años entre ellos.

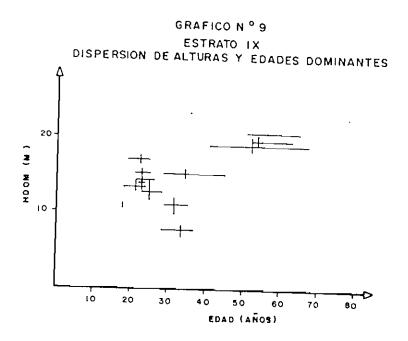

Es obvio entonces que el establecimiento del renoval como estructura social es un proceso que toma tiempo.

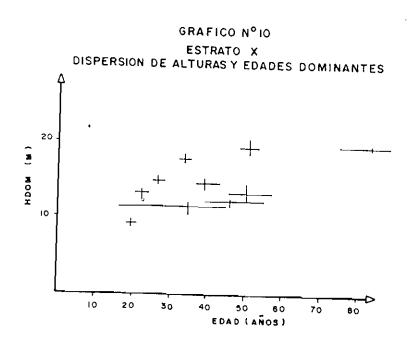

Para mayor claridad obsérvese la estadística detallada a nivel de parcelas y por estratos que se muestra en el Anexo Nº 1 y la siguiente secuencia gráfica.











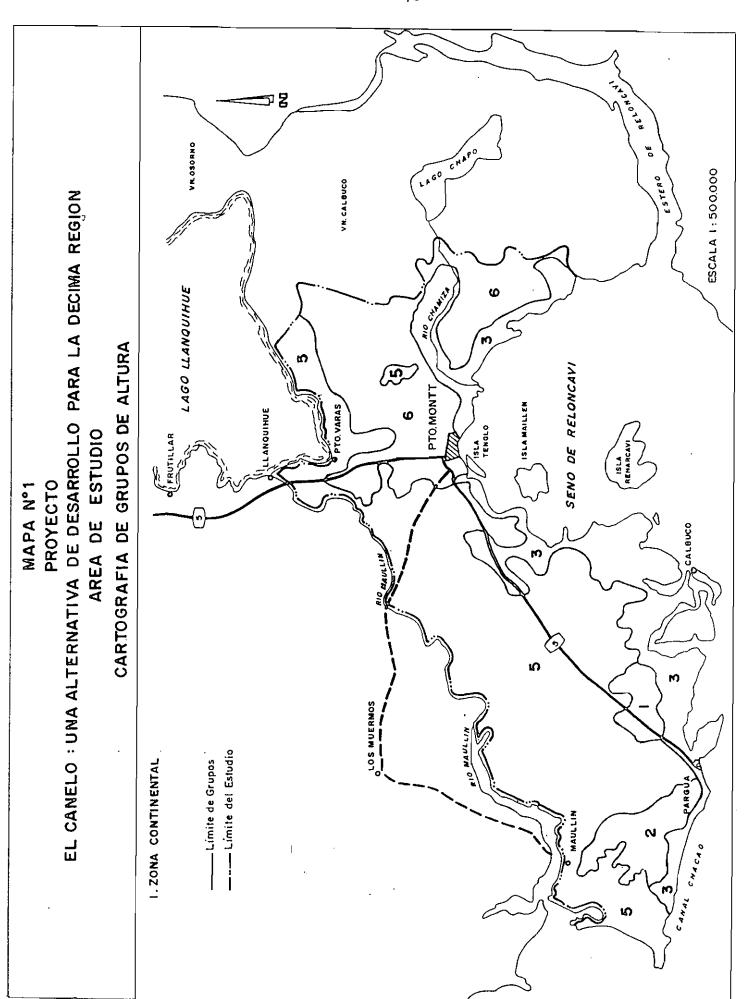
Estos gráficos (1 al 10) muestran la información a nivel de parcelas, en las que ésta se representa mediante una cruz. La intersección de las líneas verticales y horizon tales representa la altura dominante y edad media de ella. Los valores extremos de las líneas son los valores máximos y mínimos de los árboles dominantes que lo componen tanto de la altura como de las edades.

Esta alta dispersión de edades encontradas en el estrato dominante tiene importantes implicancias en los resulta dos de productividad. Esto debido a que la edad media a signada al rodal necesariamente será menor que la verdade ra, para la gran mayoría de los individuos que lo componen, debido a que ellos comienzan su existencia y ocupan el sitio con posterioridad a la instalación de los actuales dominantes. Esto, aún cuando no puede ser probado con la información disponible, resulta casi inobjetable dadas las condiciones de selección de la muestra (cobertura del dosel superior al 75%) y el nivel de tolerancia de la especie.

En otras palabras, es muy improbable que un individuo actual dominante tenga una edad inferior al promedio de la masa, dado que el nivel de densidad de alguna forma obliga a una alta y permanente competencia de los individuos, lo que a su vez implica una ventaja inicial y permanente a los individuos que se instalan primero.

Por esta razón los índices de sitio, producción y productividad necesariamente contienen un margen de seguridad en sus cifras, para las condiciones naturales en que crecen. Sin embargo, si se extrapola este resultado a posibles plantaciones artificiales de la especie, los índices estarán mas próximos a las verdaderas cifras esperables para esas condiciones.

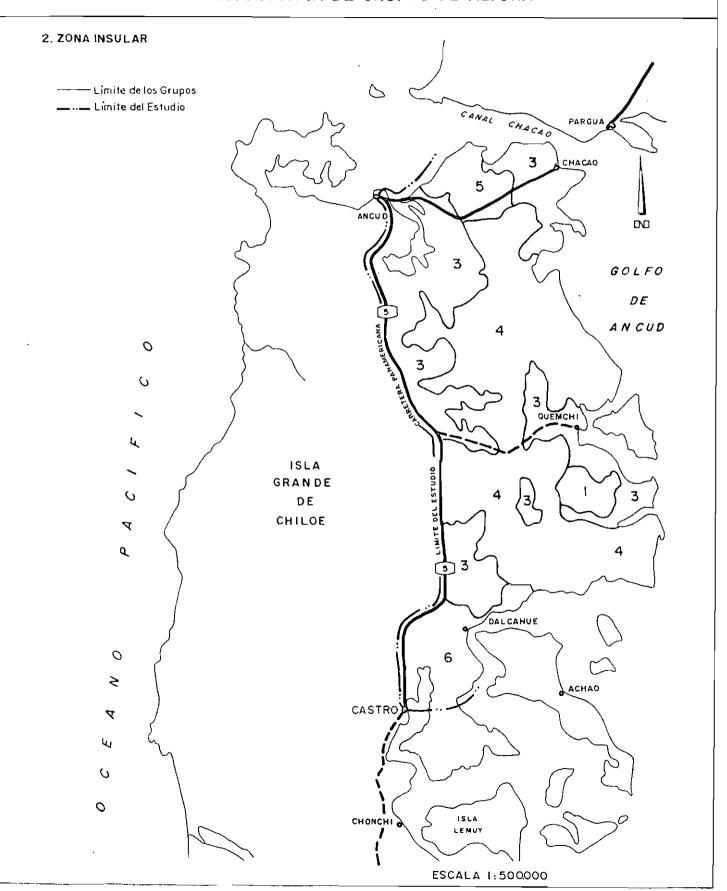
2. Agrupación de parcelas de igual desarrollo en altura


Este proceso se realizó en cuatro etapas :

- Comparación entre parcelas de un mismo estrato. De es te proceso se redujo las 136 unidades de registro en 79 grupos homogéneos.
- Comparaciones entre conglomerados de un mismo estrato. De las 79 unidades anteriores se redujo a 26 grupos.
- Comparación entre estratos. Los 26 grupos anteriores fueron refundidos a 12 nuevas unidades.
- Comparaciones entre zonas. Los 12 grandes grupos obtenidos en la etapa anterior se redujeron finalmente a 6 grupos.

3. Cartografía de grupos

La representación cartográfica de los 6 grupos de altura se encuentran en los mapas N° 1 y 2.


Estos grupos originales debieron ser restructurados en un 10% aproximadamente de sus componentes por problemas de discontinuidad geográfica.

PROYECTO EL CANELO: UNA ALTERNATIVA DE DESARROLLO PARA LA DECIMA REGION AREA DE ESTUDIO

MAPA N°2

CARTOGRAFIA DE GRUPOS DE ALTURA

.El tamaño definitivo de las parcelas componentes de los grupos se encuentra resumido en el Cuadro № 29.

CUADRO Nº 29: Tamaño de la muestra por grupos de altura

Genna	Número de pa	T 4 1	
Grupa	Continente	Isla	Total
1	3	2	5
2	1	0	1
3	19	36	55
4	0	17	17
5	36	4	40
6	13	 5	18
Total	72	64	136

Los grupos más densamente representados son los que presentan una mayor superficie, como se observa al inspeccionar el Cuadro N° 29 con los mapas N° 1 y 2.

La conformación definitiva de los grupos se detalla en el Anexo N^{o} 2.

4. Construcción de series cronológicas

Con el objeto de homogeneizar la información que representa las tendencias históricas, se construyó para cada grupo de alturas la estadística media de alturas dominantes para las series de edades medias a partir de 5 años y cada 3 en adelante.

También se acompaña información de la desviación estándar

y coeficiente de variación para cada edad.

CUADRO Nº 30 : Grupo 1

Edad	Nº de muestras	Altura media dominante (m)	Desviación estándar (m)	Coefic.de variación (%)
5	1	4,28	****	
¦ 8 ¦	5	6,53	1,24	0,19
11	5	8,99	1,40	0,16
14	5	10,91	1,53	0,14
17	5	12,52	1,68	0,13
20	5	13,93	1,83	0,13

CUADRO № 31 : Grupo 2

Edad	Nº de muestras	Altura media dominante (m)	Desviación estándar (m)	Coefic.de variación (%)
5	1	2,87		
8	1	5,39	_ 	_ _
11	1	8,02		
14	1	10,24	-÷-	-~-
17	1	11,90		
20	i	13,16		

CUADRO № 32 : Grupo 3

	Nº de	Altura media	Desviación	Coefic. de
Edad	muestras	dominante	estándar	variación
		(m)	(m)	(%)
5	9	3,44	 0,65	0,19
8	30	4,75	1,25	0,26
11	43	6,14	1,51	0,25
14	51	7,69	1,82	0,24
17	52	9,16	2,12	0,23
20	48	10,47	2,30	0,22
23	42	11,30	2,56	0,23
26	37	12,08	2,72	0,23
29	28	12,74	3,10	0,24
32	25	13,53	3,12	0,23
35	20	14,35	3,38	0,24
38	12	13,89	3,91	0,28
41	10	14,45	3,40	0,24
44	7	14,85	4,13	0,28
47	5	15,76	4,58	0,29
50	5	16,59	5,11	0,31

CUADRO № 33 : Grupo 4

	Nº de	Altura media	Desviación	Coefic. de
Edad ,	muestras	dominante	estándar	variación
	MUESCIAS	(m)	(m)	(%)
8	2	3,75	0,46	0,12
11	7	4,50	1,14	0,25
14	10	5,65	1,77	0,31
17	11	6,95	2,18	0,31
20	12	8,67	2,03	0,23
23	12	9,16	2,36	0,26
26	13	9,82	2,69	0,27
29	13	11,22	2,57	0,23
32	11	12,32	2,80	0,23
35 ¦	7	13,77	2,16	0,16
38	7	14,78	2,27	0,15
41	6	16,17	2,52	0,16
44	δ	17,12	2,50	0,15
47	δ	17,80	2,37	0,13
50	6	18,26	2,31	0,13
53	5	18,90	2,59	0.14
56	4	19,66	2,90	0,15
59	4	20,41	2,65	0,13

CUADRO № 34 : Grupo 5

Edad	Nº de muestras	Altura media dominante (m)	Desviación estándar (m)	Coefic. de variación (%)
5	4	2,79	0,58	0,21
8	19	3,68	1,48	0,40
11	30	4,65	1,27	0,27
14	35	5,82	1,61	0,28
17	36	6,93	1,76	0,25
20	35	8,06	1,92	0,24
23	30	9,14	2,13	0,33
26	29	10,20	2,26	0,22
29	26 •	11,26	2,47	0,22
32	23	12,21	2,59	0,21
35	19	12,90	2,20	0,17
38	16	13,42	2,17	0,16
41	14	14,17	2,45	0,17
44	12	15,32	2,70	0,18
47	8	15,99	2,83	0,18
50	δ	16,75	2,44	0,15
53	3	17,31	3,23	0,19
56	3	18,36	2,59	0,14

<u>CUADRO № 35</u> : Grupo 6

Edad	Nº de muestras	Altura media dominante	Desviación estándar	Coefic. de variación
		(m)	<u>(m)</u>	(%)
5	3	2,21	1,17	0,53
8	3	3,98	1,91	0,48
11	9	3,76	2,17	0.58
14	13	4,57	2,33	0,51
17	14	5,65	2,53	0,45
20	16	6,47	2,74	0,42
23	16	7,57	2,91	0,38
26	14	7,64	1,91	0,25
29	15	8,37	2,25	0,27
32	14	9,14	2,30	0,25
35	10	10,14	2,14	0,21
38	10	10,93	2,40	0,22
41	7	10,43	1,08	0,10
44	7	11,08	1,08	0,10
47	6	11,55	1,32	0,11
50	5	12,73	0,55	0,04
53	4	13,34	0,79	0,06
56	2	13,78	1,59	0,12

Se observa para los grupos 1 y 2 una serie de edades muy breve. Se explica por la buena calidad de estos grupos, donde la especie alcanza rápidamente la altura comercial

El grupo 2 solo se conformó por una parcela, de forma que no es posible otro tipo de estadística que no sea el promedio.

5. Selección del modelo altura-edad por grupos

Los modelos seleccionados fueron de la forma :

Modelo

- $1 \qquad \qquad H = A + B \times E$
- $H = A + B \times \sqrt{E}$
- 3 Ln H = A + B/E
- $5 H = K + A \times B^{E}$
- $6 H = 1/(K + A \times B^{E})$

donde:

H = Es la altura dominante del rodal en metros

E = Edad para los modelos 1 al 4. Serie 0,1,2...n-1

K,A,B = Constantes

El resultado de ajustes por mínimos cuadrados para los modelos 1 al 4 y por series cronológicas para los modelos 5 y 6 se presentan en los siguientes cuadros :

CUADRO № 36 : Grupo 1

Modelo	K	A	В	Error estándar (m)
1	 	1.4148	0.6490	0.3819
2	 -	- 5.6623	4.3988	0.1406
3	 	2.9593	-7.8474	0.5889
4	 	0.0857	0.8632	0.3168
5	21,67038	-17.59499	0.8488652	0.1675
δ	0.065936	0.166845	0.5278368	0.1742

<u>CUADRO № 37</u> : Grupo 2

Modelo	K	А	8	Error estandar (m)
1	 	- 0.1176	0.6971	0.5100
2	¦	~ 7.7563	4.7359	0.2147
3	ļ	3.0505	-10.2358	0.3781
¦ 4	i	- 0.6640	1.1120	0.6808
¦ 5	19.755	-17.12684	0.8246211	0.2168
6 6	0.07222	0.2691519	0.4472129	0.2046

CUADRO № 38 : Grupo 3

Modelo	К	A	В	Error estándar (m)
 1		3.8173	0.2730	1.0210
1 2		- 2.2587	2.6931	0.5436
3	<u></u>	2.8581	-9.2676	0.9829
4		0.2241	0.6753	0.7822
5	16.86448	-14.20413	0.8544437	0.3646
6	0.06537985	0.2105211	0.6932463	0.3661

<u>CUADRO Nº 39</u> : Grupo 4

Modelo	К	A	В	Error estándar (m)
1		1.3195	0.3402	0.5447
2		- 7.9020	3.6781	0.5371
¦ 3	 	3.1403	-17.2585	1.6971
4	-~- -	- 0.5797	0.8926	0.4711
¦ 5	54.98834	-51.52818	0.9760664	0.4056
6	0.0442317	0.2061039	0.8047598	0.3516

CUADRO № 40 : Grupo 5

Modelo	К	А	В	Error estándar (m)
1		1.7466	0.3051	0.4236
2	 	- 5.2970	3.0830	0.4188
3		2.8508	-11.1716	1.9746
4	 	- 0.3431	0.8101	0.2383
5	32.68111	-30.37017	0.958075	0.2185
6	0.0545652	0.2770846	0.7719988	0.4724

CUADRO № 41 : Grupo 6

Modelo	К	A	В	Error estándar (m)
1		1.8865	0.2175	0.4510
2		- 3.1359	2.1976	0.4418
3		2.5596	-10.1727	1.4456
4		- 0.3294	0.7316	0.3667
5	19.73936	-17.61827	0.9432346	0.4470
6	0.0745924	0.3072656	0.7761306	0.5570

El modelo 5 (exponencial modificada) presenta una de las cifras de error estándar mas bajas y con regularidad se presenta bien ubicado en el ranking. Por ello se selec - cionó como el mejor descriptor para todos los grupos.

En el siguiente cuadro se resumen los coeficientes del m \underline{o} delo para cada grupo.

CUADRO № 42 : Modelo final altura dominante versus edad

$$H=K+A*B^E$$
 , donde $H=$ altura dominante (m)
$$E=$$
 una serie con $E_1=0,\,E_2=1$
$$E_n=n\cdot 1$$

$$K,A,B=$$
 constantes

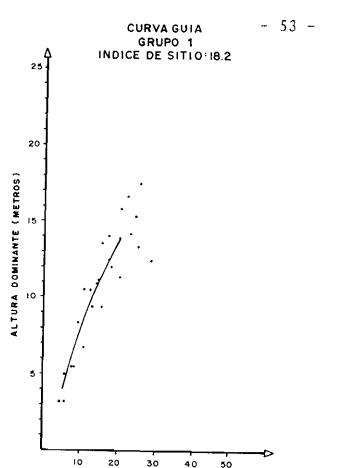
Grupo	K	A	В	Se (m)	E ₁
1	21.67038	 -17.59499	0.8488652	0.1675	5
2	19.75500	-17.12684	0.8246211	0.2168	5
3	16.86448	-14.20413	0.8544437	0.3646	l 5
4	54.98834	-51.52818	0.9760664	0.4056	8
5	32.68111	-30.37017	0.958075	0.2185	5
6	19.73936	-17.61827	0.9432346	0.4470	5

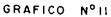
6. Determinación de la edad clave

Para efectos de medir los parámetros productivos a una \underline{e} dad homogénea se consideraron entre otros, los siguientes argumentos :

- Debe ser una edad próxima a la edad de cosecha.
- Para el estudio de productividad volumétrica, dado que se cuenta sólo con información temporal, se eligió la

edad media de las parcelas ya que ella minimiza las estimaciones realizadas tanto para los rodales que están por sobre y bajo la edad clave (interpolaciones y extrapolaciones).


- Para el estudio de índices de sitio, la edad clave óptima desde el punto de vista de su construcción, es la edad mínima (por definición); sin embargo, desde el punto de vista práctico interesa edades mayores cercanas a la rotación económica.


Por todas esas razones se definió la edad clave (Eclave) como 35 años.

7. Construcción de curvas guías e índices de sitio por grupos de altura

Conocidos los parámetros del modelo de altura por grupos de altura y la edad clave, se definen entonces la curva guía y su índice de sitio respectivo.

A fin de indicar la dispersión de valores de altura en cada grupo, se muestran los gráficos Nº 11 al 16, en los que se expresa la evolución de la altura dominante en el tiempo a través de la curva guía, su dispersión y su índice de sitio.

, 1

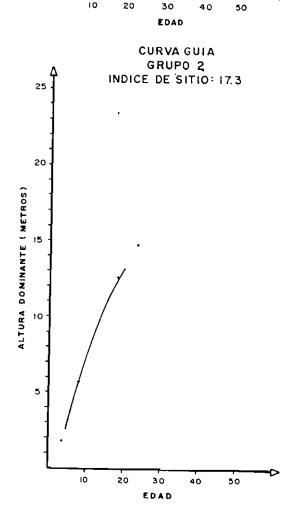
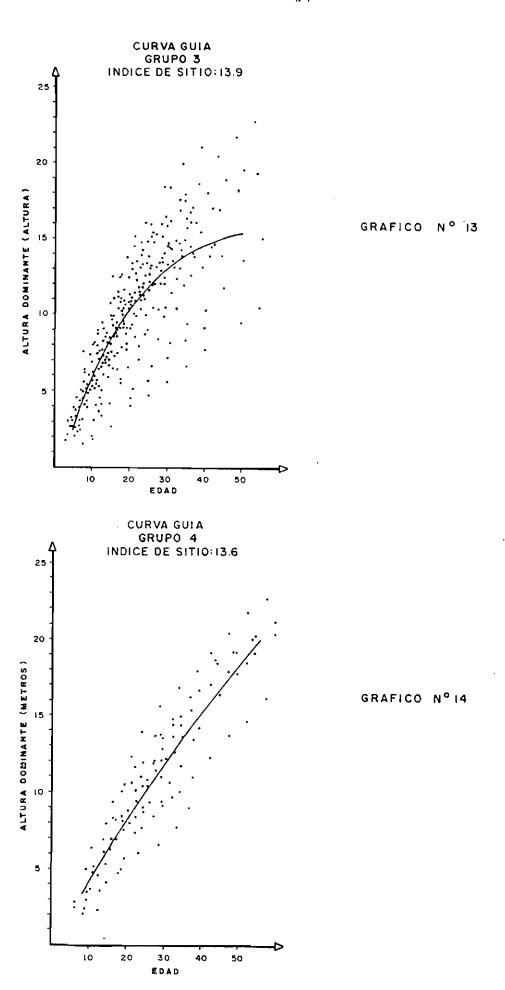
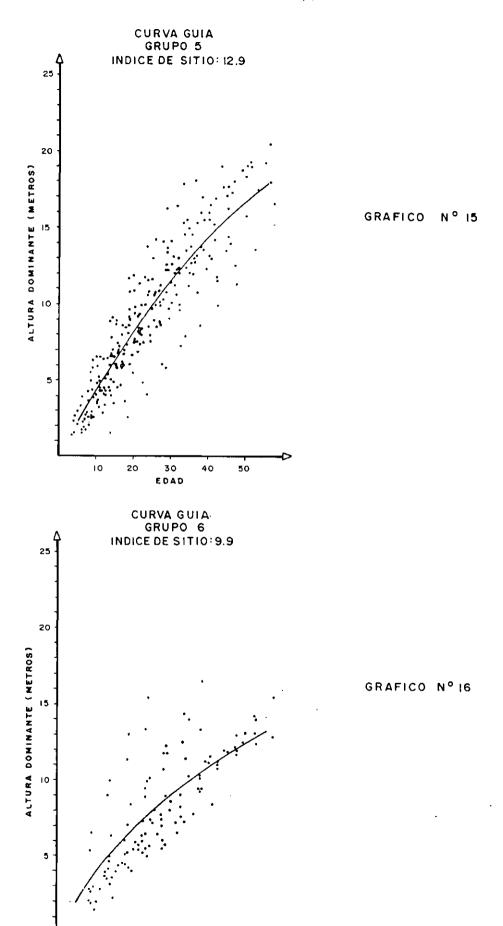




GRAFICO Nº12

EDAD

8. Indices de sitio por parcela

Con el objeto de configurar una cartografía lo más precisa posible, basada en la información detallada de las parce - las de terreno, se procedió a calcular los índices de sitio de cada una de ellas aprovechando al máximo la información disponible.

Se procedió a ajustar para todas y cada una de las parce las el modelo seleccionado a través de series cronológicas. El detalle del ajuste se encuentra en el Anexo Nº 3.

Sin embargo, dada la existencia de numerosas extrapolaciones e interpolaciones a realizar, se optó por homogeneizar el cálculo a nivel de grupos.

El modelo es de la forma :

Altura dominante = $K + A \times B^{E}$

donde:

E = Es una serie cronológica 0, 1, ..., (n-1) en que el primer valor es la edad inicial.

K = Es la asíntota.

A = Es la diferencia entre la asíntota y el primer valor de altura de la serie.

B = Es una constante de crecimiento.

Por lo anterior, los parámetros K y A resultan sensiblemente variables entre parcelas de un mismo grupo según sea el valor inicial y la longitud de la serie ajustada (por construcción).

Por ello se prefirió homogeneizar el parámetro B que resulta independiente del valor inicial y su longitud y que tiene una mínima variación entre parcelas.

Se utilizó para todo el grupo el valor promedio de B.

Luego se ajustó para la misma serie de datos de las parce las el modelo con la tasa constante a nivel de grupo. E- llo permitió asignar un margen de seguridad mayor a las estimaciones individuales basado en la hipótesis probada que pertenecen a una misma población (Ver Capítulo III.2).

Este nuevo ajuste se realizó por mínimos cuadrados de la forma :

Altura dominante = $K + A \times X$

donde :

 $X = R^{E}$

K y A = Parámetros

De esta forma se realizó la estimación del índice de sitio para cada una de las parcelas.

El detalle de los ajustes y cálculo de índices de sitio

se encuentra en el Anexo № 4.

El valor promedio de la tasa de crecimiento (B) por grupo se encuentra en el Cuadro N^{o} 43.

CUADRO № 43 : Tasa de crecimiento en altura promedio por grupo

Grupo	Nº parcelas	B
1	5	0.830908
2	1	0.824621
3	55	0.941801
4	17	0.874441
5	39	0.940749
6	18	0.918381

Los valores de índice de sitio promedio por grupo, en des vío y coeficiente de variación se expresan en el Cuadro N° 44.

CUADRO № 44 . Indices de sitio por grupo

 Grupo	Nº parcelas	Indice de sitio (m)	Desviación estándar (m)	Coeficiente de variación (%)
1	5	18,05	2,12	11,75
2	1 55	17,18 16,49	3,43	20,80
4	17	13,57	2,28	16,76
5	39	13,74	2,53	18,40
6	18	11,05	3,67	33,27

9. Clases de sitio

Se establecieron seis clases de sitio, con una amplitud de 3 m cada una.

La clasificación final se observa en el Cuadro Nº 45.

CUADRO № 45 : Estructura de las clases de sitio

Clase de sitio	Indice de sitio
1	21 \le IS \le 24
2	18 \le IS \le 21
3	15 \le IS \le 18
4	12 \le IS \le 15
5	9 \le IS \le 12
6	6 \le IS \le 9

Cada parcela fue ubicada en la clase de índice de sitio correspondiente (Anexo Nº 4).

La estadística resumida de las clases de sitio se aprecia en el Cuadro N° 46.

CUADRO N^{0} 46 : Indices de sitio por clase de sitio

Clase de sitio	Nº parcelas clasificados	Participación porcentual	Indice de sitio medio (m)
1	4	2,96	22,23
2	19	14,07	19,48
3	40	29,63	16,49
4	42	31,11	13,69
5	20	14,82	10,55
6	10	7,41	7,52
Total	135	100,00	14,67

La participación de la muestra, no siendo igual a la proposición poblacional de superficies por clases de sitio indicada en el Capítulo I.5, Cuadro N^{o} 9, es muy similar, lo cual es consecuente con los criterios cartográficos empleados.

La importancia de las cifras ya se indicó en el capítulo de superficies exhaustivamente.

10. Relación índice de sitio - variables ambientales

De acuerdo a los resultados expuestos se aprecia una clara diferencia, en términos de índice de sitio, entre la zona continental y la insular del estudio. Esto hace recomendable la búsqueda de un modelo multilineal de regresión para cada zona.

Estos modelos se obtuvieron a través de dos programas com putacionales; el primero permitió graficar el índice de sitio con cualquier variable ambiental y el segundo es un programa de regresión paso a paso que realiza el ajuste final.

10.1 <u>Modelo predictor del índice de sitio en la zona continental</u>

En el análisis gráfico se detectaron como variables explicatorias el drenaje, la exposición local y la pendiente local. Estas tres variables se relacionan de la siguien-

te manera para explicar el índice de sitio.

I.S. =
$$18.82137 - 1.922026 * D + 0.02081513 * E.L. + 0.02426267 * P.L.$$

donde:

I.S. = Indice de sitio (m)

D = Drenaje

E.L. = Exposición local

P.L. = Pendiente local

Error típico residual : 2,56 m Error típico total : 3,33 m

 $R^2 : 0,43$

Se observa que los factores drenaje, exposición local y pendiente local son capaces de explicar un 43% de la variación del índice de sitio en renovales de canelo en la X Región, parte continental.

Si bien es cierto el coeficiente de correlación múltiple (R^2) no es muy alto, es significativo considerando la fuente de datos, que corresponden a renovales de canelo donde el rango de valores de índice de sitio va desde 6,3 a 23,5 m para una edad clave de 35 años.

Las tres variables ambientales se encuentran debidamente codificadas en el Anexo N° 5.

10.2 <u>Modelo predictor del índice de sitio en la zona in-</u> sular

En forma similar a la zona continental, el análisis gráfico determinó que las mejores variables explicatorias son el drenaje, la exposición local y la pendiente local. El modelo multilineal de regresión es de la siguiente manera:

I.S. =
$$18.04658 - 1.630327 * D + 0.3791192 * E.L. + 0.06436765 * P.L.$$

donde :

I.S. = Indice de sitio (m) SE = 3,03 m D = Drenaje SY = 3,71 m E.L. = Exposición local $R^2 = 0,36$

P.L. = Pendiente local

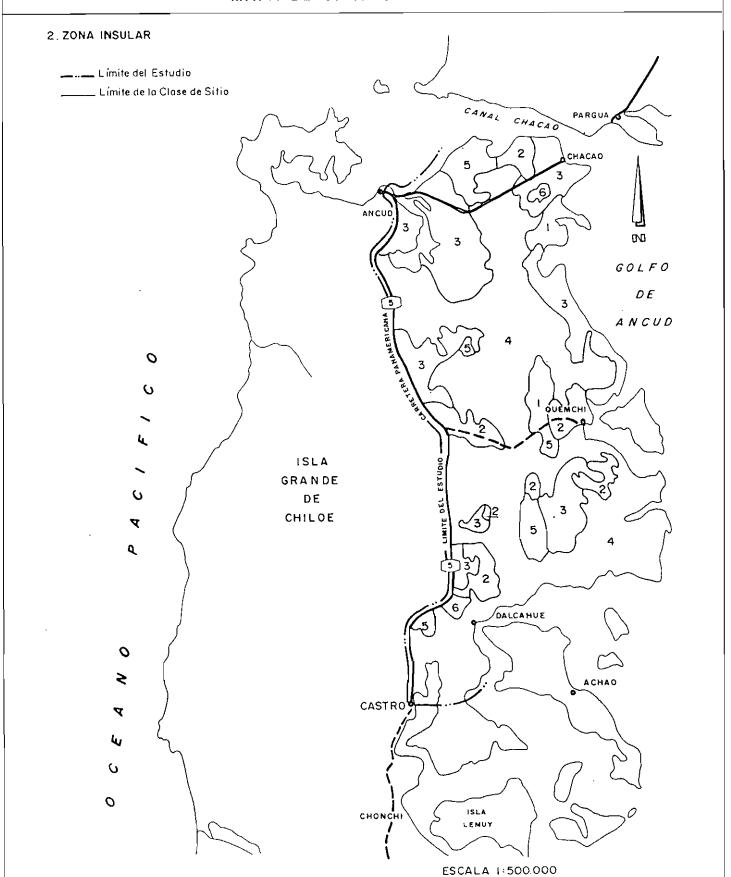
Tanto para la zona continental como para la insular, el drenaje resultó ser la variable más significativa. Esto se puede deber a varias razones:

- El drenaje es una variable resultante de un conjunto de otras variables, como la geomorfología, la situa ción topográfica, la pendiente y su forma.
- Las condiciones del drenaje determinan las características del suelo. Aquellos sectores que permanecen constantemente anegados, debido a su topografía plana, evolucionan hacia un suelo tipo ñadi; mientras que sectores bien drenados, producto de la topografía de loma jes, evolucionan hacia un suelo trumao típico.

A modo de conclusión, se puede mencionar que aquellos sectores con características de ñadi presentan valores de ín dice de sitio bajos, mientras que sectores con topografía de lomajes y suelo tipo trumao presentan valores de índice de sitio altos.

11. Cartografía de clases de sitio

Con la ubicación cartográfica de todas las parcelas y sus respectivos valores de índices y clases de sitio más las variables macroambientales y los límites de la estratificación, se consiguió la cartografía de clases de sitio.


El detalle de la cartografía final escala 1:50.000 que con tiene clases de sitio y uso de la tierra se encuentra en el Anexo Cartográfico del Proyecto.

A una escala de ubicación 1:500.000 se muestran a conti nuación los mapas № 3 y 4 de clase de sitio.

MAPA N° 4 PROYECTO

EL CANELO: UNA ALTERNATIVA DE DESARROLLO PARA LA DECIMA REGION AREA DE ESTUDIO

MAPA DE CLASES DE SITIO

IV. PRODUCTIVIDAD

۲.

1. Funciones estimadoras de volumen por hectárea

1.1 Funciones correctoras del estimador de altura en pie

Cuadrilla 1 (Dendrómetro Haga)

DIF =
$$-0.1275543 + 0.4712847 \times HEST - 0.1080619 \times DAP$$

- $0.3357547 \times HDOM + 8.427 E - 7 \times DIAMMED$

$$S_{e}^{2} = 0.92$$
 $R^{2} = 0.4923$ $n = 200$

Cuadrilla 2 (Dendrómetro Blumeleiss)

HREAL =
$$-0.2463684 + 0.5937825 \times HEST + 0.07588 \times DAP$$

+ $0.451754 \times HDOM - 0.07706 \times DIAMMED + 0.0000303 \times N$

$$S_e^2 = 0.61$$
 $R^2 = 0.9588$ $n = 216$

donde:

DIF = Es la altura estimada con dendrómetro menos la altura verdadera (real) (m)

HEST = Es la altura estimada con dendrómetro (m)

DAP = Es el diámetro a la altura del pecho (cm)

HDOM = Es la altura media dominante (m)

DIAMMED = Es el diámetro medio de los árboles dominantes de canelo (cm)

N = Es el número total de árboles por hectárea

 S_e^2 = Es la varianza residual de la regresión

R² = Es el coeficiente de determinación

n = Es el número de árboles ajustados

Mediante el test de significancia de los coeficientes, se comprobó que todos ellos eran distintos de cero al 95% de confiabilidad, con excepción del coeficiente del diámetro medio para la cuadrilla 1. A pesar de esto, se dejó, ya que su eliminación hacía aumentar el error estándar de estimación.

Con estas ecuaciones se corrigieron todas las estimacio - nes de altura realizadas con dendrómetros.

1.2 Funciones de volumen por parcela

Para el cálculo del volumen de la parcela se consideraron 4 grupos diferentes de individuos dentro de ella, los cua les fueron :

- Canclos volteados (ya sea para análisis de tallo o los trozados cada 2,44 m); estos árboles son indivi duos con mediciones de diámetros a diferentes alturas.
- Canelos con DAP medido y altura estimada con dendróme tro.
- 3) Canelos sólo con DAP medidos.
- 4) Otras especies diferentes a Canelo.

Para el caso (1) la información se procesó como se indica en el informe metodológico.

Con esta información se construyeron dos funciones estimado ras de volumen independientes para la zona continental e insular.

Los resultados fueron los siguientes :

Zona continental

$$V = (DAP/100)^2 \times (-0.5188637 + 0.3191276 \times H)$$

$$S_e^2 = 0.35$$
 $R^2 = 0.80$ $n = 278$

Zona insular

$$V = (DAP/100)^{2} \times (-0.7363118 + 0.33301 \times H)$$

$$S_e^2 = 0.32$$
 $R^2 = 0.85$ $n = 272$

donde:

V = Es el volumen cúbico sólido sin corteza del árbol hasta 5 cm de diámetro límite de utilización (m³)

DAP = Es el diámetro a la altura del pecho del árbol (cm)

H = Es la altura total del árbol (m)

Luego se aplicó una prueba de hipótesis con el fin de determinar si los coeficientes de ambos modelos eran igua les. Se concluyó que eran significativamente distintos al 95% de confiabilidad.

Para el caso (2), con las funciones para cubicar descritas en el caso (1), se estimó para todos los árboles que disponían información de DAP y altura total corregida su volumen correspondiente de acuerdo a la zona.

Para el caso (3), se evaluaron 3 metodologías alternati - vas de subicación, seleccionándose el método 1.

Básicamente consiste en ajustar el modelo:

$$\hat{H} = EXP (a_0 + a_1 \times DAP^{-0}, 5)$$

para estimar la altura de los árboles sin esa medida.

Los ajustes por parcelas se encuentran en el Anexo Nº 5.

Con estos modelos se calculó la altura de los árboles que solo disponían información de DAP. Luego se calculó el volumen como en el caso (2).

Para el caso (4) se aplicaron las ecuaciones de volumen indicadas en el informe metodológico.

1	T
Grupo	Ecuaciones de volumen cúbico sin corteza
I I	$V = (0.0214 + 0.6205 \times (DAP/100)^2) \times (-7.1755 + 0.9909 \times H)$
II	$V = (DAP/100)^2 \times (1.4360 + 0.34 \times (-12.067 + 1.1973 \times H))$
III	$V = (DAP/100)^2 \times (1.7972 + 0.3529 \times (-0.1895 + 0.6633 \times H))$
ΙV	$V = 0.0381 + 0.4731 (DAP/100)^2 \times (-5.0851 + 0.7704 \times H)$
l v	$V = (DAP/100)^2 \times (4.1675 + 0.1303 \times (-6.3217 + 0.8706 \times H))$
donde	
 	Es el volumen cúbico neto sólido sin corteza hasta un índi- ce de utilización de 10 cm (m³)
DAP	Es el diámetro a la altura del pecho (cm)
 	Es la altura total (m)
Grupo	ESPECIES
I	Coigue, Coigue de Chiloé, Coigue de Magallanes y Ñirre
II	Тера
111	Ulmo y Tineo
IA	Tepú, Luma, Arrayán, Meli, Mañío, Lumilla, Espinillo, Fuin- que, Maqui y Chaqueihua
v I	Radal, Avellano, Pillo-Pillo, Pitra, Tiaca, Sauco y Notro

Para los árboles que solo disponían de DAP y no altura se seleccionaron los siguientes modelos :

Grupo I:

$$V = (DAP/100)^2 \times (-2.963074 + 4.77900 \times HDOM)$$

 $S_e^2 = 0.42$ $R^2 = 0.80$ $n = 38$

Gгиро	M O D E	L 0
II	Ln V = -9.304702 + 2.404236 x Ln DAP	$S_e^2 = 0.01$; $R^2 = 0.99$; $n = 4$
 III	Ln V = −7.791992 + 2.072372 x Ln DAP	$S_e^2 = 0.01$; $R^2 = 0.94$; $n = 4$
IV	Ln V = ~6.851158 + 1.664703 x Ln DAP	$S_e^2 = 0.05$; $R^2 = 0.90$; $n = 24$
] v	Ln V ≈ -7.991104 + 2.136055 x En DAP	$S_e^2 = 0.004; R^2 = 0.99; n = 48$

Conocidos los estimadores de volumen cúbico sin corteza por árbol para los 4 casos, se agregó el volumen por hectárea para Canelo y otras especies, expandiendo los resultados de la parcela multiplicando por 100.

El detalle de volúmenes a nivel de parcelas, especie y \underline{e} dad, que forman la base de la construcción de las funciones de rendimiento, se encuentra en el Anexo \mathbb{N}^{2} 6.

2. Funciones de rendimiento por clase de sitio

Se analizó en un diagrama de dispersión de puntos la relación volumen/edad para cada clase de sitio. Ello indicó que la dispersión de puntos resultó notablemente estratificada entre clases de sitio. Por esa razón se realizó a juste de funciones de rendimiento por separado para cada clase de sitio.

El modelo seleccionado para construir las funciones de rendimiento (Chapman-Richards) es de la forma

$$V = A \times (1 - b \times e^{-kxE})^{(\frac{1}{1-m})}$$

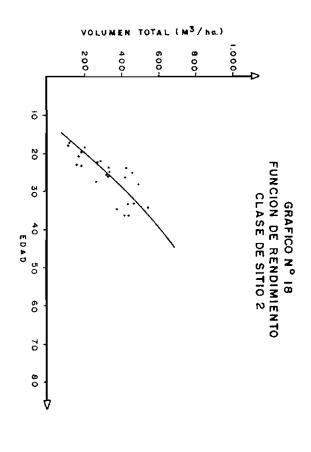
donde:

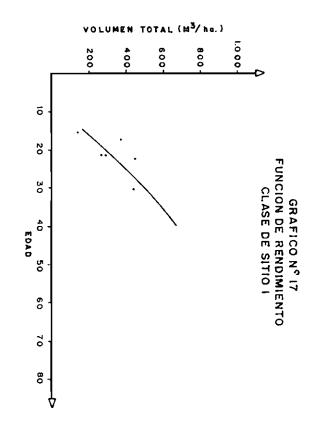
V = Es el volumen por hectárea a la edad E

A,b,k,m = Son parámetros

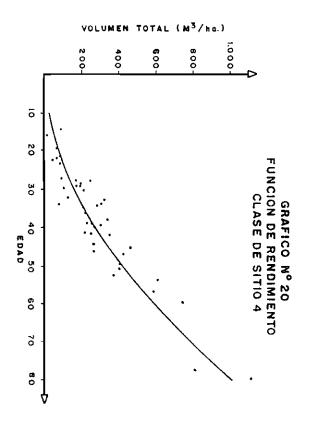
El resultado del ajuste es el siguiente :

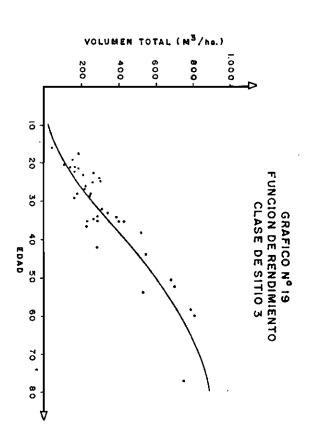
CUADRO Nº 47 : Parámetros del modelo de rendimiento por clases de sitio

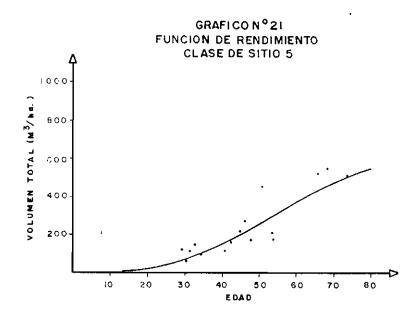

Clase de		Pará		Valor de F	
sitio	A	Ь	\$H	k	calculado
1	1.686	1,11193	0,11672	0,01720	8,37 (4,2 gl)
2	1.694	1,22633	0,19362	0,01931	49,64 (4,21 gl)
3	1.018	0,08302	0,98508	0,04785	194,35 (4,34 gl)
4	5.312	0,85159	0,71637	0,01029	207,66 (4,37 gl)
5	809	0,50880	0,92489	0,03690	39,56 (4,12 gl)
6	1.300	1,14169	0,42291	0,00810	3,71 (4,5 gl)

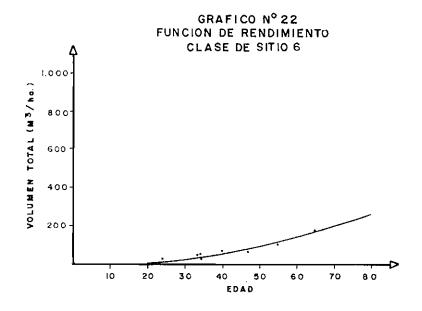

Nota: gl son grados de libertad.

Los valores de F tabulado en la práctica indican como muy significativas las regresiones 2 al 5. Para la clase de sitio 1 el nivel de probabilidad límite de aceptación es 88% en cambio para la clase 6 es de 90%. Esto es debido fundamentalmente a la baja cantidad de muestras.


En las clases de sitio más abundantes, los estadígrafos son muy significativos.


Para observar con mayor claridad tanto la dispersión de da tos como el nivel de ajuste del modelo, se muestran a continuación los gráficos N^{o} 17 al 28 con las funciones de rendimiento para las seis clases de sitio.





٠.

Es notable como se expresan con tanta claridad las diferencias entre las calidades de sitio extremas.

En la práctica, el sitio 1 posee existencias no superiores a 400 m³/ha, no encontrándose renovales de más de 30 años.

Muy por el contrario, el sitio 6 ofrece una muestra de renovales con existencias no superiores a 300 m 3 /ha y con <u>e</u> dades cercanas a 80 años.

Entre ambos extremos existe una suave graduación de los rangos.

Destaca la clase de sitio 4 que logra edades altas con también altos rendimientos.

Para hacer más precisa la comparación, se muestra a continuación el Cuadro № 48 que presenta el índice de producción y productividad medio de cada clase de sitio (a los 35 años).

CUADRO Nº 48: Indice de producción y productividad medio por clase de sitio

Clase de	Indice medio							
sitio	Producción (m³/ha)	Productividad (m³/ha/año)						
1	580	16,6						
2	500	14,3						
3	355	10,1						
4	220	6,3						
5	110	3,1						
6	40	1,1						

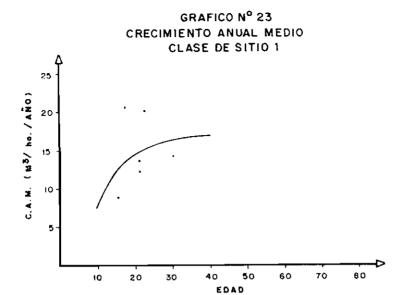
Las conclusiones del cuadro anterior fluyen con claridad:

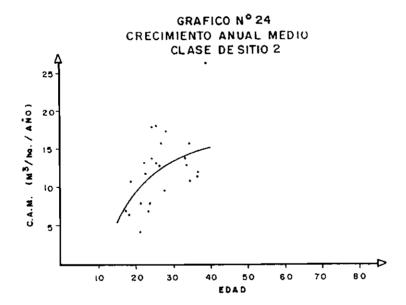
- La productividad es altamente variable entre sitios.
- Existe una clara correlación entre la clase de sitio y los índices de productividad y producción.
- La relación de producción en los extremos se hace del orden de 14,5 : 1.

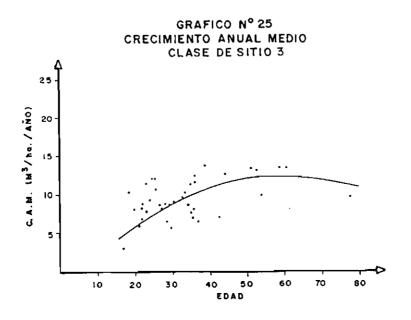
Otro punto de vista para el mismo análisis es evaluar el crecimiento anual medio, que tiene un particular interés económico.

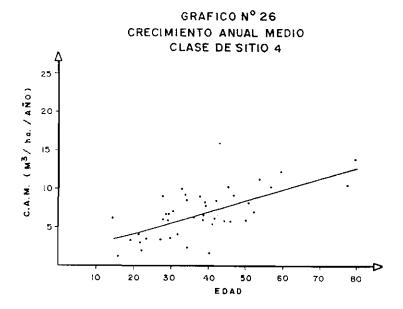
Se presentan los gráficos N^{o} 23 al 28 que muestran la relación indicada para las seis clases de sitio.

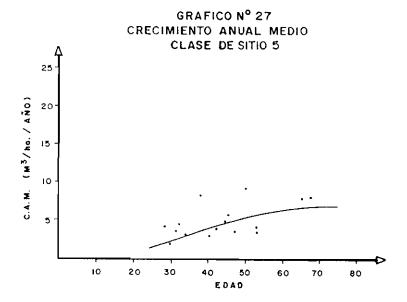
La clase de sitio 1 presenta un crecimiento que se estabiliza cerca de los 40 años.

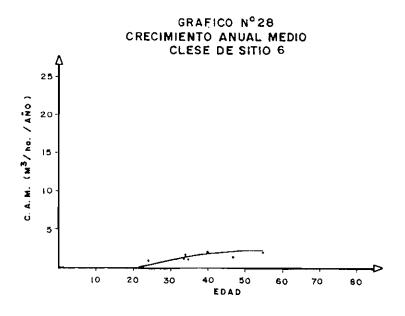

La clase de sitio 2 presenta una tendencia creciente más allá de los 40 años.


La clase de sitio 3 presenta el máximo crecimiento anual medio cerca de los 55 años y luego decrece.


La clase de sitio 4 presenta una tendencia permanentemente creciente hasta más allá de los 80 años.

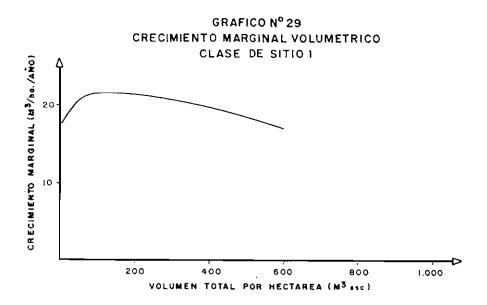

La clase de sitio 5 logra su máximo cercano a los 70 a - ños.

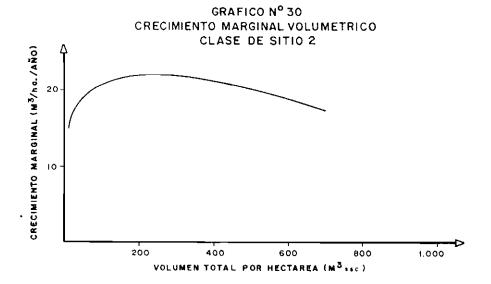

La clase de sitio 6 tiende a una cifra similar a la de la clase 5.

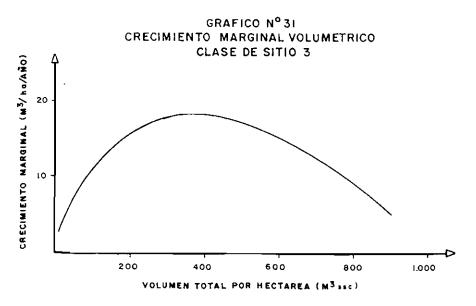


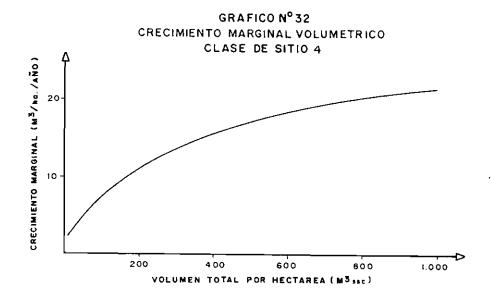
Analíticamente se puede deducir el siguiente cuadro, que muestra la edad a la cual cada clase de sitio alcanza su máxima tasa de crecimiento, el volumen allí acumulado y su crecimiento medio anual.

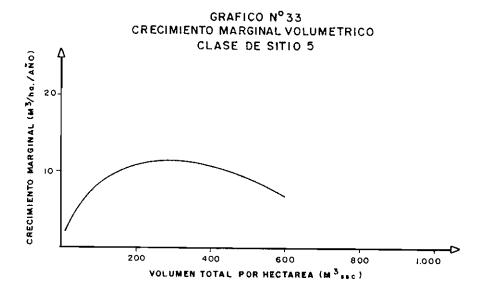
CUADRO Nº 49 : Máximas tasas de crecimiento volumétrico marginal por clases de sitio

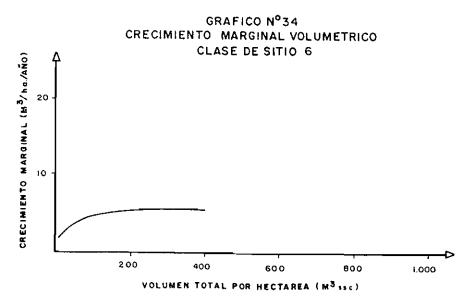

Clase de sitio	Edad de máx <u>i</u> ma tasa de crecimiento	Volumen acumulado (m³/ha)	Crecimiento anual medio a esa edad (m³/ha/año)
1 2 3 4 5	13,38 21,70 35,87 106,80 88,50 84,20	148 221 372 1.639 286 293	11,1 10,2 10,4 15,3 3,2 3,5


Finalmente, también deducido analíticamente se presentan los gráficos N° 29 al 34 que muestran el crecimiento marginal (instantáneo) de cada clase de sitio.


Este análisis presenta una gran importancia desde el punto de vista silvícola, ya que bajo el supuesto que la tasa de crecimiento marginal responde al nivel de densidad del bosque, conociendo su evolución se pueden formular pautas de manejo.


Esto ya fue indicado en el Cuadro № 49.


Tanto los sitios buenos como los extremadamente malos tienen una mayor tasa de crecimiento con un nivel de stock inferior a los 300 m³/ha.



Sin embargo las clases 3 y 4 que son las predominantes, requieren niveles mayores (cerca de 372 m³/ha en la clase 3 y 1.639 m³/ha en la clase 4). Esta última cifra es un valor totalmente teórico; sin embargo, la muestra para las mayores existencias indica un marcado incremento marginal.

3. Función de rendimiento alternativo

Más bien con el objeto de ratificar los resultados obtenidos con las funciones de rendimiento indicadas en los puntos anteriores, se construyó otro estimador de rendimiento independiente.

El modelo predictor se basa en la relación de importancia relativa que presentan los 500 árboles dominantes sobre la existencia total.

El resultado fue el siguiente :

 $VOLTOT = 23.98413 + 4.132191 \times VOLDOM - 0.006192 \text{ VOLDOM}^2$

$$S_e^2 = 12378$$
 $S_y^2 = 41889$ $R^2 = 0.70$

donde :

VOLTOT = Es el volumen total sin corteza por hectárea (m³)

VOLDOM = Es el volumen por hectárea de los 500 árboles dominantes de canelo (m³)

 S_e^2 = Varianza residual de la regresión

 S_y^2 = Varianza total de existencia en la muestra

R² = Coeficiente de determinación

Dado que el análisis de tallo permitió calcular el volumen por hectárea de los 500 árboles dominantes de canelo
a la edad clave, se pudo establecer para todas las parcelas iguales o superiores a 35 años el estimador del volumen total a la edad clave (Indice de Producción), corrigiendo el estimador por la proporción a la edad actual
existente entre los volúmenes reales y los indicados por
la regresión.

Para las parcelas con edades inferiores a 35 años, se determinaron las siguientes relaciones:

Clase de sitio 1

 $Ln \ VOLDOM = -5.392395 + 3.09668 \ x \ Ln \ E$

$$S_e^2 = 0.106$$
 $S_y^2 = 0.569$ $R^2 = 0.85$

Clase de sitio 2

Ln $VOLDOM = -3.984009 + 2.472992 \times Ln E$

$$S_e^2 = 0.061$$
 $S_y^2 = 0.378$ $R^2 = 0.84$

Clase de sitio 3

 $Ln\ VOLDOM = -1.785278 + 1.7727759 \ x \ Ln\ E$

$$S_e^2 = 0.080$$
 $S_v^2 = 0.492$ $R^2 = 0.85$

Clase de sitio 4

 $Ln \ VOLDOM = -2.857697 + 1.962288 \times Ln \ E$

$$S_C^2 = 0.141$$

$$S_{c}^{2} = 0.141$$
 $S_{v}^{2} = 0.715$ $R^{2} = 0.81$

$$R^2 = 0.81$$

Clase de sitio 5

Ln VOLDOM = $-4.994629 + 2.42984 \times Ln E$

$$S_e^2 = 0.130$$

$$S_e^2 = 0.130$$
 $S_y^2 = 0.636$ $R^2 = 0.81$

$$R^2 = 0.81$$

Clase de sitio 6

 $Ln VOLDOM = -5.28225 + 2.2976 \times Ln E$

$$S_e^2 = 0.083$$
 $S_v^2 = 0.745$ $R^2 = 0.90$

$$S_y^2 = 0.745$$

$$R^2 = 0.90$$

donde:

VOLDOM = Es el volumen por hectárea de los 500 árboles dominantes (m3).

E = Es la edad del renoval.

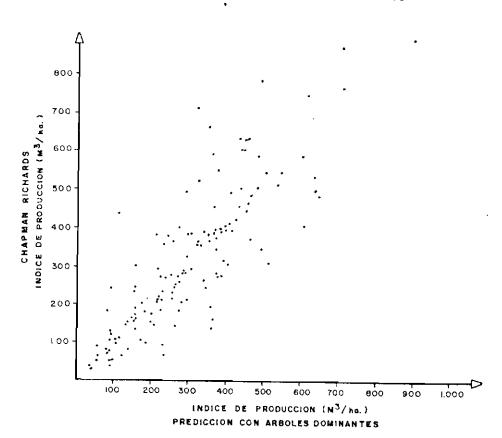
Sc = Es la varianza residual de la regresión.

 S_y^2 = Es la varianza total de la muestra.

R2 Es el coeficiente de determinación.

Con estas ecuaciones se estimó para todas las parcelas de edades menores a 35 años el volumen dominante proyectado a los 35 años. Estos estimadores se corrigieron por la

proporción existente entre los volúmenes deminantes reales y los indicados por la regresión.


Luego se utilizó el volumen dominante como predictor del volumen total (Indice de Producción).

La información detallada de los índices de producción a nivel de parcela, construidos con la función de Chapman-Richards y con la predicción de árboles dominantes se encuentra en el Anexo Nº 7.

Para dar una visión mas concisa de las relaciones, se presenta a continuación el Gráfico № 35 que muestra la dispersión de puntos entre ambos estimadores.

En el gráfico se aprecia una clara correlación entre los estimadores, concluyéndose por lo tanto que aún habiéndose construido funciones de rendimiento con parcelas tempo rales, la estratificación por clases de sitio resulta lo suficientemente buena, comparada con una predicción de rendimiento basada en parámetros físicos del renoval.

GRAFICO N° 35 DIAGRAMA DE DISPERSION DE PUNTOS

V. ESTIMADORES POBLACIONALES

A continuación se indican los principales estimadores de par $\underline{\acute{a}}$ metros productivos del área de estudio, de acuerdo al diseño de muestreo empleado.

CUADRO № 50 : Estimadores poblacionales de productividad (promedios generales)

		Superficie		de	
Zona	Estrato	ha)	Sitio	Producción	Productividad
		(114)	(m)	(m³/ha)	m³/ha) (m³/ha/año) 201,3 5,8 167,4 4,8 245,1 7,0 362,6 10,5 314,5 9,0 277,1 8,0 295,8 8,5 429,1 12,3 343,5 10,7 416,9 11,9 347,5 9,9
<u> </u>	I	13.300	14,3	201,3	5,8
! !	i II	37.200	11,5	167,4	4,8
Continental	III	15.300	13,5	245,1	7,0
[[IA	60.500	15,0	362,6	10,5
	l v	11.000	15,5	314,5	9,0
Subtot	al	137.300	13,9	277,1	8,0.
 	VI.	7.900	15,0	295,8	8,5
 	VII	16.500	16,8	429,1	12,3
Insular	VIII	47.900	16,1	343,5	10,7
	IX	25.900	15,6	416,9	11,9
	x	5.700	14,8	347,5	9,9
Subtot	al	103.900	15,9	372,0	11,0
Total A	Total Area		14,8	318,0	9,3

Los estimadores de varianza de los promedios se muestran en el Cuadro N° 51.

CUADRO № 51 : Estimadores poblacionales de productividad. Varianzas de los promedios

7	Table Tabl	dices medios de			
2011	LStrato	(ha)	Sitio	Producción	· · · · · · · · · · · · · · · · · · ·
	I	13.300	0,065	696,2	0,57
Continental I 13.300 II 37.200 IV 60.500 V 11.000 VI 7.900 VII 16.500 VIII 47.900 IX 25.900 X 5.700 Subtotal 103.900 Continental C	37.200	1,80	2.179,6	1,79	
Continental	111	15.300	1,49	3.799,97	3,09
 	IA	60.500	0,46	2.929,92	ión Productividad 2
ļ 	Ι γ 	11.000	1,02	1.107,37	0,90
Subtot	al	137.300	0,25	789,71	0,66
	VI	7.900	1,89	5.691,19	4,58
<u> </u>	l VII	16.500	0,41	2.971,92	2,42
Insular	i VIII	47.900	0,86	695,03	1,22
 	l IX	25.900	1,57	5.877,51	4,79
 	X	5.700	3,35	8.803,21	7,18
Subtot	al	103.900	0,31	647,29	0,67
Total A	rea	241.200	0,11	376,0	0,3376

Los límites de los estimadores poblacionales, al nivel de <u>se</u> guridad del 95% son los siguientes, para el promedio :

 $\frac{\texttt{CUADRO N} \circ 52}{\texttt{promedios generales}} : \text{ Estimadores poblacionales de productividad. L!mites de confiabilidad de los promedios generales}$

		Límites de confiabilidad para los índices promedios de										
	Estrato	Indice	de sitio	Produ	cción	Productividad - (m³/ha/año)						
Zona		[(r	n)	(m ³ ,	/ha)							
		Lím	ite	Lím	ite	Lím	ite					
	J	Inferior	Superior	Inferior	Superior	Inferior	Superior					
	I	13,59	15,00	128,04	274,56	3,70	 7,90					
	II	8,22	14,78	53,16	281,64	1,53	8,07					
Continental	III	10,11	16,89	73,95	416,25	2,12	11,88					
	IA	13,47	16,53	240,15	485,05	6,94	14,06					
	V	12,69	18,31	222,11	406,89	6,37	11,63					
Subtot	al	12,87	14,93	219,3	334,9	4,33	9,67					
	VI	10,62	19,38	55,72	535,88	1,69	15,31					
	VII	15,02	18,58	277,74	580,46	7,98	16,62					
Insular	AIII	13,96	18,24	282,71	404,29	8,15	13,25					
	ΙX	12,38	18,82	219,83	613,97	5,27	17,53					
	X	9,72	19,88	87,00	508,00	2,46	17,34					
Subtot	Subtotal		17,1	319,36	424,63	9,31	12,69					
Total Area		14,1	15,5	279,05	356,95	8,13	10,47					

VI. DIAGNOSTICO DE LA REGENERACION NATURAL

1. Cantidad de plántulas

A continuación se presenta el Cuadro № 53 con los tota les de plántulas por especie, para cada situación de es trato de asociación de series de suelo y uso actual de la tierra, junto a una serie de collages fotográficos que ilustran estos hechos.

Las clases de uso actual se simbolizan como :

3 : pradera 6 : bosque explotado

4 : maternal 7 : bosque poco intervenido

5 : renoval

El estado de la regeneración de canelo en los diversos \underline{u} sos se presenta en el Collage N^{o} 1.

Se aprecia que en pradera (Collage N° 2), independientemente del estrato de asociación de series de suelo, la cantidad de plántulas de especies forestales es prácticamente nula (Collage N° 2, A).

En esta situación de uso de la tierra, la regeneración na tural de canelo no tiene éxito alguno, lo que se debería a la insolación directa que allí recibe, la que reduce significativamente la humedad, ya la falta de protección, sea esta lateral o superior, en su primera etapa de desarrollo. Los pocos individuos observados en esta situación se encontraron bajo la influencia de grandes árboles de bosques vecinos, pero sin avanzar hacia el interior de la pradera; en situaciones más extremas se encontró regeneración proveniente de raíz, la que crece poco vigorosa, con el follaje amarillento, al alero de algún tronco o to cón (Collage Nº 2, B y C).

Simbología de especies principales

CUADRO Nº 53 : Totales de plántulas por especie, para cada situación de asocia ción de series de suelo y uso actual de la tierra. Valores ex presados en número de plántulas por hectárea.

Ca : Canelo No : Notro Ma : Mañío Co : Coigüe Ul : Ulmo Av : Avellano

Ti : Tineo Lu : Luma

Te : Tepa Arr : Arrayán

Estrato	Uso actual	1						. тера —————	н: 11н 							•					
Asuc. series	dela	Ca	Co	i i	Te	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-]							T	T	Ţ 		T
suelo	tierra	ĺ	Ϊ] Tepu	U !	[u	Ann	Ho	Av	Ma	liaca	Pitra	Maqui	Lingue	Xeli	Fuinque	 		
	,		-			- 						ĺ	ĺ	j			11071	rurnque	Inevo	lotal	Nº muestras
l í	į	34.444,4	i		3.333,3	ļ				1 1 1 1	2 202 2				-						
i i	5	37.777,7	¦		1	[2 222 2	0 000 0		4 4 4 4	2.222,?		i		11.111,1	¦			l 	55.555,4]
į i	5	101.656,7	i		18.333,3		2.222,2	8.888.8		1.111.1	2.222,2		1.111,1			¦		1	 	212.221,9	3
						 	1.666,7	5.000,0	i	30.000,0	i	i	i				 			156.666,7	2
! 	3							- 			 		·		 		ļ				·
, j	ί,	8.333,3	ļ		ļ					-		·-·		-	~~	!		1		0	
·	5					ĺ							·							1	1
1	ē.	63.333,3	26.606.7					i				26.666.7	20.000,0						'	8.333,3	2
	·					i	3.333,3	\		}	!	6.666,7		1	ļ <u></u>	ļ ļ				45.666,7	1
	3						·				ļ				ļ 	.		1	*-	99.990,8	i
	<i>t</i> ,	11.666.7	13,333,3	1					<u> </u>		ļ										
3	5					j "-		6.666,7	<u> </u>					ļ <u>.</u>	!	i i			~- i	0	1
	ř l	62.000	j	j	10.000		1.666,7	3.333,3				3.333,3							¦	31.666,7	2
		02.000	<u> </u>	j	666,6		2.000,0	1.333,3		565,6	2.565,5		1			i i		i i	}	23.333,3	2
	,	2/ 155 7	15 600				-i		<u>.</u>	335,0		<u> </u>			_ 	j			~-	69.333,}	4
, t		34.166.7	16.666,7			¦	ļ						1 666 3			1		 -			
۳	3	1.111,1		·	7.777,7		3.333,3	10.000,0				4.444.4	1.666,7	j	, - -	i i		}		52.499,9	l _t
Ï	i و ا	81.333,3	666,6	2.000	1.333,3			10.666,7	=		1	,	2 222 2	i		i i	~		<u>-</u> . [26.666,5	3
								10.000,7	l		<u> </u>	2.000,0	3,333,3					2.666,7	!	104 666 3	ς
	4	16.666,7	10.000		ļ	ļ <u></u>					<u></u>			· ¹		┼─		 			
5	5							j	~-	j	j ~	j		i i						26.666,7	1
	6	26.666,7						10 000 7		j	j	20.000	3.333,3							23.333,3	,
						ļ		16.666,7		j	1.666,7	1.666,7		i i			~			45.566,4	1 2
	4 }	18.888,8		ļ						T		† -		· - -		 ,		 		40.000,4	· j
δ	5 {	17.777,7				 	2 222 2		4.444.4	j		i						!		23.333,2	
!	6	56.666,7	23.333,3			<u></u>	2.222,2	18.888,8	j	~	1.111,1	<u> </u>	2.222,2	¦ ¦				ļ ļ		42.222	J
		·	·	.		l		i	i			3.333,3	! -								3
i	4	36.666.7		~	2.222,2			<u> </u>		·						 	-·- -	<u> </u>		83.333,2	1 ;
7	5	3.333.3			666,6		6.666.7	i	i	i i	~~~	 	7.777,7	ļ <u></u>] [E 2 222 .	
,	6	20.000,0	****		!	666.6	1.333,3	22.666.7	666,6	6.000										53.333,1	3
!	7	56.666,7						6.666,7	¦	13.333,3			-~	! !	~~~					35.333,3	5
					j j	'		 		¦			-	[! !				39.999.9	1
	3	3.333,3				 -				 	·	 		-		 			j	56.666,7	1
	4	50.933,3	4.166.7	1 122 2	j j											ļ				2 20	
8 !	5	3.333,3		833,3	1	6.666;7	2,500,0	}	30.000,0	1.666,7		[833,3]		} .			•••	1		3.333,3	1
Į.	6	55.000	7 777 7	666,6	1,333,3	j	3.333.3			-		666.7	8.666,7							107.499,7	4
!	7	60.000	3.333,3	6.666.7	1.111,1	1.111.1	3.333,3		7.777,7	555,5	5	10.000	1.666.7							30.000	6
			1.666,7	1.666,7		13.333,3		35.000			5.000	18.333,3					j			112.777,4	6
ļ	3	1 666 3		-	 														~-	134.999,8	2
1		1.666,7			¦	i	¦		1+-			+-					*				
3	4		** **	~	¦				11:666,7				- 							1.666,7	2
İ	5	~~~			4.444.4		¦	12.222,2	'			****	j				-~-			11.666.7	2
i	6	40.000		~	¦	[21,666,7					3.333,3				}		19.999,9	3
					 	}-							í	~ j				1	0.000	71.666,7	2
j		10.000			<u></u> !				J !					·							
10	4	43.333,3		5.666,7	20.000		10.000		13,333,3			i	¦				~~~			10.000	,
ì	5	5.000			20.000			70.000			-~-	j			i					93.333,2	; †
;	6	30.000				:	3.333,3	I	73/333,3			~-	15.000	11.666,6		3.333,3				121.666,7	2
		<u> </u>				' '-			1			~-								09.999,9	,
									1				L_	}	J.	L					

Una excepción al caso general se encontró en suelos ácidos y muy húmedos, anegados a los 8-10 cm de profundidad, donde la regeneración de canelo se desarrollaba vigorosa, sana, de buena forma, sin ningún tipo de protección (Collage N° 2, D).

La participación de la regeneración de canelo en praderas es baja y solo en situaciones puntuales, lo que permite establecer que en esta condición de uso de la tierra no es posible establecer una masa de la especie a partir de ella.

En matorral (Collage Nº 3), ocurre que, en general para el total de las especies y en particular para el canelo, la regeneración natural presenta gran heterogeneidad en superficie y cantidad, lo que se refleja en las cifras obtenidas.

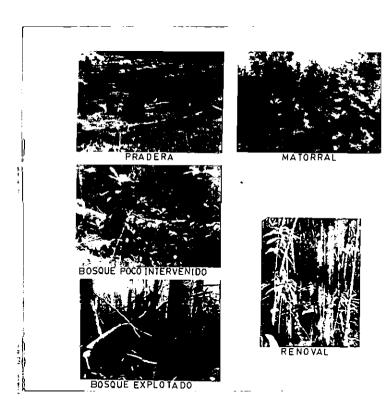
A este problema, se suma el que las plántulas de canelo adquieren un hábito achaparrado en esta clase de uso.

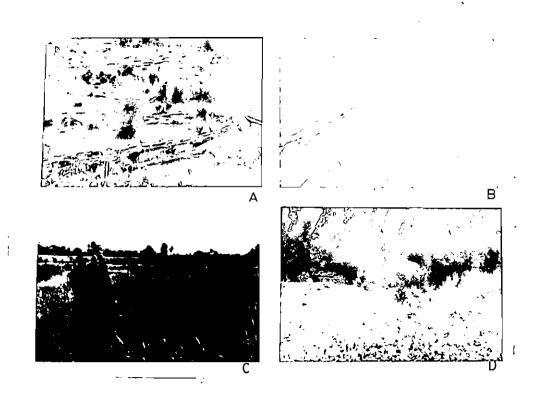
Dentro de la amplia gama de situaciones que comprende es ta clase, la exposición presenta gran influencia. En las exposiciones Sur, Sureste, el canelo presenta una regeneración vigorosa y homogénea en superficie, en la medida que existan elementos que le den protección en su primera etapa (arbustos, tocones, etc); posteriormente, esta regeneración crece y se desarrolla bien.

En la exposición Norte, la humedad es baja y suelen ingre sar especies invasoras (Chusquea quila, Ulex europeaus, Rubus ulmifolius y otras), condiciones ambas que impiden el desarrollo de la regeneración de canelo. En general, solo se le encuentra en sectores abiertos, con protección,

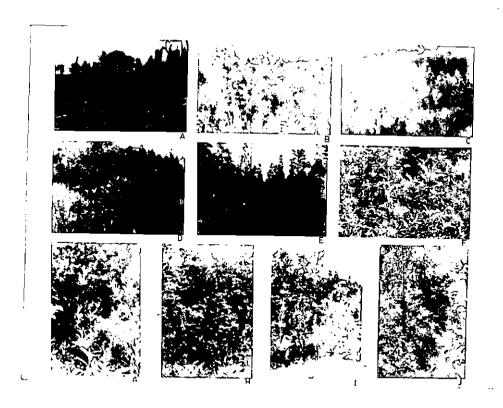
cerca de alguna fuente de humedad; lejos de ella los, esca sos ejemplares que se encuentran son poco vigorosos, con el follaje amarillento y provienen la mayoría de las ve - ces de raíz.

Lo anterior muestra la gran dificultad de instalar masas puras de canelo a partir de matorrales, en condiciones na turales.


En renovales de canelo (Collage Nº 4), prácticamente no existe regeneración de la especie. Las pocas plántulas que hay se desarrollan en pequeños claros, donde la luminosidad es mayor, y son en general poco vigorosas y de sa nidad deficiente (Collage Nº 4, E), no teniendo posibilidades de desarrollarse a futuro, por las condiciones adversas y la fuerte competencia de la vegetación establecida.

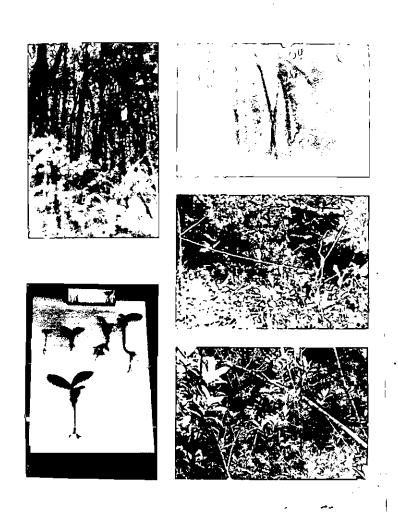

Cuando los bosques explotados se presentan limpios de ramas y de mucha vegetación herbácea o arbustiva invasora (Chusquea quila, Rubus ulmifolius, etc), con el suelo no alterado, húmedo, y con canelos en edad de fructifica - ción, la regeneración natural es muy abundante -lo que se refleja en las cifras y gráficos-, vigorosa, sana y de buena forma (Ver Collage Nº 5).

En bosques poco intervenidos, en los cuales participa el canelo, la regeneración de esta especie se establece en manchones densos, en el espacio dejado por la caída de un árbol, donde aprovecha la mayor cantidad de luz que ingresa y la materia orgánica que se está descomponiendo en el suelo, presentando buena calidad (Collage Nº 6).


La poca cantidad de muestras en esta clase de uso actual de la tierra, se debe a su escasez en términos de superficie, ya que lo poco que existe es prácticamente inaccesible.

Tal como se expresó anteriormente, el Collage Nº 1 representa visualmente la situación de la regeneración de cane lo en los diferentes usos de la tierra considerados, los que corresponden a un estrato de asociación de series de suele, por no existir diferencias significativas entre és tos.

Collage N° 2: Pradera.



Collage Nº 3 : Matorral.

Collage $N^{\underline{o}}$ 5: Bosque explotado.

Collage $N^{\underline{o}}$ 6 : Bosque poco intervenido.

CUADRO Nº 54 : Plántulas dominantes de canelo clasificadas por calidades (valores expresa dos en plántulas por hectáreas)

Estrato suelos	Pradera	Matorral	Renoval	Bosque explotado	Bosque poco intervenido	Calidad plántulas
1	0 0	4.444,4 2.222,2 2.222,2	15.555,6 0 1.111,1	25.000 1.111,1 1.666,7		Buenas Regulares Malas
2	0 0	1.666,7 1.666,7	0 0 0	13.333,3 6.666,7	 	Buenas Regulares Malas
3	0 0 0	1.666,7 5.000 3.333,3	0 0 0	14.666,7 5.333,3 3.333,3		Buenas Regulares Malas
4	0 0 0	8.333,3 3.333,3 0	0 1.111,1 0	19.333,3 3.333,3 2.000		Buenas Regulares Malas
5	0 0 0	10.000 0 0	0 0 0	11.666,7 1.666,7 0		Buenas Regulares Malas
6	0 0 0	10.000 -4.444,4 0	5.555,5 3.333,3 2.222,2	23.333,3 0 0		Buenas Regulares Malas
7	0 0 0	10.000 0 0	2.000 0 0	16.666,7 0 0	20.000 0 0	Buenas Regulares Malas
8	3.333,3 0 0	13.333,3	1.333,3 666,6 1.333,3	15.555,5 555,5 1.666,7	16.666,7 10.000 0	Buenas Regulares Malas
9	1.666,7 0 0	0 0 0	0 0 0	21.666,0		Buenas Regulares Malas
10	0 3.333,3 0	6.666,7 6.666,7 3.333,3	3.333,3 0 0	16.666,7 0 0	 ·	Buenas Regulares Malas

2. Clasificación de calidad de las plántulas

La calidad de la regeneración de canelo se midió en las plántulas dominantes observadas. Por definición, en el diseño de las unidades muestrales, la cantidad máxima posible de éstas, es de 40.000 por hectárea.

Considerando este margen, en el Cuadro № 54 se entregan las cantidades de plántulas buenas, regulares y malas encontradas. Esta clasificación de calidad incluye tanto aspectos de distribución espacial como de sanidad, forma y vigor.

Las cifras muestran que, en general, la calidad de las plántulas de canelo es buena, en particular en las situaciones de bosque explotado y bosque poco intervenido, pues en ellas la regeneración encuentra condiciones que le son más favorables. En matorral y renoval esto no es tan claro.

Existe una alta correlación entre el número de plántulas totales y de canelo, debido a que las últimas representan un gran porcentaje del total de plántulas. En términos generales, es la especie de mayor participación.

Esto se observa también entre el número de plántulas de canelo dominantes y el total de plántulas, por la misma razón antes señalada.

El número de plántulas de canelo dominantes con los totales de canelo, presenta una relación creciente, pero que tiende a estabilizarse, debido a que las primeras tienen incorporada una restricción de distribución, pudiendo por ello solo contabilizarse un máximo de 40.000 pl/ha, independiente del número total de plántulas de canelo existen tes.

Las plántulas dominantes buenas presentan una relación di recta con el total de plántulas dominantes, lo que se atribuye a la buena calidad de la regeneración de esta especie.

Cuanto mayor sea el total de plántulas de canelo, menor es la cantidad de plántulas regulares. Esto se debe a la buena calidad que presenta la regeneración de la especie, lo que hace que la cantidad relativa de plántulas buenas sea muy alto, y por ende, las regulares pocas. Las plántulas malas en general representan un porcentaje bajo.

Aproximadamente, las plántulas buenas de canelo representarían el 90% del total de las plántulas dominantes; el 10% restante se distribuye entre las plántulas regulares y malas, de una forma no definida.

3. <u>La regeneración de canelo en relación a factores ambienta-</u> <u>les</u>

Este análisis tiene como objetivo determinar qué factores del ambiente tienen incidencia en el establecimiento y posterior desarrollo de la regeneración natural del cane-

lo. Este conocimiento contribuirá a determinar las condiciones ambientales óptimas para la regeneración del canelo, lo que es importante para estudios silvícolas y su posterior manejo.

Sin embargo, hay que tener presente que la regeneración natural depende principalmente del estado de desarrollo del bosque, de su dinámica, y no de factores ajenos a ello, si bien se ve influida por las variables ambientales que actúan directamente sobre ella, los que se indican a continuación:

Latitud, longitud

Dentro de los rangos estudiados, no existe ninguna rela - ción entre la cantidad y calidad de la regeneración de canelo y ambos factores.

Altitud

Este factor no presenta ninguna relación con el fenómeno en estudio, dentro de los rangos considerados.

Altura media dominante de la vegetación

Este factor no explica el fenómeno. Solo se aprecia cier ta correlación con las plántulas regulares, las que son más abundantes a alturas medias menores, lo que correspon de a la situación de matorral, donde en general la calidad de la regeneración es regular, por las condiciones a lí imperantes.

Pendiente

Mientras mayor sea la pendiente local, menor es la abun - dancia de plántulas para el conjunto de las especies, y en particular para canelo. Esto se debe a la incidencia de la pendiente en la disponibilidad hídrica, elemento fundamental en los primeros estados de desarrollo de la regeneración.

Forma de la pendiente

Las formas de la pendiente que favorecen el desarrollo de la regeneración natural, en general, son plana y cóncava. A medida que se hace más convexa, la cantidad de plántu las disminuye, porque la disponibilidad hídrica es menor.

Para canelo, en orden decreciente tenemos forma plana, cóncava y luego convexa.

Esto se debe a que la especie es más susceptible a una falta de humedad (convexa) que a un exceso (muy cóncava), caso en que la cantidad tiende a disminuir y la calidad se ve afectada considerablemente.

Sustrato

Es una variable restrictiva para la regeneración de canelo, pues ésta sólo se encuentra donde el sustrato es terroso. En casos excepcionales se desarrolla sobre el sus trato orgánico, pero la calidad entonces es deficiente, siendo abundantes las plántulas regulares y malas.

Geomorfología

Las condiciones más favorables para el desarrollo de la regeneración de canelo son llanos y lomajes; de ambos sectores, los lomajes favorecen una buena calidad, pues existe disponibilidad de agua, pero sin que ésta llegue a estancarse como ocurre en llanos.

La cantidad de plántulas regulares aumenta a medida que la geomorfología se hace más abrupta, porque las condicio nes para las plántulas se hacen cada vez más apremiantes.

Situación topográfica

La cantidad de plántulas totales y de canelo en particu - lar, disminuye desde las situaciones de plano hacia cumbre redondeada. Esto se fundamenta en el hecho que a medida que la topografía se hace más abrupta, la cantidad de agua disponible es menor, factor determinante en el establecimiento y posterior desarrollo de la regeneración.

Drenaje

A medida que el drenaje empeora (el agua se va haciendo excesiva), la cantidad de plántulas disminuye para el conjunto de especies, y para canelo en particular, pues esta condición le es perjudicial a la vegetación.

Para canelo, la cantidad de plántulas regulares y malas aumenta a medida que el drenaje empeora.

Cobertura total

La cantidad de plántulas presenta una distribución de tipo normal sobre el 50% de cobertura total, presentándose
la cobertura óptima para el total de plántulas entre 85 y
90%, para el total de plántulas de canelo entre 80 y 90%,
y para las plántulas buenas de la especie alrededor del
90%.

Esto se explica por la alta tolerancia de la especie, y en general, de la regeneración como estado de desarrollo.

Distanciamiento medio

Las mayores cantidades de plántulas totales y totales de canclo, se presentan en los distanciamientos medios menores.

En general, éstas corresponden a existencias de masas juveniles de mayor densidad, donde la disponibilidad de semillas es mayor. Por ser el canelo una especie tolerante, la presencia de su regeneración es independiente de la densidad inicial, dentro de ciertos límites.

Estratos de asociación de series de suelo

No se encontró ninguna diferencia apreciable entre los distintos estratos de asociaciones de series de suelo. Es to se corroboró en un análisis estadístico adicional, del que se concluye que no existen diferencias significativas entre los distintos estratos mencionados, para : plántulas totales, plántulas totales de canelo, plántulas domi-

nantes, buenas, regulares y malas. Esto, para cada uno de los usos actuales de la tierra considerados.

Este análisis estadístico comprendió un análisis de va - rianza (ANDEVA), prueba F, y el test de Duncan (compara - ciones múltiples entre medias), siendo sus resultados coincidentes.

Exposiçión

Las exposiciones más favorables para el desarrollo del total de plántulas de canelo, y en particular para las de buena calidad, son plano, NO y NE.

Existe la tendencia de que a medida que se avanza desde las exposiciones Norte hacia la Sur, hay menor cantidad de plántulas. Esto podría explicarse a través de la ma-yor insolación existente cerca de las exposiciones N, no siendo tan significativa la diferencia en la disponibilidad de agua entre ambas exposiciones en la zona; también influiría la acción del viento, pues predominan los vientos S.

4. La regeneración de canelo en relación a factores vegeta - cionales

Relación regeneración natural de canelo - Estructura de la vegetación

Los resultados del análisis muestran que existen diferencias significativas entre la regeneración presente en las 5 clases de uso actual de la tierra, situaciones caracterizadas por una estructura vegetacional particular.

Del análisis de varianza se concluye que existen diferencias significativas entre la regeneración presente en los 5 tipos de uso actual de la tierra.

De la aplicación del test de Duncan (con un nivel de significación del 0,05), se obtuvieron, para plántulas tota les, 3 grupos homogéneos, en orden creciente de número de plántulas:

- Pradera (media: 1.515,14)
- Matorral (media: 50.799,88)
- Renoval (media: 55.861,92), bosque explotado (media: 96.799,68) y bosque poco intervenido (media: 108.888,87).

Para plántulas totales de canelo, se obtuvieron 3 grupos homogéneos:

- Pradera (media : 1.515,14) y renoval (media : 8.160,89)
- Matorral (media : 29.999,97)
- Bosque poco intervenido (media : 58.888,87) y bosque explotado (media : 62.133,12).

Para plántulas buenas de canelo, también se obtuvieron 3 grupos similares :

- Pradera (media : 606,05) y renoval (media : 2.988,50).
- Matorral (media : 7.466,64)
- Bosque poco intervenido (media: 17.777,76) y bosque explotado (media: 18.133,30).

: -

Puede observarse que las estructuras vegetacionales correspondientes a praderas y renovales son desfavorables para el desarrollo de la regeneración natural del canelo, aunque la última no lo es para otras especies forestales. El matorral representa una situación intermedia, y tanto el bosque poco intervenido como el bosque explotado son situaciones que favorecen el desarrollo de dicha regeneración en forma considerable.

5. Relación regeneración natural de canelo - composición de la vegetación

Mediante la aplicación del Cluster-Análisis, se agruparon las parcelas, en función de la similitud global de las listas de presencia de especies en cada una de ellas. El análisis arrojó 3 grupos de parcelas (Ver dendrograma en Anexo № 9).

Gounot, define un grupo ecológico como la más pequeña unidad sinecológica concebible, que presenta caracte rísticas estructurales, florísticas y ecológicas bien definidas. Además, se define por una dominancia que puede ser puramente espacial (si el grupo es ilimitado), o espacial-florístico (si el grupo está rodeado).

El primer grupo, conformado por 7 parcelas (números: 4, 9, 32, 48, 60, 74, 80), se caracteriza por poseer especies presentes típicamente en praderas y matorrales, como lo son el pasto miel, siete venas, diente de león, trébol, viola, canelo, arrayán, cardos, berberis, zarzamora. Estas parcelas corresponden al uso actual de pradera y mato

- Grupo 2 (media : 55.555) y grupo 3 (media : 79.184).

La mayor cantidad de plántulas se encuentra en el grupo 3, y la menor cantidad en el grupo 1, estando el grupo 2 en una posición intermedia.

Se observa que en el grupo 1, en que predeminan especies del estrato herbáceo, la composición de la vegetación des favorece el desarrollo de la regeneración de las especies forestales, lo que es lógico dada la escasa participación de dichas especies en este grupo.

Para plántulas totales de canelo y plántulas buenas de canelo, tanto el análisis de varianza como la prueba de medias de Duncan, indican que no existen diferencias significativas entre los 3 grupos florísticos descritos. En orden creciente de medias, tenemos para plántulas totales de canelo:

Grupo 1 : 12.857 pl/ha Grupo 2 : 31.333 pl/ha Grupo 3 : 34.259 pl/ha

y para plántulas buenas de canelo:

Grupo 1 : 3.809 pl/ha Grupo 3 : 8.370 pl/ha Grupo 2 : 10.648 pl/ha

De lo anterior y de lo observado en terreno, se desprende que grupos de una composición florística determinada no tienen una mayor incidencia en el desarrollo de la regene ración natural del canelo. Basta que existan individuos rral.

El segundo grupo, conformado por 36 parcelas (Nº : 1, 2, 6, 8, 11, 12, 13, 14, 16, 17, 21, 22, 23, 26, 30, 33, 35, 38, 40, 42, 44, 45, 51, 55, 57, 58, 62, 63, 64, 66, 70, 75, 77, 78, 86 y 88), se caracteriza por presentar las especies coralito, coligüe, luma, canelo, trevo, ulmo, avellano, mañío, notro, tepú, quila, coigüe; estas parcelas corresponden a las clases de uso de la tierra matorral, renoval y principalmente bosque explotado.

El tercer grupo, conformado por 45 parcelas (N° : 3, 5, 7, 10, 15, 18, 19, 20, 24, 25, 27, 28, 29, 31, 34, 36, 37, 39, 41, 43, 46, 47, 49, 50, 52, 53, 54, 56, 59, 61, 65, 67, 68, 69, 71, 72, 73, 76, 79, 81, 82, 83, 84, 85 y 87), se caracteriza por las especies quila, luma, tepa, canelo, tiaca y tepú. Estas parcelas corresponden fundamentalmente a la clase de uso de la tierra renoval (los nombres científicos de las especies se encuentran en el Anexo N° 10).

El análisis estadístico muestra que :

Existen diferencias significativas (con un nivel de significación del 0,01) entre las plántulas totales presentes en cada uno de los grupos definidos. El análisis de varianza entrega un F calculado de 2,950, siendo el F probable de un 0,057.

El test de comparación de medias de Duncan, con un nivelde significación del 0,05, entrega 2 grupos homogéneos:

- Grupo 1 (media : 12.857 plántulas/ha) y grupo 2 (media 55.555).

adultos en edad de fructificación y en una determinada for mación, para que la especie regenere sin problemas.

6. Origen y forma de las plántulas

De la observación de las raíces de plántulas en diferentes etapas de desarrollo, se concluye que normalmente el canelo regenera en forma sexual, a partir de semillas.

Cuando las condiciones ambientales son muy adversas para la regeneración de la especie (excesiva insolación, falta de humedad), puede presentar regeneración vegetativa a partir de yemas adventicias de las raíces. No se observó ningún caso de regeneración vegetativa a partir del tocón mismo.

Canelo presenta dos alteraciones en su hábito de desarrollo normal:

Una de ellas ocurre cuando la plántula -proveniente de se milla- encuentra condiciones de sombra excesiva, o algún obstáculo tal como un tronco u otros. En estos casos, su tallo se extiende por el suelo hasta encontrar luz y/o es pacio, y desde allí se levanta nuevamente. A partir de este tallo extendido, posteriormente se desarrollan nue -vas plántulas.

La otra se aprecia en matorrales muy abiertos, donde la insolación es alta y la humedad baja. En la mayoría de estas situaciones el canelo se presenta con hábito achaparrado, con varios tallos de dominancia similar.

En ambos casos, los brotes provendrían de yemas axilares presentes en los nudos de tallo, los que en el caso de ma torral, por alguna razón fisiológica se acortarían más, dando la impresión de provenir de un mismo punto.

En condiciones favorables donde existe humedad suficiente, las plántulas presentan raíces blandas, muy poco lignificadas y un sistema radicular pequeño (caso de bosque ex plotado y bosque virgen).

A medida que las condiciones se hacen más adversas con me nor disponibilidad hídrica, el volumen radicular aumenta y las raíces se presentan más lignificadas y extendidas.

Collage N^{o} 7 : Secuencia de desarrollo : frutos, semillas, plántulas.

7. Sanidad

La regeneración de canelo presenta buena sanidad en términos generales.

Fxiste un conjunto de hongos que normalmente se encuen - tran asociados a la especie, especialmente la <u>Asterinella drimydis</u> (Lev) Speg., que causa manchas negras en las hojas. Estos hongos no traen problemas a la especie y podrían considerarse como parte normal de su hábitat.

Otros hongos, poco frecuentes, dañan el desarrollo normal de los individuos. Uno de ellos, observado en terreno, que causa manchas redondeadas amarillas en las hojas, co rrespondería a un Phragmobasidiomycetes, del orden Uredinales, familia Melampsoraceae; no pudo determinarse la especie, pues se encontraba en estado inmaduro. Por tratar se de una roya no descrita en la bibliografía, y por ser un agente dañino para la especie, es de interés realizar estudios sobre este hongo.

Es interesante hacer notar que la sanidad empeora a medida que el agua se hace más abundante en el lugar, por sobre la cantidad que la especie requiere. En estos casos, los hongos se hacen muy abundantes, y el vigor de la especie disminuye notoriamente.

Insectos, en general, no provocan daño a la especie. El efecto de los laminadores solo es puntual y no alcanza a ser relevante para el conjunto de individuos.

Durante el desarrollo del presente estudio, se observó un

ataque severo en la regeneración, provocado por larvas de lepidópteros denominadas "achubas", con púas grandes, ramificadas, urticantes, cuya identificación taxonómica no pudo obtenerse. Estas dejaban los tallos de las plántulas totalmente desprovistos de hojas.

8. <u>Vigor de las plántulas</u>

La regeneración natural del canelo se caracteriza por no presentar problemas de vigor. En general, presenta un es tado vigoroso, el que se traduce en hojas turgentes, de co lor verde oscuro fuerte. La mayor cantidad de plántulas clasificadas como regularmente vigorosas se encuentran en los matorrales, donde el follaje se presenta amarillento, lo que se debería a la insolación excesiva, de acuerdo a lo observado en terreno. La condición de turgencia de las hojas se encuentra en forma generalizada, salvo casos extremos, en matorrales en exposiciones N, donde sobreviven sólo algunos ejemplares en forma aislada.

En general, dentro de un manchón de plántulas de la especie, varias de ellas sobresalen del resto con respecto a su vigor y se caracterizan por su mayor desarrollo en relación al promedio, presentando alturas mayores y relaciones altura h (m)/diámetro d (cm) más grandes. Las mayores relaciones h/d encontradas fluctúan entre 0,8 y 1,2.

En general, en suelos ácidos (presencia de Tepú y Coicopi hue), el vigor de las plántulas es muy bueno. 9. Condiciones óptimas para el desarrollo de la regeneración natural de canelo

Existe un conjunto de condiciones microambientales que <u>de</u> terminan un desarrollo favorable de las plántulas de can<u>e</u> lo. Estas son :

- Humedad permanente en el suelo, pero sin que llegue a presentarse anegación.
- Suelo no alterado por compactación o remoción de la hojarasca, producto de intervenciones en los rodales.
- Abundante materia orgánica en descomposición en el sue lo. Cuando se presentan troncos en el suelo en proceso de pudrición y descomposición, la regeneración prospera sobre ellos de manera sobresaliente con respecto a situaciones normales inmediatamente vecinas. Esto podría deberse a la mayor temperatura que allí existe por los procesos que están ocurriendo, y a la mayor cantidad de nutrientes de que allí dispone.
- Un requisito esencial para el desarrollo de las plántulas es tener protección -ya sea superior o lateral- du rante sus primeras etapas. Posteriormente sigue desarrollándose en forma adecuada sin ella.
- La cobertura que se presenta debe ser tal, que deje in gresar durante algún período del día, insolación directa.

Cuando esto ocurre, las plántulas se desarrollan vigo-

rosas y sanas. Si la regeneración no recibe insola ción directa en ningún período, puede desarrollarse, pero lo hace en forma poco vigorosa y con gran tendencia a presentar mala calidad.

Determinar el período que las plántulas necesitan estar expuestas a los rayos del sol es un aspecto que de be ser investigado.

10. Algunos alcances sobre el manejo de los renovales

- Requerimientos medios de clareo y suplementación de plántulas en las diferentes situaciones consideradas, según densidades iniciales variables

Para cada situación de estrato de asociación de series de suelo y uso actual de la tierra, se deberán efectuar actividades vidades silviculturales diferentes. Estas actividades principales a efectuar en la regeneración natural misma, son clareos o suplementación de plántulas; naturalmente que, dependiendo de la situación particular, podrán necesitarse también otras actividades, tales como limpias u otras.

Para determinar los clareos se consideró el total de espe cies presentes y para determinar la suplementación solo se consideraron las plántulas buenas de canelo. Es oportuno indicar que muchas de las plántulas clasificadas como regulares pueden llegar a constituir árboles adultos bien desarrollados. La consideración anterior, por ser más exigente, da una mayor seguridad al sobrestimar las cortas que se podrán tener en una determinada situación.

Los resultados se encuentran en el Anexo Nº 11.

Si se quiere establecer un bosque a partir de una <u>pradera</u>, habrá que suplementar el total de plántulas deseado ini - cialmente, independiente del tipo de suelo en que <u>és</u> ta se encuentre y dar solución al requisito de protección en los primeros estados de desarrollo.

Para el caso de <u>matorral</u>, en general se deberá clarear una gran cantidad de plántulas y suplementar el mayor por centaje de las plántulas iniciales deseadas de canelo, so bre todo cuando éstas deben superar las 5.000 pl/ha.

El renoval es un caso particular por tratarse de un estado de desarrollo avanzado de la regeneración del canelo. Las cifras (Ver Anexo N^2 10) se interpretan como que debe rá explotarse la totalidad de los árboles presentes en la actualidad y "suplementar" la totalidad de las plántulas deseadas en forma general. Sin embargo, esta "suplementa ción" puede lograrse en forma natural, aplicando algún tratamiento silvícola que favorezca la regeneración natural de la especie. Este tópico debe ser estudiado a futuro.

En <u>bosque explotado</u>, la cantidad de plántulas/ha a cla - rear es altísima (en general sobre las 50.000 y hasta 150.000 pl/ha), y solo existen problemas de suplementa - ción de plántulas cuando la densidad inicial requerida su pera las 15.000 plántulas de canelo por hectárea.

La situación en bosque poco intervenido es muy similar a lo que ocurre para bosque explotado, pero es importante considerarar que, por las características de ese recurso bosque, sería poco lógico tratar de establecer en base a él una masa pura de la especie. Tanto desde el punto de vista económico como ecológico, sería mejor llevar a cabo un manejo conjunto de las especies valiosas que se encuen tran en este bosque.

- Aproximación numérica al cálculo de la densidad en condiciones de manejo

Indice de Reinecke

Del ajuste de los datos, se obtuvo el siguiente modelo:

$$d = 9,4031212 - 0,075133 \overline{d}_{C}$$

donde :

d = densidad (Ln Nº árb/ha)

 $\overline{\mathrm{d}}_{\mathbf{c}}$ = diámetro medio cuadrático (cm)

con un r^2 de 0,3923

Por ser un valor bajo, se procedió a calcular el error es tándar en términos de número de árboles, a través del índice de Furnival. Su cálculo arroja un valor de 1.659,94 árboles/ha, valor relativamente bajo para lo observado en terreno.

Se considera aceptable este modelo, pues si bien la correlación no es alta, tampoco lo es la dispersión de los valores.

Este modelo indica que la mortalidad natural de la especie sería de un 8%, para aumentar en 1 cm la clase de diámetro medio cuadrático.

- Construcción de un modelo general para estimar la densidad

Posteriormente, se clasificaron los datos obtenidos en 4 clases del índice normal de Reinecke (90-95; 95-100; 100-105; 105-110%), ajustándose en cada una de ellas un modelo de la forma densidad = f (edad). En base a su r² ajustado, y al valor de sus coeficientes a través de las distintas clases mencionadas, se eligió el modelo de la forma:

$$\sqrt{d}$$
 = a + b Ln e

donde:

d = densidad

e = edad

A su vez, se efectuó un ajuste de los coeficientes del modelo anterior a y b, de la forma:

a = f(IRN)

b = g(IRN)

donde :

TRN = Indice Reinecke Normal

obteniéndose modelos de la forma :

$$a = \alpha + \beta IRN$$

$$b = \sigma + \delta IRN$$

Reemplazando éstos en el modelo original, se llegó al modelo general:

$$\sqrt{d} = \alpha + \beta TRN + \sigma \ln c + \delta TRN \ln c$$

el que se ajustó con el total de los valores, obteniéndose :

$$\sqrt{d}$$
 = - 582,4616 + 722,7047 IRN - 119,839 IRN Ln e + + 99,6064 Ln e

Error estándar de estimación : 7,337681 R² ajustado : 0,791698

El manejo permite a partir de una densidad natural, obtener una densidad artificial, considerada como base para el futuro desarrollo del bosque.

Las intervenciones que se deban realizar dependerán de:

- distribución actual de las plántulas o árboles
- edad actual
- tiempo que debe transcurrir hasta lograr la densidad deseada

El modelo obtenido permite estimar, en términos de número de árboles/ha, el comportamiento de un renoval de canelo cualquiera, que se caracteriza por determinada densidad (medida a través del Indice Normal de Reinecke) y edad; cuál será la mortalidad con el transcurso del tiempo, si la densidad no es alterada (situación sin manejo); o cómo será su evolución si se altera (baja) a través de determinadas intervenciones silvícolas.

- Análisis con los árboles dominantes de los renovales

Este análisis se realizó con el objeto de simular parámetros que se podrían esperar obtener en plantaciones, donde, debido al manejo, los árboles deberían presentar condiciones al menos similares a los de los árboles dominantes en condiciones naturales.

En primer lugar, se determinó un modelo para estimar el diámetro medio de copa :

 d_{copa} : 1,192494 + 0,093363 DAP - 0,024253 D_{med} - 0,000052 N

donde:

 $d_{copa} = diámetro medio copa (m)$

DAP = DAP (cm)

D_{med} = diámetro medio del rodal (cm)

N = densidad del rodal (Nº de árboles/ha)

modelo que presenta los siguientes indicadores :

$$S_e^2 = 0,163199$$

$$S_{V}^{2} = 0,419938$$

$$R^2 = 0,616625$$

Con este modelo se estimó el área de copa de cada uno de los árboles dominantes; con ella, y suponiendo una distribución equilátera -disposición que se observa naturalmente- y una ocupación máxima del sitio, se determinó el número de árboles dominantes que ocuparían por hectárea.

A continuación, mediante una regresión múltiple paso a paso, se determinó un modelo que estimó la cantidad de estos árboles dominantes que se podrían tener en función de la edad y la altura dominante (variables que representan las características del sitio), del diámetro medio y de la densidad actual.

El modelo y sus parámetros se muestran a continuación :

Nequil =
$$3954,3220 - 46,9765 h_{dom} - 69,9766 D_{med} + 0,2016 N - 4,3229 e$$

donde:

Nequil = Número de árboles dominantes por hectárea, dis tribuidos en forma triangular.

h_{dom} = Altura dominante

 D_{med} = Diámetro medio dominante

N = Número total de árboles/ha

e = Edad

Este modelo presenta los siguientes indicadores :

 $S_e^2 = 265705,5$

 $S_{V}^{2} = 1090297$

 $R^2 = 0,7635206$

Se prefirió incluir las variables edad y altura dominante en vez de la variable sitio, pues si bien representan lo mismo, en la práctica la variable sitio se debe estimar en base a las primeras, lo que significa mayor esfuerzo por parte del interesado y además, se estarían incluyendo en la estimación de Nequil los errores de la estimación del sitio.

Este modelo permite estimar una densidad "inicial o base" a una edad temprana (la menor considerada dentro de la construcción del modelo es 10 años, para no incurrir en errores de extrapolación). Este valor, más los datos de mortalidad natural obtenidos y los objetivos del manejo, darán una idea de la cantidad de plántulas que será necesa ria tener al momento de establecer una masa pura de la especie.

Como se puede apreciar, las herramientas anteriores sólo permitirán orientar el manejo de la especie en su primera etapa, hasta que estudios específicos permitan conocer su comportamiento y la forma más adecuada de enfrentar las intervenciones silvícolas que se realicen con diferentes objetivos.

- Sugerencias para futuros estudios silvícolas

Los estudios silvícolas a realizar pueden ser del tipo :

- a. Estudios orientados a establecer artificialmente ma sas puras de canele.
- Estudios orientados a integrar al manejo, bosques con diversos grados de artificialización que presentan ca nelo.

Dentro de los primeros, se recomienda ensayar :

- Instalación de un vivero de la especie, en el que, aprovechando la experiencia existente, se logre mejorar las cantidades y condiciones de forma de las plán tulas obtenidas actualmente.
- 2. Hacer pruebas de sobrevivencia de plántulas de dife rentes tipos (raíz desnuda; de maceta : (1-1), (1-2), etc.), al ser llevadas a terreno.
- 3. Instalar plantaciones en distintas situaciones, para llegar a determinar las condiciones más propicias para el establecimiento artificial de la especie. Se propone probar en las siguientes:

- Con un dosel superior de : 40-50-60-70-80-90% de cobertura.

Esta apreciación se basa en las coberturas óptimas con respecto al número de plántulas, obtenidas de la información colectada en terreno.

- Con protección proporcionada por otra cobertura (arbustos, sombrillas, etc).

Dentro de los estudios orientados a integrar el manejo bosques que presenten canelo, se deberá proceder a esta - blecer tratamientos en bosques con distinto grado de intervención (renoval adulto, bosques explotados en distinto grado). En cada situación de interés, cuidando que las condiciones ambientales sean similares, se recomienda instalar parcelas, estableciendo en cada una de ellas uno de los tratamientos factibles y conservando una parcela testigo. El número de repeticiones y el tamaño de dichas parcelas debe estudiarse, utilizando criterios tanto técnicos, estadísticos y financieros. Así se podrá determinar cuál es el tratamiento que permita establecer masas puras de la especie en las mejores condiciones.

Se recomienda ensayar con los siguientes tratamientos :

1. Cortas sucesivas: probar con diferentes cantidades de árboles semilleros a dejar y diversos períodos entre la corta semillera y las cortas secundarias y definitivas.

A la vez, esto podría combinarse con limpias y cla - reos posteriores en distintos grados, considerando que siempre hay que mantener el suelo lo menos altera do posible.

2. Arbol semillero: probar con distinto número de árbo les semilleros, para llegar a cono cer el número óptimo que permita establecer la regene ración en forma homogénea en superficie y que a la vez, le proporcione a ésta la protección que requiere la especie en su etapa inicial de crecimiento. También probar distintos lapsos entre la corta semillera y la definitiva de los semilleros. A la vez sería conveniente ensayar con limpias y clareos, como se in dica en el caso anterior.

ANEXO Nº 1

ESTADISTICAS DE PROMEDIOS, DESVIOS Y COEFICIENTES DE VARIACION DE LA ALTURA Y EDAD DOMINANTE A NIVEL DE
PARCELAS Y ESTRATOS

ESTRATO I Edad y altura dominante de la parcela

Conala	Parce	Altura	Edad do	Desviación	estándar	Coeficiente de variación	
merado la - do	domin. (m)	minante (años) 	de la altura dominante (m)	de la edad (años)	de la altura dominante (%)	de la <u>e</u> dad (%)	
6	1	19,13	51,00	0,43	2,76	2,25	5,41
6	2	9,34	21,67	0,45	3,48	4.79	16,08
7	ì	16,57	45,33	0,20	4,58	1,23	10,09
7	2	15,50	34,33	0,50	3,49	3,50	10,15
15	1	8,74	16,33	0,25	1,59	2,83	9,74
15	2	7,46	16,00	0,03	1,90	0,47	11,86
24	1	14,22	42,00	0,15	10,41	1,08	24,79
24	2	12,43	32,33	0,55	1,93	4,39	5,99
28	1	15,67	50,33	0,46	1,58	2,92	3,16
28	2	13,43	29,33	0,75	1,92	5,58	6,59

ESTRATO II
Edad y altura dominante de la parcela

Conglo	Parce	Altura	Edad d <u>o</u>	Desviación	Desviación estándar		te de ón
merado	merado la dom	domin. (m)	minante (años)	de la altura dominante (m)	de la edad (años)	de la altura dominante (%)	de la <u>e</u> dad (%)
8	1	11,77	30,00	0,20	2,19	1,73	7,30
8	2	6,67	33,67	0,36	0,97	5,39	2,87
9	1	7,20	34,67	0,32	4,21	4,49	12,15
9	2	8,98	47,00	0,31	2,90	3,42	6,17
9	3	6,50	24,33	0,49	3,49	7,60	14,31
10	1.	16,50	39,67	0,84	3,81	5,07	9,61
10	2	13,37	24,00	0,70	1,10	5,21	4,56
11	1	9,75	27,33	0,27	0,37	2,81	1,34
11	2	7,86	34,00	0,39	1,90	5,02	5,58
¦ 11 ¦	3	9,12	30,00	1,27	3,35	13,87	11,16
12	1	19,97	68,00	0,13	7,04	0,66	10,36
12	2	18,77	49,67	0,16	5,27	0,85	10,60
13	1 1	14,00	53,33	0,70	5,11	5,03	9,59
13	2	11,66	40,33	0,55	3,48	4,76	8,64
14	1	18,17	37,00	0,58	2,90	3,22	7,83
14	2	18,97	44,00	0,13	2,76	0,69	6,27
14	3	10,98	20,67	0,54	1,59	4,94	. 7 , 70

ESTRATO III

Edad y altura dominante de la parcela

Canala	Parce	Altura	Edad do	Desviación	estándar	Coeficiente de variación	
Congl <u>o</u> merado	- - domin.	domin. (m) 	minante (años)	de la altura dominante (m)	de la edad (años)	de la altura dominante (%)	de la <u>e</u> dad (%)
1	1	17,17	65,67	0,48	11,05	2,81	16,83
1	2	9,86	29,00	0,43	3,85	4,41	13,27
1	3	15,72	35,33	0,27	2,63	1,69	7,45
2	1	16,43	35,33	0,10	5,11	0,59	14,47
2	2	15,97	73,33	0,62	1,93	3,90	2,63
3	1	13,18	53,67	1,20	7,55	9,09	14,05
3	2	13,80	41,33	0,40	1,59	2,93	3,85
3	3	9,20	40,00	0,06	2,90	0,69	7,25
4	1	13,87	34,00	0,41	4,38	2,97	12,89
4	2	15,50	24,67	0,32	1,32	2,04	5,34
5	1	13,50	23,33	3,23	1,32	23,95	5,64
5	2	14,67	33,67	1,11	0,97	7,57	2,87
5	3	10,40	32,67	0,33	2,92	3,22	8,94

ESTRATO IV .
Edad y altura dominante de la parcela

Conglo	Parce	Altura	Edad do	Desviación	estándar	Coeficiente de · variación	
merado la	domin. minante (m) (años)	minante (años) 	de la altura dominante (m)	de la edad	de la altura dominante (%)	de la <u>e</u> dad (%)	
16	1	12,62	47,67	1,47	10,09	11,65	21,16
16	2	12,30	29,00	0,14	1,67	1,18	5,77
17	1	13,50	39,00	0,06	6,57	0,47	16,85
17	2	10,45	28,00	0,25	2,53	2,35	9,04
17	3	7,92	22,33	0,48	1,46	6,11	6,54
18	1	19,27	52,67	0,41	6,08	2,11	11,54
18	2	20,50	57,00	0,63	8,29	3,09	14,55
18	3	11,50	42,33	0,32	4,21	2,75	9,95
19	1	10,07	23,67	0,29	0,97	2,90	4,08
19	2	17,82	34,00	0,54	1,10	3,02	3,22
19	3	12,98	36,33	0,81	0,37	6,23	1,01
23	1	7,90	14,33	0,54	1,93	6,84	13,48
23	2	20,27	60,33	0,60	0,37	2,95	0,61
25	1	10,90	19,00	0,17	1,67	1,54	8,91
25	2	13,77	35,67	0,63	1,32	4,60	3,69
26	1	12,29	28,67	0,44	3,49	3,54	12,15
26	2	9,50	21,33	0,24	0,97	2,51	4,53
27	1	13,42	25,33	0,42	0,97	3,11	3,81
27	2	17,50	25,67	0,32	1,83	1,81	7,11
27	3	15,43	24,33	0,45	0,73	2,91	3,00
29	1	16,87	38,33	0,49	3,12	2,91	8,14
32	1	14,37	23,33	0,57	0,73	3,99	3,13

merado Parce do	Parce	Altura	 Edad do	Desviación	estándar	Coeficiente de variación	
	domin. (m)	minante (años)	de la altura dominante (m)	de la edad (años)	de la altura dominante (%)	de la <u>e</u> dad (%)	
20	1	13,83	44,67	0,18	8,42	1,32	18,86
20	2	14,50	36,67	0,63	3,25	4,36	8,85
20	3	12,80	28,67	0,23	1,59	1,78	5.55
21	1	10,57	21,67	0,32	2,56	3,07	11,90
21	2	16,18	35,67	0,21	2,85	1,30	8,00
21	3	14,00	29,00	0,19	1,10	1,36	3,79
22	1	14,92	35,00	1,05	8,29	7,01	23,70
22	2	14,63	42,33	0,63	3,81	4,33	9,01
30	1	13,10	33,00	0,17	6,66	1,28	20,19
31	1	10,93	21,33	0,42	0,97	3,85	4,53

ESTRATO VI Edad y altura dominante de la parcela

merado la do	Parce	 Altura	Edad d <u>o</u>	Desviación	estándar	Coeficiente de variación	
	domin.	minante (años) 	de la altura dominante (m)	de la edad (años)	de la altura dominante (%)	de la <u>e</u> dad (%)	
34	1	10,42	55,00	0,52	2,19	5,03	3,98
34	2	23,73	58,67	0,07	5,07	0,31	8,65
34	3	17,90	35,00	0,40	5,02	2,21	14.34
35	1	12,50	28,00	0,75	1,67	5,97	5.98
35	2	13,40	27,00	0,23	4,43	1,70	16,40
36	1	8,32	22,00	0,29	2,28	3,45	10.37
36	2	8,85	19,33	0,33	1,93	3,76	9,99
36	3	15,53	26,33	0,85	3,48	5,47	13,23
38	1	13,50	45,00	0,83	7,59	6,13	16,87
38	2	13,88	46,33	0,80	1,32	5,73	2,84

ESTRATO VII Edad y altura dominante de la parcela

merado Parce do	Panes	Altura	Edad do	Desviación	estándar	Coeficiente de variación	
	domin.	minante (años)	de la altura dominante (m)	de la edad (años)	de la altura dominante (%)	de la <u>e</u> dad (%)	
40	1	10,62	21,67	0,43	1,93	4,04	8,92
40	2	14,80	32,33	0,62	2,39	4,21	7,41
41	1	12,57	26,33	0,51	0,37	4,07	1,39
41	2	15,07	47,00	1,07	1,26	7,10	2.69
42	1	17,02	42,33	0,36	6,14	2,11	14,51
42	2	13,18	27,00	0,34	1,10	2,56	4,06
42	3	17,45	35,00	0,19	3,85	1,10	10,99
43	1	17,23	37,00	1,07	1,10	6,19	2.96
46	1	21,00	39,33	0,32	0,37	1,51	0,93
46	2	11,17	21,67	0,17	2,85	1,56	13,16

ESTRATO VIII
Edad y altura dominante de la parcela

Conglo	Parce	Altura	Edad do minante (años)	Desviación	estándar .	Coeficiente de variación	
merado	la	domin. (m)		de la altura dominante	de la edad	de la altura dominante	de la <u>e</u> dad
ļ				(m)	(años)	(%)	(%)
39	1	18,20	30,33	0,11	0,97	0,60	3,19
39	2	12,23	30,67	0,44	3,25	3,63	10,58
44	I	9,98	34,33	0,35	2,22	3,53	6,47
44	2	12.28	21,33	0,24	0,37	1,93	1,71
45	. 1	12,67	17,67	0,55	0,73	4,30	4,13
45	2	10,75	17,67	0,51	0,97	4,73	5,47
45	3	15,23	21,33	0,73	2,22	4,81	10,41
47	1	15,22	28,67	0,45	2,22	2,94	7,75
47	2	9,73	15,67	0,15	0,97	1,50	6,17
47	3	22,30	77,67	0,52	2,63	2,34	3,39
55	1	13,38	38,00	0,51	2,29	3,84	6,00
59	1	11,90	28,00	0,29	1,10	2,44	3,91
59	2	10,40	18,33	0,75	0,97	7,17	5,27
63	1	25,20	77,67	0,06	5,88	0,25	7,57
63	2	12,10	29,33	0,44	2,56	3,66	8,71
63	3	13,70	29,00	0,68	2,28	4,99	7,86
61	1	14,17	34,33	1,03	5,27	7,26	15,34
64	2	15,20	25,67	0,38	0,97	2,53	3,76
64	3	13,37	24,67	0,42	2,03	3,15	8,24
65	1	23,87	79,67	1,30	2,63	5,43	3,31

ESTRATO IX
Edad y altura dominante de la parcela

Conglo	Parce	Altura	Edad do	Desviación	estándar	Coeficiente de variación	
merado	I -	domin.	minante (años)	de la altura dominante (m)	de la edad (años)	de la altura dominante (%)	de la <u>e</u> dad (%)
49	1	14,77	23,00	0,41	1,26	2,75	5,50
49	2	13,43	21,33	0,51	1,93	3,81	9,06
49	3	10,72	18,00	0,18	0.00	1,68	0,00
50	1	18,62	52,67	0,58	8,35	3,10	15,86
50	2	7,48	33,57	0,51	3,12	8,93	9,27
50	3	20,10	54,00	0,06	1,90	0,31	3,51
51	1	14,03	23,00	0,43	1,67	3,07	7,28
51	2	16,73	22,33	0,35	1,93	2,08	8,65
52	1	12,60	25,00	0,67	1,67	5,34	6,69
52	2	19,13	54,00	0,35	5,18	1,83	9,59
52	3	13,90	22,67	0,60	0,37	4,34	1,61
53	1	20,40	59,67	0,06	2,99	0,31	5,01
54	1	10,65	31,33	0,71	2,03	6,69	6,49
54	2	14,93	34,67	0,39	5,74	2,55	16,55

ESTRATO X

Edad y altura dominante de la parcela

Conglo	Parce	Altura	Edad do	Desviación	estándar	Coeficiente de variación	
merado la dom	domin. (m)	minante (años)	de la altura dominante (m)	de la edad (años)	de la altura dominante (%)	de la <u>e</u> dad (%)	
56	1	13,10	22,33	0,49	1,32	3,77	5,90
56	2	9,20	19,33	0,29	0,97	3,15	5,00
57	1	17,63	33,67	0,32	0,97	1,84	2,87
57	2	14,83	26,67	0,39	0,73	2,61	2,74
58	1	19,63	51,00	0,73	1,67	3,72	3,29
60	1	19,63	83,33	0,13	4,58	0,67	5,49
60	2	11,47	34,33	0,58	10,09	5,10	29,38
61	1	13,20	50,33	0,52	3,71	3,92	7,36
61	2	12,12	46,00	0,23	5,18	1,92	11,25
61	3	14,40	39,00	0,52	2,19	3,60	5,62

CONFORMACION DEFINITIVA DE LOS GRUPOS DE ALTURA

GRUPO Nº 1

Zona	Conglomerado	Parcela
Continental	27 27 27	1 2 3
Insular	51 51	1 2
1 0	TAL.	5

GRUPO Nº 2

Zona	Conglomerado	Parcela
Continental	32	1

GRUPO Nº 3

Zona	Congl <u>o</u> merado	Parcela	Zona	Congl <u>o</u> merado	Parcela	Zona	Congl <u>o</u> merado	Parcela
	20	1		34	1		45	1
	20	2	 1	34	2	 	45	2
	20	3	<u> </u> 	34	3	 	45	3
	21	1	! !	35	1	j I	52	1
	21	2	 	l 35	2	 	52	2
	21	3] 	36	3	 	52	3
	22	1	 	41	1] 	56	1
	22	2	Insular	41	2	 T==1==	56	2
Continen	30	30 1	Insular 	42	1	Insular	57	1
tal	31	1		42	2	[57	2
ta:	5 1		42	3	<u> </u> 	58	1	
		5 2		46	1		43	1
j	5	3		46	2		49	1
	1	1		47	1		49	2
	1	2		47	2		49	3
ľ	1	3		39	1		64	i
	3	2		59	1		64	2 3
i	3	3		59	2		64	3
<u> </u>	2	i					 	
			<u> </u>	<u> </u>		το τ	A L	55

GRUPO Nº 4

Zona	Conglomerado	Parcela
]	40	1
	40	2
	55	1
	39	2
	44	1
	44	2
Insular	47	3
	63	1
	63	2
	63	3
	65	1
	53	1
	50	1
	50	2
	50	3
	54	1
	54	2
ĭ	OTAL	17

GRUPO Nº 5

Zona	Conglomerado	Parcela
	11	1
	11	2
	11	3
	12	I
	12	2
	14	i
	14	2
	14	3
	6	i
	6	2
	7	1
	7	2
	15	i
	15	2
	24	
	24	2
Continental	28	1 1
	28	2
	19	1 1
		2
	19	3
	19 18	l
		1
	18	2
	18	3
	16	1
	16	2
	17	1
	17	2
	17	3
	23	1
	23	2
	25	1
	25	2
	26	1
	26	2
	29	1
	36	1
Insular	36	2
THEGIAL	38	1
	38	2
T 0	TAL	40

GRUPO Nº 6

Zona	Conglomerado	Parcela		
	13	1		
	13	2		
	10	1		
	10	2		
]	9	1		
	9	2		
Continental	9	3		
	8	1		
	8	2		
	3	1		
	2	2		
	4	1		
<u> </u>	4	2		
	61	1		
	61	2		
Insular	61	3		
	60	1		
<u> </u>	60	2,		
1 0	TOTAL			

AJUSTE MODELO EXPONENCIAL MODIFICADA POR
PARCELA INDEPENDIENTEMENTE

AJUSTE EXPONENCIAL MODIFICADA EDAD/ALTURA PARA EL GRUPO Nº 1 $\label{eq:modelo} \text{MODELO Y} = \text{K} + \text{A} \times \text{B}^{\times}$

Conglomerado	Parcela	К	A	В
27	1	18.7781	-13.4468	0.8614
27	3	21.5977 21.9027	-13.3015 -17.3176	0.8177 0.8521
51 51	1 2	18.3255 23.1052	-12.8062 -16.8329	0.8048 0.8185
7.	2	23,1032	-10.0323	0.0103

Tasa promedio para el grupo : 0.830908

AJUSTE EXPONENCIAL MODIFICADA EDAD/ALTURA PARA EL GRUPO Nº 4 $\label{eq:modeloy} \text{MODELO Y = K + A \times B}^{\times}$

Conglomerado	Parcela	K	A	В
40	1	14.4235	7.7681	0.7530
40	2 .	16.7029	- 11.3222	0.7487
39	2	24.9268	- 21.1395	0.9203
44	1	11.1442	- 7.5970	0.7607
44	2	29.9796	- 25.9069	0.9206
47	3	-12.5291	20.3830	1.0302
55	1	14.4629	- 13.7563	0.7218
63	1	26.3249	- 20.2872	0.8575
63	2	197.5759	-193.0856	0.9931
63	3	4.0483	2.1330	1.3105
65	1	25.3264	- 17.0675	0.8760
50	1	57.4198	- 48.5765	0.9756
50	2	7.4538	- 4.7981	0.7640
50	3	20.3159	- 16.9812	0.8100
53	1	50.5803	- 46.7542	0.9681
54	1	10.1306	- 6.6680	0.7717
54	2	13.3889	- 9.4721	0.6837

Tasa promedio para el grupo : 0.8744409

AJUSTE EXPONENCIAL MODIFICADA EDAD/ALTURA PARA EL GRUPO Nº 3 $\text{MODELO} \quad Y = K + A \times B^{\times}$

Conglomerado	Parcela	К	A	В
20	1	17.6589	-12.3506	0.8772
20	2	25.1007	-19.0379	0.9171
20	l 3	20.7694	-15.5976	0.8902
21	1	÷17.1441	20.2228	1.0927
21	2	22.0676	-16.6531	0.8831
21	3	19.7242	-16.2521	0.8782
22	1	21.0456	-11.8734	0.8783
22	2	27.6245	-23.8343	0.9319
30	1	13.9822	- 5.9395	0.7803
31	1	- 6.4855	9.5070	1.2081
1	1	-19.8159	26.0468	1.0262
1	2	12.0521	- 5.9516	0.8701
1	3	20.2626	-16.8569	0.8612
2	1	37.7297	-34.1692	0.9418
3	2	15.4933	-10.3109	0.8465
3	3	-14.8320	17.3162	1.0379
5	1	-34.0635	39.0595	1.0468
5	2	47.1027	-44.0728	0.9658
5	3	22.5890	-20.3908	0.9441
34	1	-54.1691	56.2655	1.0096
34	2	33.8209	-27.9596	0.9294
34	3	35.2579	-31.4899	0.9381
35	i	13.1186	-10.3699	0.6880
35	2	14.6444	-10.7282	0.7305
36	3	17.2450	- 6.2150	0.7177
41	1	24.5182	-20.0534	0.9195
41	2	15.9753	-11.8069	0.8370
42	1	19.3584	-12.4728	0.8466
42	2	19.0086	-14.1725	0.8748
42	3	26.7354	-21.0104	0.9021
43	1	22.4228	-16.2319	0.8815
45 46	1 1		-23.9946	0.8956
46	2	27.9307		1
		13.5796	- 6.0589	0.6891
39 / E	1	26.6525	-22.7874	0.8813
45 45	1	78.3164	-74.9268	0.9670
45	2	51.5429	-46.8805	0.9577
45	3	- 4.3821	9.9003	1.2228
47	1	22.4468	-16.5332	0.8684
47 50	2	29.8793	-25.8309	0.9072
59	1	- 4.0242	8.2676	1.1167
59	2	-55.3071	58.3008	1.0332
64	1	-17.2072	24.4506	1.0439
64	2	17.9870	-14.0898	0.7859
64	3	- 0.0074	5.4030	1.2896

(Continuación Grupo № 3)

Conglomerado	Parcela	K	Α	В
49	1	51.2810	-45.0733	0.9577
49	2	18.7057	-13.3871	0.8205
l 49	3	12.0896	- 7.6234	0.7784
52	1	79.4571	-76.6656	0.9785
52	2	40.0370	-34.3735	0.9649
52	3	7.1415	0.5607	2.0866
56	1	35.2758	-29.7532	0.9336
56	2	11.0510	- 8.2440	0.7710
· 57	1	23.9124	-17.2344	0.8730
57	2	22.2907	-17.5342	0.8750
58	1	38.2396	-33.8067	0.9494

AJUSTE EXPONENCIAL MODIFICADA EDAD/ALTURA PARA EL GRUPO Nº 5 $\text{MODELO} \quad Y = K + A \times B^X$

6 2 441.9987 -439.5647 0.9 7 1 153.3601 -146.8281 0.9 7 2 16.8408 -12.3721 0.8 15 1 17.3968 -12.5398 0.8 15 2 -7.5172 10.9122 1.1 24 1 15.6282 -12.0089 0.8 24 2 14.3518 -13.1688 0.7 28 1 -94.0067 88.8340 1.0 28 2 33.5498 -29.7933 0.9 11 1 19.2508 -15.9166 0.9 11 2 -3.0725 4.5619 1.1 11 3 11.1835 -8.2435 0.8 12 1 -15001 5.8782 1.0 12 2 -2573.0610 2577.7550 1.0 14 1 -22.9557 30.2912 1.0 14 2 46.8325 -43.2676 0.9	097
6 2 441.9987 -439.5647 0.9 7 1 153.3601 -146.8281 0.9 7 2 16.8408 -12.3721 0.8 15 1 17.3968 -12.5398 0.8 15 2 -7.5172 10.9122 1.1 24 1 15.6282 -12.0089 0.8 24 2 14.3518 -13.1688 0.7 28 1 -94.0067 88.8340 1.0 28 2 33.5498 -29.7933 0.9 11 1 19.2508 -15.9166 0.9 11 2 -3.0725 4.5619 1.1 11 3 11.1835 -8.2435 0.8 12 1 -15001 5.8782 1.0 12 2 -2573.0610 2577.7550 1.0 14 1 -22.9557 30.2912 1.0 14 2 46.8325 -43.2676 0.9	
7 1 153.3601 ~146.8281 0.9 7 2 16.8408 ~12.3721 0.8 15 1 17.3968 ~12.5398 0.8 15 2 ~7.5172 10.9122 1.1 24 1 15.6282 ~12.0089 0.8 24 2 14.3518 ~13.1688 0.7 28 1 ~94.0067 88.8340 1.0 28 2 33.5498 ~29.7933 0.9 11 1 19.2508 ~15.9166 0.9 11 2 ~3.0725 4.5619 1.1 11 3 11.1835 ~8.2435 0.8 12 1 ~1.5001 5.8782 1.0 12 2 ~2573.0610 2577.7550 1.0 14 1 ~22.9557 30.2912 1.0 14 2 46.8325 ~43.2676 0.9	904
15 1 17.3968 - 12.5398 0.8 15 2 - 7.5172 10.9122 1.1 24 1 15.6282 - 12.0089 0.8 24 2 14.3518 - 13.1688 0.7 28 1 - 94.0067 88.8340 1.0 28 2 33.5498 - 29.7933 0.9 11 1 19.2508 - 15.9166 0.9 11 2 - 3.0725 4.5619 1.1 11 3 11.1835 - 8.2435 0.8 12 1 - 1.5001 5.8782 1.0 12 2 -2573.0610 2577.7550 1.0 14 1 - 22.9557 30.2912 1.0 14 2 46.8325 - 43.2676 0.9	924
15 2 - 7.5172 10.9122 1.1 24 1 15.6282 - 12.0089 0.8 24 2 14.3518 - 13.1688 0.7 28 1 - 94.0067 88.8340 i.0 28 2 33.5498 - 29.7933 0.9 11 1 19.2508 - 15.9166 0.9 11 2 - 3.0725 4.5619 1.1 11 3 11.1835 - 8.2435 0.8 12 1 - 1.5001 5.8782 1.0 12 2 -2573.0610 2577.7550 1.0 14 1 - 22.9557 30.2912 1.0 14 2 46.8325 - 43.2676 0.9	227
24 1 15.6282 - 12.0089 0.8 24 2 14.3518 - 13.1688 0.7 28 1 - 94.0067 88.8340 1.0 28 2 33.5498 - 29.7933 0.9 11 1 19.2508 - 15.9166 0.9 11 2 - 3.0725 4.5619 1.1 11 3 11.1835 - 8.2435 0.8 12 1 - 1.5001 5.8782 1.0 12 2 -2573.0610 2577.7550 1.0 14 1 - 22.9557 30.2912 1.0 14 2 46.8325 - 43.2676 0.9	745
24 2 14.3518 - 13.1688 0.7 28 1 - 94.0067 88.8340 1.0 28 2 33.5498 - 29.7933 0.9 11 1 19.2508 - 15.9166 0.9 11 2 - 3.0725 4.5619 1.1 11 3 11.1835 - 8.2435 0.8 12 1 - 1.5001 5.8782 1.0 12 2 -2573.0610 2577.7550 1.0 14 1 - 22.9557 30.2912 1.0 14 2 46.8325 - 43.2676 0.9	265
28 1 - 94.0067 88.8340 1.0 28 2 33.5498 - 29.7933 0.9 11 1 19.2508 - 15.9166 0.9 11 2 - 3.0725 4.5619 1.1 11 3 11.1835 - 8.2435 0.8 12 1 - 1.5001 5.8782 1.0 12 2 -2573.0610 2577.7550 1.0 14 1 - 22.9557 30.2912 1.0 14 2 46.8325 - 43.2676 0.9	101
28 2 33.5498 - 29.7933 0.9 11 1 19.2508 - 15.9166 0.9 11 2 - 3.0725 4.5619 1.1 11 3 11.1835 - 8.2435 0.8 12 1 - 1.5001 5.8782 1.0 12 2 -2573.0610 2577.7550 1.0 14 1 - 22.9557 30.2912 1.0 14 2 46.8325 - 43.2676 0.9	919
11 1 19.2508 - 15.9166 0.9 11 2 - 3.0725 4.5619 1.1 11 3 11.1835 - 8.2435 0.8 12 1 - 1.5001 5.8782 1.0 12 2 -2573.0610 2577.7550 1.0 14 1 - 22.9557 30.2912 1.0 14 2 46.8325 - 43.2676 0.9	093
11 2 - 3.0725 4.5619 1.1 11 3 11.1835 - 8.2435 0.8 12 1 - 1.5001 5.8782 1.0 12 2 -2573.0610 2577.7550 1.0 14 1 - 22.9557 30.2912 1.0 14 2 46.8325 - 43.2676 0.9	336
11 3 11.1835 - 8.2435 0.8 12 1 - 1.5001 5.8782 1.0 12 2 -2573.0610 2577.7550 1.0 14 1 - 22.9557 30.2912 1.0 14 2 46.8325 - 43.2676 0.9	228
12	433
12 2 -2573.0610 2577.7550 1.0 14 1 - 22.9557 30.2912 1.0 14 2 46.8325 -43.2676 0.9	162
14 1 - 22.9557 30.2912 1.0 14 2 46.8325 - 43.2676 0.9	908
14 2 46.8325 - 43.2676 0.9	006
	483
1/ 2 12 026/ 7 050/ 0.2	512
14 3 12.9264 - 7.9501 0.7	679
16 1 20.6860 - 15.9276 0.9	414
16 2 20.1480 - 18.0252 0.9	016
17 1 - 120.1771 123.3988 1.0	097
	424
17 3 23.1020 - 21.0621 0.9	324
18 1 80.6452 - 76.4686 0.9	813
18 2 - 29.6072 34.5440 1.0	310
18 3 16.6007 - 13.9995 0.9	134
19 1 19.0894 - 16.7634 0.9	030
19 2 27.1460 - 24.3658 0.9	072
19 3 14.9131 - 13.5467 0.8	226
23 2 25.9698 - 19.5843 0.9	363
25 1 19.4081 - 15.8943 0.8	604
25 2 19.0702 - 16.5909 0.8	751
26 1 81.2321 - 78.1598 0.9	780
26 2 - 28.6325 31.8199 1.0	444
29 1 20.4357 - 16.9596 0.8	
36 1 - 50.7984 53.4940 1.0	504
36 2 21.0917 - 15.3741 0.9	
38 1 17.7141 - 13.6968 0.8	272
38 2 17.5634 - 13.7665 0.9	272 211 853

Tasa promedio para el grupo : 0.9407486

AJUSTE EXPONENCIAL MODIFICDA EDAD/ALTURA PARA EL GRUPO Nº 6 $\label{eq:modelo} \text{MODELO} \quad Y = K \ + \ A \ \times \ B^X$

Conglomerado	Parcela	К	А	В
8	1	15.3913	- 11.4269	0.8452
8	1 2	7.5699	- 6.7109	0.8379
9	1	48.3631	- 45.9599	0.9874
9	2	10.4728	- 6.8864	0.8777
9	3	7.9766	- 4.6196	0.8289
10	1	82.9280	- 79.9344	0.9804
10	2	17.8833	- 15.7598	0.8270
13	l	- 11.4800	16.8517	1.0368
13	2	- 8.6059	9.7005	1.0860
2	2	16.9728	- 12.6663	0.9066
3	1	-2424.1590	2428.0410	1.0003
4	1	21.9557	- 18.0639	0.8914
4	2	40.8207	- 37.5511	0.9399
60	1	23.1137	- 17.9135	0.9165
60	2	17.8711	- 11.0887	0.8187
61	1	16.2107	- 12.2097	0.8869
61	2	23.1615	- 21.0443	0.9448
61	3	25.0631	- 21.6462	0.9185

Tasa promedio para el grupo : 0.9183808

AJUSTE MODELO EXPONENCIAL MODIFICADA POR PARCELAS, CON TASA
COMUN DE CRECIMIENTO EN EL GRUPO, INDICE Y CLASE DE SITIO

GRUPO № 1 Modelo Y = K + A x 8 x

Conglo merado	Parce la	K L	A	В	Coefic. de deter minac.	Nº par- cela	Edad ini- cial	Indice de sitio	Clase de sitio
27	1	16.9693	-11.7263	0.8309	0.8471	6	8	14.76	4
n 27	1	22.3782	-14.0713	0.8309	0.8668	6	8	19.72	2
27	3	20.4093	-15.9586	0.8309	0.8102	6	5	17.91	3
51	1	19.6663	-14.0700	0.8309	0.8383	6	8	17.01	3
51	2	24.2241	-17.9456	0.8309	0.9238	3	8	20.84	2

GRUPO Nº 4

Modelo $Y = K + A \times B^{X}$

Conglo	Parce				Coefic.	No	Edad	Indice	Clase
merado	la	к	Į A	В	de dete <u>r</u>	par-	ini-	de	de
	14				minac.	cela	cial	sitio	sitio
40	1	21.0082	-14.3142	0.8744	0.9635	3	14	15.41	3
40	2	23.3720	-17.5160	0.8744	0.8795	6	14	16.52	3
39	2	18.3180	-14.6315	0.8744	0.8597	6	11	13.32	4
44	1	15.2904	-11.4610	0.8744	0.8795	6	11	11.37	l 5
44	2	20.8366	-16.7795	0.8744	0.9329	3	8	15.82	3
47	3	19.7014	-14.0673	0.8744	0.6570	18	23	11.48	5
55	1	20.6394	-18.3418	0.8744	0.7454	9	14	13.47	4
63	1	27.3435	-20.9270	0.8744	0.6402	18	23	15.11	3
63	2	17.6071	-13.3685	0.8744	0.8758	6	11	13.04	4
63	. 3	17.5611	-12.0689	0.8744	0.8980	6	11	13.44	4
65	1	25.5451	-17.7706	0.8744	0.6666	18	26	13.66	4
50	1	21.5077	-13.1887	0.8744	0.8593	9	20	14.76	4
50	2	10.0437	- 7.2275	0.8744	0.8898	6	11	7.57	6
50	3	22.9418	-18.1104	0.8744	0.6810	15	11	16.75	3
53	1	22.1861	-20.0521	0.8744	0.6267	15	17	13,22	4
54	1 1	13.5849	- 9.9383	0.8744	0.8858	-6	8	10.61	5
54	2	20.1638	-14.6923	0.8744	0.8862	6	11	15.14	3

GRUPO N^2 3 Modelo $Y = K + A \times B^X$

Congl <u>o</u> merado	Parce			!	Coefic.	Nδ	Edad	Indice	Clase
	la —	K	Α	8	de deter	par-	ini-	' de	de
					minac.	cela	cial	sitiö	sitio
20	1	26.6935	-21.0662	0.9418	0.9174	9	17	11.99	5
20	2	31.9203	-25.7978	0.9418	0.9442	6	14	14.97	4
20	3	31.7982	-26.4891	0.9418	0.9358	6	11	15.40	3
21	1	37.7308	-34.6993	0.9418	0.9365	3	8	17.50	3
21	2	33.1720	-27.3329	0.9418	0.9048	9	11	16.25	3
21	3	31.3362	-27.4169	0.9418	0.8801	9	5	16.28	3
22	i	31.2738	-21.9865	0.9418	0.9665	6	20	14.98	4
22	2	30.6605	-26.7674	0.9418	0.8814	9	14	13.07	4
30	1	24.7831	-16.5139	0.9418	0.9709	6	14	13.93	4
31	1	41.5379	-38.6042	0.9418	0.9274	3	8	19.03	2
1	1	25.0825	-19.8594	0.9418	0.8555	15	23	9.46	5
1	2	17.8046	-11.6429	0.9418	0.9726	6	11	10.60	5
1	3	34.6539	-30.6072	0.9418	0.8751	9	8	16.81	3
2	1	37.6420	-34.0576	0.9418	0.8618	9	11	16.56	3
3	2	25.4150	-19.7423	0.9418	0.9214	9	14	12.44	4
3	3	17.8561	-15.7033	0.9418	0.8775	9	11	8.14	6
5	1	38.0262	-33.0622	0.9418	0.9643	3	11	17.56	3
5	2	30.9238	-28.0266	0.9418	0.8607	9	5	15.54	3
5	3	22.1927	-20.0751	0.9418	0.8614	9	8	10.49	5
34	1	15.6645	-14.1628	0.9418	0.8010	15	11	6.90	6
34	2	37.7898	-31.7420	0.9418	0.8352	15	14	16.93	3
34	3	36.7483	-32.9198	0.9418	0.8678	9.	5	18.67	1 2
35	1	36.6445	-32.9104	0.9418	0.9007	6	8	17.46	3
35	2	37.1511	-32.5126	0.9418	0.9154	6	8	18.20	2
36	3	37.7994	-26.7039	0.9418	0.9893	3	14	20.25	2
41	1	31.1708	-26.6707	0.9418	0.9265	6	8	15.62	3
41	2	25.6668	-20.4384	0.9418	0.8834	12	8	13.75	4,
42	1	31.5759	-24.1563	0.9418	0.9244	9	14	15.70	3
42	2	31.6699	-26.6623	0.9418	0.9323	6	8	16.13	3
42	3	36.8604	-30.8140	0.9418	0.8998	9	11	17.79	3
43	1	33.5567	-26.9565	0.9418	0.9125	9	8	17.84	3
46	1	39.0783	-34.3069	0.9418	0.8461	12	5	20.24	2
46	2	35.8351	-28.2450	0.9418	0.9820	3	14	17.27	3
39	1	45.2148	-41.1052	0.9418	0.8948	6	8	21.25	1
45	1	46.3467	-42.9676	0.9418	0.9299	3	5	22.76	1
45	2	38.9967	-34.3396	0.9418	0.9600	3	8	18.98	2
45	3	48.7459	-43.3310	0.9418	0.9560	3	8	23.49	1
47	1	38.2968	-32.1358	0.9418	0.9334	6	11	18.41	2
47	2	44.5339	-40.4718	0.9418	0.9447	3	8	20.94	. 5
59	1	27.4749	-23.5862	0.9418	0.9247	6	8	13.73	4

.(Continuación Grupo № 3)

Conglo merado	Parce la	К	 A 	 B	Coefic. de dete <u>r</u> minac.	Nº par- cela	Edad ini- cial	Indice de sitio	Clase de sitio
59	2	37.7899	-34.8257	0.9418	0.9349	3	5	18.67	2
64	1	29.6856	-22.6429	0.9418	0.9559	6	17	13.88	4
64	2	42.1187	-37.5776	0.9418	0.9061	6	8	20.21	1 2
64	. 3	36.9555	-31.6506	0.9418	0.9584	3	11	17.36	3
4 Ç	1	39.7236	-33.5199	0.9418	0.9315	δ	8	20.18	2
49	2	44.1085	-38.7414	0.9418	0.9609	3	8	21.52	1
49	3	31.1271	-26.6149	0.9418	0.9689	3	5	16.51	1 3
52	1	33.3731	-30.7067	0.9418	0.8860	6	5	16.51	l 3
52	2	29.1709	-23.8714	0.9418	0.8452	15	11	14.40	4
52	3	24.1628	-16.5766	0.9418	0.9903	3	8	14.50	4
56	1	39.3253	-33.8000	0.9418	0.9676	3	8	19.62	2
56	2	32.4841	-29.6135	0.9418	0.9426	3	5	16.23	3
57	1	39.5888	-32.6821	0.9418	0.9385	6	11	19.36	2
57	2	38.0135	-33.0625	0.9418	0.9195	6	8	18.74	2
58	1	34.7791	-30.4357	0.9418	0.8479	12	11	15.94	3

GRUPO Nº 5

Modelo $Y = K + A \times B^X$

Canala	Danas				Coefic.	Nõ	Edad	Indice	Clase
Conglo	Parce	K	Α	8	de dater	par-	ini-	de	de
merado	la				minac.	cela	cial	sitio	sitio
6	1	33.8596	-31.7520	0.9407	0.8041	12	11	14.38	4
6	2	30.2112	-27.7921	0.9407	0.9349	3	8	14.17	4
7	1	28.8060	-22.5757	0.9407	0.9170	9	17	13.16	4
ļ 7	1 2	33.9561	-29.1269	0.9407	0.9237	6	11	16.09	3
15	l i	30.5321	-25.6577	0.9407	0.9721	3	8	15.72	3
15	2	28.8520	-25.4997	0.9407	0.9574	3	8	14.14	4
24	1 1	29.2233	-24.6731	0.9407	0.8933	9	14	13.13	4
24	2	30.2506	-27.8286	0.9407	0.8471	9	8	14.19	4
28	1	23.5048	-19.1672	0.9407	0.8739	12	11	11.75	5
28	2	36.5810	-32.7867	0.9407	0.9023	6	11	16.47	3
11	1 1	23.4737	-20.1215	0.9407	0.9242	6	8	11.86	5
11	2	17.6038	-16.3740	0.9407	0.8739	6	14	6.93	6
11	3	23.0399	-19.8376	0.9407	0.9221	6	11	10.87	5
12	1	25.9024	-23.4414	0.9407	0.7934	15	20	8.63	6
12	ļ ₂	34.2316	-29.9342	0.9407	0.8785	9	17	13.49	4
14	l 1	37.4392	-30.3612	0.9407	0.9419	б	14	17.64	3
14	2	34.5093	-31.2238	0.9407	0.8277	12	11	15.35	3
14	l 3	33.4239	-28.3947	0.9407	0.9696	3	8	17.04	3
16	1	20.5997	-15.8602	0.9407	0.8913	12	14	10.26	5
16	2	28.5502	-26.1578	0.9407	0.8513	9	5	14.35	4
17	1 1	28.1981	-25.3051	0.9407	0.8639	9	11	12.67	4
17	2	27.8069	-25.4292	0.9407	0.8879	6	8	13.13	4 ,
17	3	25.9807	-23.9389	0.9407	0.9337	3	8	12.17	4 1
18	1	33.1322	-29.4866	0.9407	0.8367	12	14	13.90	4 /
18	1 2	31.7905	-27.8001	0.9407	0.8450	12	17	12.52	4 }
18	3	20.8190	-17.9954	0.9407	0.8512	12	8	10.43	5 /
19	1 1	27.9195	-25.5112	0.9407	0.8894	6	5	14.07	4 1
19	2	37.1362	-34.0736	0.9407	0.8505	9	5	18.54	3 ,
19	3	29.3215	-27.0229	0.9407	0.8465	9	8	13.73	4
23	2	26.8811	-20.4156	0.9407	0.8352	18	8	15.10	3 /
25	1	39.4572	-35.9138	0.9407	0.9424	3	5	19.96	2
25	2	30.5295	-27.4265	0.9407	0.8623	9	8	14.68	4.
26	1	34.1755	-31.1929	0.9407	0.8903	6	11	15.04	31
26	2	28.2690	-25.1050	0.9407	0.9554	3	8	13,78	<i>i</i>
29	1	35.4822	-31.1614	0.9407	0.8759	9	11	16.37	<u> </u>
36	1	28.2728	-25.5982	0.9407	0.9457	3	8	13.50	4
36	2	25.9839	-20.2623	0.9407	0.9826	3	11	13.55	4
38	1	26.1265	-21.7512	0.9407	0.8991	9	17	11.05	5
38	2	22.6283	-18.5779	0.9407	0.8717	12	8	11.91	5

GRUPO Nº 6

Modelo Y = K + A x B x

Congl <u>o</u> merado	Parce la	К) A	[B	Coefic. de deter minación	Nº par- cela	Edad ini- cial	Indice de sitio	Clase de sitio
8	1	23.0023	-18.8878	0.9184	0.9081	6	11	13.44	4
8	2	11.3304	-10.1877	0.9184	0.8196	9	5	6.98	l 1 6
9	1	10.4806	- 9.1496	0.9184	0.9243	6	11	6.36	6
9	2	12.4580	- 8.7188	0.9184	0.8654	12	14	7.65	l 1 6
9	3	12.6086	- 9.2398	0.9184	0.9775	3	11	7.93	l 1 6
10	1	25.9990	-23.3714	0.9184	0.8195	9	11	14.17	4
10	2	30.0999	-27.5973	0.9184	0.8509	6	5	18.32	1 2
13	1 1	17.9094	-13.2793	0.9184	0.8508	12	20	9.23	5
13	2	18.2470	-17.9099	0.9184	0.7505	9	11	9.18	5
2	2	18.0762	-13.7662	0.9184	0.7659	18	20	9.08	5
3	1	16.8174	-13.4312	0.9184	0.8297	12	14	9.42	5
4	1	26.8035	-22.8454	0.9184	0.8938	6	14	14.22	4
4	2	32.0551	-28.8586	0.9184	0.8642	6	5	19.74	2
60	1	23.3414	-18.1091	0.9184	0.7609	18	29	8.07	6
60	2	30.1850	-23.3693	0.9184	0.9713	3	26	12.08	4
61	i	18.9309	-14.6694	0.9184	0.8398	12	17	10.13	5
61	2	17.9843	-16.1017	0.9184	0.7817	12	11	9.84	5
61	3	24.9395	-21.4857	0.9184	0.8425	9	14	13.10	4

CARACTERISTICAS AMBIENTALES POR GRUPO DE ALTURA

Υ

AJUSTE DE ALTURAS POR PARCELA

GRUPO Nº 1

Lat	Long	Alt	Exp gen	Exp loc	Pend gen	Pend loc	Forma pend.	Sub.	Geom	Sit top	Dre
5328,0	625,4	160	4	4	3	17,0	2	5	4	8	2
5324,8	628,1	150	3	! 5	3	6,0	4	5	4	8	2
5380,1	635,3	95	1	5	0	6,0	3	5	4	2	2
5379,7	638,7	75	1	9	0	16,0	3	5	4	8	2
5378,7	637,3	70	1	6	0	10,0	2	5	4,	7	2

GRUPO Nº 2

Lat	Long	Alt	Exp gen	Exp loc	Pend gen	Pend loc	Forma pend.	Sub.	Geom	Sit top	Dre
5380,3	619,5	40	1	4	0	10.0	4	5	4	2	2

GRUPO Nº 4

Lat	Long	Alt	Exp	Exp loc	Pend	Pend	Forma	Sub.	Geom	Sit	Dre
i			gen	100	gen	loc	pend.			top	
5359,4	613,0	60	1	9	0	8,5	3	5	4	2	4
5361,0	612,5	55	1	2	0	10,0	4	5	4	2	3
5357,5	615,7	90	1	8	0	6,0	4	5	1	5.	2
5345,0	609,5	40	1	1	0	0,0	3	5	3	2	3
5345,4	611,8	85	1	4	0	10,0	3	5	4	2	2
5331,3	620,6	180	4	1	0	0,0	2	5	4	2	2
5318,3	611,3	150	2	2	0	8,0	3	5	2	6	3
5344,7	604,5	140	1	1	0	0,0	3	5	4	2	3
5343,9	605,2	40	1	1	0	1,0	3	5	4	1	2
5343,6	605,4	90	1	1	0	0,0	3	5	4	2	3
5341,4	611,1	140	9	1	10	0,0	3	5	2	2.	3
5339,6	625,7	60	9	1	4	16,0	2	5	4	2	2
5339,9	626,0	55	5	7	10	1,3	3	5	4	6	4
5336,8	627,6	110	5	6	9	6,0	3	5	4	2	2
5318,6	625,3	170	1	8	0	5,0	3	5	4 .	2	3
5317,7	618,3	160	1	1	0	0,0	3	5	2	1	3
5316,7	620,9	130	1	1	0	0,0	3	5	2	4	3

GRUPO Nº 3

1	_	.1.	Exp	Exp	Pend	Pend	Forma		1	Sit	Ι.
Lat	Long	Alt	gen	loc	gen	loc	pend.	Sub.	Geom	top	Dre
5394,4	596,1	150	8	9	10	4,0	3	5	6	6	3
5394,6	695,7	140	8	9	10	6,0	4	5	6	6	2
5394,5	695,8	140	8	2	10	6,0	4	5	6	6	2
5410,9	690,2	40	1	9	0	2,0	3	6	3	1	5
5410,9	690,2	40	1	1	0	4,0	3	6	3	1	4
5409,2	689,8	100	5	5	4	7,0	4	5	4	7	2
5404,4	684,6	105	7	1	ļ 5	0,0	3	5	4	6	2
5404,3	684,1	120	7	δ	5	21,0	4	5	4	6	3
5404,3	684,1	120	7	7	5	9,0	3	5	'4	8	2
5364,7	620,8	70	1	1	0	0,0	3	5	4	2	5
5365,8	621,4	70	1	3	0	3,5	4	5	4	2	3
5365,8	621,4	50	1	4	0	4,0	2	5	4	2	3
5370,8	619,4	39	1	3	Ö	5,0	3	5	4	2	3
5369,4	618,9	40	1	1	ő	0,0	3	5	4	2	3
5368,0	616,2	40	1	7	ő	32,0	2	5	4	9	2
5346,4	598,9	70	9	8	3	7,0	3	5	4	6	2
5347,4	599,6	70	9	5	3	36,0	3	5	6	8	2
5341,8	603,3	130	1	5 .	0	32,0	4	5	, ,	7	2
5342,6	602,3	80	1	3	0	8,0	3	5	4	5	2
5343,2	603,8	70	1	7	0	10,0	4	5	4	7	2
5344,2	607,6	100	9	7	40	32,0	4	5	4	8	2
5331,7	613,1	190	2	2	5	4,5	3	5	4	2	2
5331,7	612,8	210	2	4	10	7,0	4	5	4	2	2
5360,2	620,2	60	1	8	0	10,0	3	5	4	5	2
5337,8	618,4	140	4	8	4	10,0	4	5	6	9	2
5337,1	618,5	130	4	4	4	32,0	4	5	6	8	2
5336,4	618,5	130	3	8	3	60,0	3	5	6	7	2
5333,0	620,0	220	1	i	0	0,0	3	5	6	1	2
5332,8	620,4	190	6	6	0	22,0	2	5	6	5	2
5313,2	613,6	80	1	1	0	0,0	3	5	2	2	3
5311,5	612,1	185	1	1	0	0,0	3	5	2	1	3
5339,3	608,7	100	1	4	0	5,0	3	5	1	2	3
5333,2	613,2	150	1	6	0	6,0	3	5	4	2	3
5333,3	613,7	160	1	5	0	9,0	4	5	4	2	3
5326,2	618,3	150	1	6	0	5,0	3	5	4,	5	2
5326,2	618,3	150	1	7	0	8,0	3	5	4	5	2
5326,2	618,3	140	1	4	0	3,0	3	5	4	5	3
5324,8	630,3	120	3	3	5	9.0	2	5	4	7	2
5324,5	630,4	120	3	1	5	0.0	2	5 5 5	4	2	2
5324,2	630,9	130	1	7	0	10,0	2	5	4	2	2
5391,6	658,3	30	1	5	0 ¦	6,0	. 4	5	4	6	2
5391,4	658,6	30	1	6	0	5,0	4	5 5	4	6	2
5391,7	657,7	30	1	5	0	12,0	4	5	4	6	2
5380,8	657,5	100	1 [7	3	5,0	4	5	4	9	2
5391,3	656,8	100	1	5	3	1,0	4	5	4	9	2

(Continuación Grupo № 3)

Lat	Long	Alt	Exp gen	Exp loc	Pend gen	Pend loc	Forma pend.	Sub.	Geom	Sit top	Dre
5381,4	656,9	100	1	2	3	0.0	4	5	4	9	2
5380,1	652,0	110	i	3	0	8,0	2	5	4	9	2
5380,1	652,1	110	1	7	0	8,0	3	5	4	9	2
5376,6	636,3	80	1	7	0	15,0	4	l 5	4	7	2
5375,3	631,7	55	1	7	0	18,0	4	5	4	8	2
5321,6	610,9	170	9	9	5	11.0	4	l 5	4	8	2
5321,4	610,4	130	1	9	0	10,0	2	l 1 5	2	4	3
5312,4	611,1	165	1	2	0	0,0	3	5	1	1	3
5314,4	612,3	140	i	1	0	4,0	2	5	1	2	3
5316,7	606,7	120	1	8	0	3,5	3	5	1	2	3 3

GRUPO Nº 5

Lat	Long	Alt	Exp	Exp	Pend gen	Pend loc	Forma	Sub.	Geom	Sit	Dre
5414,2	679,7	100		†——	 	i	 		 	<u>-</u> -	 -
5414,5	679,4	100		4	0	12,0	4	5	4	2	5
5414,7	679.2	105		1	0	0,0	3	5	4	2	5
5413,1	669,8	1110	$\frac{1}{1}$		0	0,0	3	5	4	2	5
5413,2	669,7	100			0	0,0	3	5	1	1	3
5413,5	667,6	60	i 1	1 1	0	6,0	3	5	1	1	3
5413,4	667,6	60	1	1	0	0,0	i 4	5	4	2	2
5412,9	668,2	60	i i	1 ,	0	0,0	4	5	4	2	2
5428,0	687,3	190	1 7	1 6	0	8,0		5	4	2	2
5428,0	687,3	180	! ',			9,0	4	5	3	2	3
5420,8	673,4				1	0,0	2	5	4	2	3
5420,8	673,4	120	1	7	0	10,0	2	5	4	2	2
5413,7	651,5	120	1	8	0	5,0	1	5	4	2	2
5412,7		50	1	1	0	0,0	3	5	4	i 1	3
5401,4	650,5	50	1		0	0,0	3	5	4	i 1	4
5402,6	643,3	120	1	1	0	0,0	3	5	4	2	2
5386,6	644,7	110	1		0	0,0	3	5	4	1	2
5385,1	528,8	150	1	7	0	5,0	3	5	4	2	3
5367,6	628,3	160	1	6	0	2,0	3	5	1	2	¦ 3 ¦
	614,1	50	1		0	0.0	3	5	4	1	2
5367,7 5367,2	615,9	50	1	2	0	1,5	3	5	4	9	1 2 1
5367,2	606,9	85 05	1	1	0	0,0	3	6	1	¦ 1	4
5408,3	507,1	85	1	1	0	0,0	1	6	1	2	4
	653,5	60	1	1	0	0,0	3	5	1	1	5
5407,9	654,2	80	1	1	0	0,0	3	5	1	1	¦ 5 ¦
5399,1	659,5	75	1	1	0 1	0,0	3	5	1	1	4
5401,1	661,8	100	1	7	0	31,0	2	5	1	2	3
5401,4	661,9	100	1	7	0	18,0	4	5	1	2	¦ 3 ¦
5398,5	649,7	90	1	1	0	4,0	3	5	1	1	3 ¦
5398,6	649,7	90	1	ì	0	2,0	3	5	1	1	3
5398,1	649,7	90	1	1	0	0,0	3	5	1	1	4
5392,4	651,9	150	1	7	0	49,0	4	5	6	7	2
5394,1	651,8	170	1	8	0 ¦	28,0	2	5	4	5	2
5394,3	651,7	180	1	8	0	47,0	4	5	4	8	2
5385,0	647,3	110	1	5	0	6,0	2	5	4	6	2
5385,4	647,0	110	1	4	0 ¦	14,0	4	5	4	6	2
5394,1	638,0	90	1	7	0 {	16,0	4	5	1	5	3
5394,1	638,0	80	1	5	0	16,0	4	5	1	5	3
5394,2	638,8	170	1	1	0 1	0,0	3	5	4	1	2
5384,2	638,6	170	1	6	0 {	11,0	2	5	4	2	2
5382,2	623,2	160	1	i	0	2,0	4	5 ¦	1	1	3

GRUPO Nº 6

Lat	Long	Alt	Exp gen	Exp loc	Pend gen	Pend loc	Forma pend.	Sub.	Geom	Sit top	Dre
5420,0	688,0	180	8	5	2	25,0	4	5	4	7	3
5421,3	685,3	125	1	1	0	0,0	3	5	₁	1	5
5419,5	680,0	100	1	1	0	0,0	3	5	 I	1	5
5419,2	680,4	100	1	1	0	0,0	3	5	1	1	5
5419,5	680,3	110	1	1	0	0,0	3	5	1	1 1	4
5414,6	688,5	180	1	8	2	25,0	5	5	l 6	. و ا	2
5414,2	688,1	150	1	2	2	37,0	4,	5	6	7	2
5419,6	668,8	115	1	1.	0	0,0	3	5	1	1	3
5419,4	668,6	115	1	1	0	0,0	3	5	i	1	3
5405,5	689,6	440	8	7	10	28,0	4	5	6	5	2
5405,5	689,6	440	8	7	10	26,0	4	5	6	5	2
5409,5	695,6	230	1	i	0	0,0	3	6	3	1	5
5408,8	689,8	85	5	3	4	7,0	3	5	4	7	2
5309,0	605,3	100	1	ı	0	0,0	3	5	2	i	2
5308,0	603,2	170	i	1	0	0,0	3	5	2	1	2
5307,6	601,9	130	1	1	0	0,0	3	5	1	1	3.
5307,5	602,3	120	1	1	0	0,0	3	5	1	1	3
5306,9	601,7	125	1	1	0	0,0	3	5	1	1	4

Conglo	 Parce			Error está <u>n</u>	Vacianza	Coeficiente	Nº datos
merado	l la	A o	l A ₁	dar de est <u>i</u>	total de	de determi-	de l
			<u> </u>	mación	altura	nación	ajuste
1	1	3.63226	 -5.18798	0.027	0.033	0.289	8
1	2	3.34277	-4.17943	0.011	0.089	0.887	11
1	3	3.32423	-3.13789	0.010	0.088	0.896	9
2	1	3.19685	-2.01680	0.007	0.026	0.766	10
2	2,	3.54079	-4.54713	0.005	0.056	0.931	6
3	1	3.33152	-3.24173	0.011	0.036	0.735	8
3	2	3.21025	-3.04209	0.016	0.054	0.729	11
3	3	2.59420	-1.80490	0.015	0.023	0.372	18
4	1	3.33656	-2.70134	0.012	0.031	0.627	30
4	2	3.29340	-2.33832	0.009	0.028	0.711	19
5	1	2.71380	-1.66086	0.049	0.058	0.190	22
5	2	3.20483	-2.53940	0.013	0.039	0.697	17
5	3	2.83376	-1.74633	0.006	0.015	0.608	24
6	1	3.45970	-2.61487	0.006	0.022	0.763	9
6	2	2.48279	-0.92876	0.003	0.005	0.536	12
7	1	3.11049	-1.28546	0.003	0.005	0.411	10
7	2	2.92897	-0.86468	0.002	0.003	0.302	8
8	1	2.98617	-2.43322	0.015	0.071	0.807	11
8	2	2.50283	-1.99807	0.010	0.026	0.645	18
9 1	1	2.58777	-2.26107	0.003	0.018	0.833	13
9	2	2.88911	-2.86785	0.009	0.055	0.855	10
9	3	2.52744	-2:01902	0.010	0.016	0.442	11
10	1	3.15409	-1.88175	0.032	0.052	0.413	17
10	2	3.06597	-1.85063	0.005	0.021	0.786	15
11	1	2.58049	-1.60395	0.006	0.030	0.806	12
11	2	2.87223	-3.07857	0.010	0.056	0.833	12
11	3	2.73602	-2.25348	0.018	0.052	0.702	8
12	1	3.37348	-2.30558	0.011	0.009	0.062	5
12	2	3.32636	-2.14725	0.007	0.017	0.653	9
13	1	3.08464	-2.28147	0.002	0.017	0.882	12
13	2	2.84448	-1.64455	0.004	0.014	0.764	12
14	1	3.32454	-2.10825	0.009	0.014	0.463	10
14	2	3.38168	-2.25309	0.003	0.017	0.856	14
14	3	2.78728	-1.32441	0.007	0.013	0.509	23
15	1	2.52888	-1.29946	0.003	0.008	0.625	11
15	2	2.40436	-1.28815	0.003	0.012	0.733	11
16	1	4.30248	-6.65850	0.030	0.081	0.684	8
16	2	2.75663	-1.26812	0.005	0.010	0.577	14
17	1	3.07085	-2.03130	0.005	0.019	0.782	9
17	2	2.81729	-1.95833		ı		

,				Error están	Varianza	Coeficiente	Nº datos
Conglo	Parce	A _o	A	dar de esti	total de	de determi-	del
merado	la	İ	j •	mación -	altura	nación	ajuste
17	3	2.80477	-2.63118	0.016	0.031	0.522	14
18	1	3.46243	-2.63477	0.003	0.025	0.895	.9
18	2 •	3.48132	-2.45078	0.002	0.010	0.837	j 9
18	3	2.89206	-1.76921	0.004	0.015	0.772	24
19	1	2.65156	-1.29230	0.003	0.006	0.523	10
19	2	3.31579	-1.93158	0.003	0.011	0.721	16
19	3	3.22694	-3.01156	j 0.010	0.057	0.838	11
20	1	3.11950	-2.40817	0.003	0.009	0.722	12
20 i	2	3.10888	-1.93419	0.002	0.014	0.860	j 8
20 📥	3	3.28397	-3.23474	0.020	0.085	0.788	11
21	1	2.84733	-1.82552	0.003	0.011	0.756	13
21	2	3.31648	-2.62959	0.006	0.046	0.872	16
21	3	2.98449	-1.59631	0.005	0.008	0.419	12
22	1	3.22712	-2.23709	0.014	0.034	0.626	12
22	2	3.32528	-2.69326	0.006	0.042	0.857	16
23	1	2.54160	-1.51171	0.002	0.008	0.741	28
23	2	3.54111	-2.84131	0.004	0.013	0.677	13
24	1	3.12759	-2.18279	0.006	0.031	0.842	9
24	2	2.85865	-1.33466	0.003	0.011	0.792	6
25	1	2.96991	-2.08924	0.002	0.012	0.837	13
25	2	3.03107	-1.97100	0.009	0.017	0.519	11
j 26 j	1	2.82271	-1.44094	0.002	0.007	0.729	11
26	2	2.64173	-1.52903	0.004	0.011	0.632	17
27	1	3.03436	-1.95934	0.005	0.013	0.665	16
j 27 j	2	3.34249	-2.18743	0.002	0.015	0.879	16
27	3	3.25531	-1.97044	0.006	0.015	0.648	24
28	1	3.30967	-2.63766	0.005	0.028	0.846	12
j 28 j	2	3.25458	-2.71102	0.007	0.026	0.759	12
j 29 j	1	3.28483	-1.96646	0.005	0.011	0.547	15
j 30 j	1	3.38225	-3.50027	0.005	0.019	0.751	9
j 31 j	1	2.81173	-1.39576	0.004	0.010	0.636	19
j 32 j	1	3.06737	-1.59879	0.002	0.008	0.740	17
34	1	2.89654	-2.38471	0.008	0.023	0.695	17
34	2	3.40025	-1.32759	0.001	0.002	0.191	11
34	3	-3.28101	-1.74261	0.004	0.010	0.628	17
35	l	2.77479	-1.24102	0.017	0.023	0.308	24
35	2	3.06803	-2.00474	0.005	0.014	0.644	29
36	1	2.64031	-1.64317	0.003	0.009	0.635	26
36	2	2.59029	-1.55297	0.006	0.012	0.545	17
36	3	3.23609	-2.07165	0.004	0.019	0.797	12
38	1	3.32751	-2.64619	0.017	0.045	0.656	12
38	2	3.28242	-2.49629	0.008	0.032	0.785	13
39	1	3.25759	-1.79203	0.002	0.002	0.225	10
39	2	3.07270	-2.22310	0.006	0.037	0.841	21
40	1	2.80850	-1.76727	0.004	0.014	0.757	20
40	2	3.25018	-2.50322	0.006	0.032	0.820	16

Conglo	Parce			Error están	Varianza	Coeficiente	Nº datos
merado	la –	Ao	A ₁	dar de esti	total de	de determi-	del
-	· · · · · · · · · · · · · · · · · · ·			mación	altura	nación	ajuste
41	1	2.97589	-1.86311	0.003	0.015	0.816	11
41	2	3.30891	-2.84686	0.013	0.037	0.692	10
42	1	3.33863	-2.46871	0.005	0.066	0.931	10
42	2	2.94725	-1.65971	0.005	0.015	0.687	40
42	3	3.36674	-2.42350	0.002	0.038	0.947	18
43	1	3.36983	-2.75295	0.007	0.028	0.764	14
44	1	2.82997	-2.20952	0.011	0.028	0.626	20
44	2	2.96625	-1.84704	0.004	0.024	0.838	13
45	1	2.94137	1 -1.61286	0.005	0.012	0.608	34
45	2	2.82592	-1.60812	0.003	0.008	0.683	26
45	3	3.24085	-2.30789	0.003	0.029	0.905	12
46	1	3.37516	-1.69026	0.000	0,006	0.923	16
46	2	2.89055	-1.83706	0.014	0.025	0.501	15
47	ī	3.18695	-1.93112	0.002	0.015	0.848	37
47	2	2.70593	-1.52813	0.004	0.010	0.590	32
47	3	3.46803	-2.38960	0.020	0.039	0.546	11
49	1	3.06685	-1.68863	0.004	0.015	0.745	37
49	2	3.06286	-1.98960	0.008	0.020	0.626	28
49	3	2.92910	-1.63686	0.005	0.011	0.591	33
50	1	3.31253	-1.91707	0.001	0.004	0.713	9
50	2	2.65014	-2.37055	0.007	0.016	0.605	15
50	3	3.25700	-1.48232	0.003	0.007	0.653	9
51	1	3.11069	-1.94036	0.004	0.013	0.733	21
51	2	3.15225	-1.40180	0.002	0.004	0.662	5
52	1	2.98814	-2.26211	0.005	0.014	0.662	12
52	2	3.46137	-2.44612	0.013	0.020	0.430	12
52	3	3.04209	-1.72845	0.002	0.004	0.665	10
53	1	3.10478	-0.64014	0.001	0.001	0.055	7
54	1	2.83102	-1.88319	0.006	0.023	0.753	16
54	2	3.31008	-2.50288	0.003	0.026	0.879	12
55	1	3.06320	-2.03311	0.006	0.016	0.598	29
56	1	2.95994	-1.41095	0.003	0.008	0.591	44
56	2	2.63992	-1.46328	0.002	0.010	0.786	23
57	1	3.30905	-2.09247	0.005	0.020	0.772	21
57	2	3.21861	-2.25475	0.005	0.032	0.849	16
58	1	3.50735	-2.70484	0.003	0.003	0.277	4
59	1	2.88662	-1.83923	0.005	0.011	0.590	16
59	2	2.72477	-1.53252	0.004	0.013	0.679	14
60	1	3.64442	-3.41856	0.001	0.004	0.738	6
60	2	3.01836	-2.21217	0.003	0.021	0.865	11
61	1	3.18404	-2.85293	0.003	0.004	0.357	9
61	2	3.24474	-3.26788	0.011	0.059	0.833	11
61	3	3.09884	-1.99176	0.008	0.023	0.682	18
63	1	3.77959	-3.17909	0.002	0.007	0.761	10
63	2	3.00341	-1.92334	0.004	0.014	0.734	27
63	3	3.07754	-1.95050	0.003	0.021	0.849	18
64	1	3.06401	-1.80407	0.003	0.014	0.796	43
64	2 j	3.21454	-1.94624	0.003	0.011	0.771	34
64	3	3.02800	-1.58966	0.004	0.012	0.715	32

VOLUMEN POR PARCELA, ESPECIE, EDAD Y CLASE DE SITIO

VOLUMEN POR HECTAREA (m³)

Congl <u>o</u> merado	Parcela	Canelo	Otras	Total	Edad	Clase de Sitio
1	1	433	88	521	65,7	5
1	2	96	24	120	29,0	5
1	3	240	0	240	35,3	3
2	1	209	82	291	35,3	3
2	1 2	299	210	509	73,3	5
3	1	132	44	176	53,7	5
3	2	153	69	222	41.3	4
3	3	74	0	74	40,0	5
4	l 1	312	0	312	34,0	4
4	2	l 287	47	334	24,7	2
5	1	143	19	162	23,3	2
5	2	308	40	348	33,7	3
5	3	143	3	146	32,7	5
6	1	309	102	411	51.0	4
6	2	69	22	91	21,7	4
7	1	445	21	466	45,3	4
7	2	241	55	296	34,3	3
8	1	104	0	104	30,0	4
8	2	47	0	47		6
9	1	l	1		33,7	6
9	2	36	0	37	34,7	
	3	65		65	47,0	6
9		25	0	25	24,3	5
10	1	234	77	311	39,7	4
10	2	188	0	188	24,0	2
11	1	91	0	91	27,3	4
11	2	56	0	56	34,0	6
11	3	60	0	60	30,0	5
12	1	412	136	548	68,0	5
12	2	327	91	418	49,7	4
, 13	1	199	ī 4	213	53,3	5
13	2	74	45	119	40,3	5
14	1	428	12	440	37,0	2
14	2	555	0	555	44,0	3
14	3	122	0	122 .	20,7	3
15	1	29	17	46	16,3	3
15	2	18	0	18	16,0	4
16	1	115	52	167	47,7	5
16	2	177	21	198	29,0	4
17	1	144	90	234	39,0	4
17	2	133	39	172	28,0	4
17	3	45	0	45	22,3	4
18	1	321	55	376	52,7	4
18	2	512	81	593	57,0	4
18	3	138	23	161	42,3	5
`	ĭ	100	~ ~	101	72,0	•

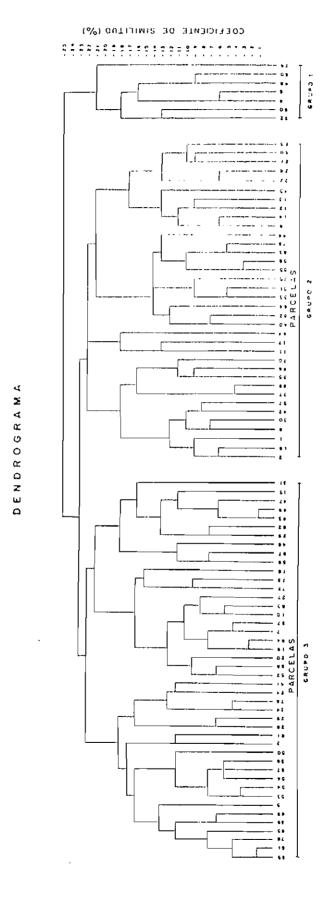
(Continuación)

Conglo merado	Parcela	Canelo	Otras	Total	Edad	Clase de sitio
19	1	78	4	82	23,7	4
19	2	440	0	440	34,0	2
19	3	135	96	231	36,3	4
20	1	258	5	263	44,7	4
20	2	158	l 81	239	36,7	3
20	3	170	14	184	28,7	3
21	1	65	22	87	21,7	2
?1	2	369	72	441	35,7	3
21	3	176	74	250	29,0	<u>}</u> 3
22	1	225	48	273	35,0	3
22	2	322	37	359	42,3	4
23	1	73	16	89	14,3	4
23	2	813	0	813	60,3	3
24	1	231	28	259	42,0	4
24	2	73	54	127	32,3	 4
25	1	195	9	204	19,0	2
25	2	402	9	411	35,7	3
26	1	242	12	254	28,7	3
26	2	85	2	87	21,3	4
27	1	246	24	270	25,3	3
27	2	444	16	460	25,7	2
27	3	384	50	434	24,3	2
28	1	288	14	302	50,3	4
28	2	148	19	167	29,3	3
29	1	514	9	523	38,3	3
30	1	312	20	332	33,0	4
31	i 1 i	133	34	167	21,3	2
32	1	212	8	220	23,3	3
34	1	86	24	110	55,0	6
34	2	790	0	790	58,7	3
34 35	3	366	7	373	35,0	2
35	1 2	254	8	262	28,0	2
35	2	404	18	422	27,0	2
36		65	0	65	22,0	4
36	2	63	2	65	19,3	4
38	1	260	64	324	26,3	2
38	2	94 166	124	218	45,0	5
39	1	362	104	270	46,3	4
39	2	186	63 32	425	30,3	$\frac{1}{t}$
40	1	152		218	30,7	4
40	2	203	39 106	191	21,7	3
41	1	176	53	309	32,3	3
41	2	236	194	229 430	26,3	3
		230	134	430	47,0	4

(Continuación)

Conglo merado	Parcela	Canelo	Otras	Total	Edad	Clase de sitio
42	1	226	68	294	42,3	3
42	2	208	11		27,0	3
42	3	517	29	219 546	35,0	2
43	1		46		37,0	2 2
43	l i	371	0	417	1	5
44	1/2	102 174	0	102 174	34,3 21,3	3
45	1	1	0		$\begin{bmatrix} 21,3\\17,7 \end{bmatrix}$	
45	2	363	0	363		1 2
45	3	120		120	17,7	
1		263	0	263	21,3	1
46	1 2	1.043	0	1.043	39,3	2
46		110	37	147	21,7	3
47	1	496	0	496	28,7	2
47	2 3	127	12	139	15,7	1 ,
47 49		783	35	818	77,7	4
1	1	269	0	269	23,0	2
49	2 3	291	0	291	21,3	1
49		163	24	187	18,0	3
50	1	695	6	701	52,7	3
50	2	45	0	45	33,7	6
50	3	532	6	538	54,0	3
51	1	243	22	265	23,0	3
51	2	438	9	447	22,3	1
52	1	223	83	306	25,0	3
52	2	563	52	615	54,0	4
52	3	162	14	176	22,7	3
53	1	580	163	743	59,7	4
54	1	101	13	114	31,3	5
54	2	285	111	396	34,7	3
55	1	341	0	341	38,0	4
56	1	294	0	294	22,3	2
56	2	138	20 43	158	19,3	3
57 57	1 2	424 329		467	33,7	2 2
58	1	529 529	7 160	336 689	26,7	3
59	=				51,0	•
59	1	256	0	256	28,0	4
60	2	115	0	115	18,3	2
60	1 2	584 66	12	596	83,3	6
61		423	12	78 459	34,3	4
61	1 2	200	35 72	458	50,3	5 5
61	3	235	28	272	46.0	4
63	1	756	28 0	263 756	39,0	3
53	2	157	21	756 178	77,7 29,3	4
63	3	165	32	178 197	29,3	4
64	1	260	28	288	34,3	4
64	2	253	84	337	25,7	2
64	3	296	6	302	24,7	3
"	J	730	U	302	44,/	J

INDICES DE PRODUCCION CALCULADOS CON FUNCIONES DE RENDIMIENTO: CHAPMAN-RICHARDS Y PREDICCIÓN DE ÁRBOLES DOMINANTES


	Dan l -	!	ce de
Conglomerado	Parcela	1	cción*
		(1)	(2)
1	1	130,0	89,4
1	2	207,0	281,8
1	3	234,0	226,6
2	ì	286,0	284,7
2	2	109,0	91,4
3	1	62,0	56,3
3	, 2	163,0	161,0
3	3	51,0	54,1
4	1	329.0	296,2
4	2	588,0	605,1
5	1	317,0	394,1
5	2	372,0	465,5
5	3	177,0	200,6
6	1 1	203,0	176,3
6	2	213,0	295,9
7	1	287,0	289,1
7	2	307,0	403,1
8	1	138,0	360,1
8	2	53,0	90,1
9	1	39,0	89,7
9	2	30,0	38,1
9	3	106,0	106,9
10	1	245,0	156,9
10	2	349,0	492,7
11	1	143,0	266,8
11	2	61,0	121,5
11	3	94,0	232,5
12	1	129,0	89,5
12	2	216,0	219,8
13	1	77,0	78,0
13	2	81,0	83,6
14	1	408,0	399,0
14	2	384,0	374,6
14	3	348.0	372,4
15	1 .	217,0	256,7
15	2	69,0	235,6
16	1	77,0	85,7
16	2	280,0	387,3
17	1	191,0	158,2
17	2	259,0	277,0
17	3	101,0	183,7
18	1	174,0	158,2
18	2	237,0	156,0
18	3	98,0	108,6
19 19	1 2	165,0	366,0
19	3	458,0	434,1
1.5	J	216,0	219,7

Conglomerado Parcela Producción* (1) (2 20 1 156,0 148	
20 1 166,0 148)
	. 4
20 2 220,0 220	
20 3 267,0 340	
21 1 198,0 359	
21 2 425,0 425	
21 3 354,0 380	
22 1 273,0 273	
22 2 251,0 263	
23 1 396,0 387	
23 2 388,0 351	
1 1 1 1	
1 1 ' i	
24 2 148,0 208	
25 1 636,0 437	
25 2 397,0 399	
26 1 369,0 327	
26 2 210,0 216	
27 1 506,0 437	
27 2 749,0 615	
27 3 784,0 488	
28 1 153,0 136	,9
28 2 232,0 260	
29 1 448,0 453	, 3
30 1 370,0 259	, 1
31 1 397,0 372	, 4
32 1 489,0 456	,0
34 1 36,0 37	,5
34 2 387,0 307	,5
34 3 373,0 373	
35 1 368,0 346	, 3
35 2 633,0 454	, 3
36 1 149,0 132	
36 2 185,0 275	
36 3 507,0 480	
38 1 114,0 115	
38 2 160,0 156	
39 1 499,0 638	
39 2 278,0 252	
40 1 493,0 290	
40 2 358,0 324	
41 1 397,0 383	
41 2 248,0 250	
42 1 215,0 225	
42 2 360,0 234	
42 3 546,0 546	
1 1 ' 1	
44 2 467,0 457	, U

		Indi	ce de
Conglomerado	Parcela	Produc	cción*
		(1)	(2)
45	1	874,0	711,0
45	1 2	454,0	366,B
45	3	482,0	546,5
45	1	894,0	899,1
46	2	380,0	243.8
47	1	669,0	350,2
47	2	407,0	608,3
47	3	187,0	81,5
49	1	543,0	503,6
49	2	533,0	638,2
49	3	716,0	318,7
50	1	384,0	298,1
50	2	51,0	94,4
50	3	287,0	288,0
51	1	506,0	441.7
51	2	768,0	710,3
52	1	588,0	484,7
52	2	272,0	236,7
52	3	413,0	409,4
53	1	273,0	222,4
54	1	156,0	201,1
54	2	402,0	276,3
55	1	292,0	308,2
56	1	633,0	451,5
56	2	523,0	325,2
57	1	493,0	412,1
57	2	512,0	535,3
58	1	392,0	335,5
59	1	385,0	213,7
59	2	396,0	415,9
60	1	90,0	57,2
60	2	81,0	139,0
61	1	186,0	227,2
61	2	135,0	160,4
61	3	217,0	189,1
63	1	303,0	158,1
63	2	245,0	193,5
63	3	277,0	379,0
64	1	297,0	218,6
64	2	550,0	377,6
64	3	593,0	359,5
65	1	245,0	345,3

- (1) Funciones Chapman-Richards
- (2) Predicción de árboles dominantes

DENDROGRAMA

MATRIZ PRESENCIA-AUSENCIA Y NOMBRES CIENTÍFICOS

DE LAS ESPECIES ENCONTRADAS

LISTA DE ESPECIES Y CODIGOS RESPECTIVOS

- 01. <u>Taroxacum officinale</u> Weber ex Wiqq. "Diente de león", "Chinita del campo".
- 02. Agrostis sp.; Poa sp. "pastos"
- 03. Rubus ulmifolius Schott. "zarzamora", "mora"
- 04. Berberis sp. (ejemplares de tamaño grande)
- 05. Drimys winteri J.R. et G. Fotster. "Canelo"
- 06. Aristotelia chilensis (Mol.) Stuntz. "Maqui"
- 07. Nothofagus dombeyi (Mirbel) Oerst.; Nothofagus nitida (Phil) Kramer. "Coigüe".
- 08. Trifolium repens R. "Trébol blanco"
- 09. <u>Viola</u> sp.
- 10. Chusquea quila Kunth. "Quila"
- 11. Juncus sp. "Junquillo", "unquillo"
- 12. Blechnum magellanicum (Desv.) Mett.
- 13. Eucryphia cordifolia Cov. "Ulmo"
- 14. Embothrium coccineum J.R. et. G. Forster. "Notro", "Ci-ruelillo"
- 15. <u>Gevuina avellana Mol. "Avellano", "Guevín"</u>
- 16. Lomatia ferruginea (Cav) R. Br. "Fuinque", "Romerillo"
- 17. Nertera granadensis (Mutis ex, L.f) Drude. "Coralito"

- 37. Ugni candollei (Born.) Berg. "Murtilla blanca", "Murta"
- 38. Mitroria coccinea Cav. "Botellita", "Voqui-voqui"
- 39. Cirrium lanceolatum (L) Scop. "Corclos"
- 40. Ovidio pillopillo (Gay) Meim. "Pillo-pillo"
- 41. Myrceugenia nanophylla
- 42. Crinodendron hookeranum Gay. "Chaquihue"
- 43. Baccharis sphaerocephala H. et A. "Rori", "Rodén"
- 44. Baccharis sp.
- 45. Asteranthera ovata Honst. "Estrellita"

A N E X O Nº 10

CIFRAS PROMEDIOS DE CLAREO Y SUPLEMENTACION

ESTRATO I

Densidad requer <u>i</u> da inicialmente	f	radera.] — - 	Matorral		Renoval	Be	sque explo tado	Bosque poco
2.500	C		C	49.166,6	C	209.721,9	C	154.166,6	No existe es
	S	2.500	<u> </u>		S		S		ta situación
5.000	C		C	51.111	C	207.221,9	С	151.666.7	de uso de la
	S	5.000	\$	555,6	S		S		tierra en es
7.500	C		Ç	3.055,6	Ĉ	204.721,9	С	149.156,6	te estrato.
	S	7.500	S	51.111	S		S	·	
10.000	C		С	5.555,6	C	202.221,9	C	146.565,6	
	S	10.000	S	51.111	S	~~-	S		
15.000	C		C	51.111	C	197.221,9	С	141.566,6	
15.000	S	15.000	S	10.555,6	S		\$		
20,000	С		C	51.111	C	196.166,4	C	136.666,6	
	S	20.000	S	15.555,6	S	4 1, 1, 1, 1, 1,	S		
30.000	C		C	51.111	C	196.666,4	Ē	131.665,6	
	S	30.000	S	25.555,6	\$	14.444,4	S	5.000	
40.000	C		С	51.111	C	196.866,4	C	131.656,6	<u> </u>
	S	40.000	S	35.555,8	S	24,444,4	S	15.000	

ESTRATO II

Densidad requer <u>i</u>	ļ ļ	radera	Ţ	Matorral		Renoval	Bo	sque explo	Bosque poco
da inicialmente	ļ		<u> </u>					tado _	intervenido
2.500	C		C	6.666,8	C	46.666,8	C	97.499.8	En esta clase
	\$	2.500	S	833,3	\$	2.500	S		de uso solo
5.000	C		C	6.666,8	С	46.666,8	С	94.999,8	existen 500
	S	5.000	S	3.333,3	S	5.000	s		hectáreas.
7.500	C		C	6.666,8	C	46.666,8	C	92.499,8	
	S	7.500	_\$	5.583,3	s	7.500	s		
10.000	C	-~	C	6.666,8	C	46.666,8	C	89.999,8	
10.000	<u> </u>	10.000	S	8.333,3	S	10.000	S		
15.000	C		C	6.666,8	С	46.666,8	C	86,866.5	
	S	15.000	S	13.333,3	S	15.000	İs	1.666,7	
20.000	Ç		C	6.666,8	C	46.666,8	c	86.666,5	
	S	20.000	S	18.333,3	S	20.000	s	6.666,7	
30.000	C		С	6.666.8	С	46,666,8	c	86,666.5	
	S	30.000	S	28.333,3	S	30.000	s	16.666,7	
40.000	C		C	6.666,8	C	46.666,8	C	86.666.5	
	S	40.000	S	38.333,3	S	40.000	S	26.565,7	

C - Clareo

S = Suplementación

Cifras de plántulas/ha

ESTRATO V

Densidad requer <u>i</u> da inicialmento		Pradera		Matornal	 	Renoval	B 3	sque explo-	Bosque poco
2.500	C		Ü	24.166,6	C	23.333,3	TC -	44.165,8	En este estra
	S	2.500	S		S	2.500	S		to no existe
5.000	C		C	21.666,6	C	23.333,3	C	41.655.2	esta situació
	<u>s</u>	5.000	S		5	5.000	S		de uso de la
7.500	C		C	19.166,6	C	23.333,3	C	39.165.8	tierra.
	S	7.500	S		S	7.500	S	, ,	
10,000	С		C	16.666,6	C	23.333,3	C	36.666,4	· · · · · · · · · · · · · · · · · · ·
	S	10.000	\$		S	10.000	S		
15.000	С		C	16.666,6	C	23.333.3	i c	34,999,8	
	S	15.000	S	5.000	S	15.000	S	3.333	
20,000	С		С	16.666,6	C	23.333,3	С	34.999.8	
	S	20.000	S	10.000	S	20.000	S	8.333	
30.000	C]	Ç	16.666,6	C	23.333,3	C	34.999.8	-
	\$	30.000	_ S	20.000	S	30.000	s	18.333	
40.000	C		С	16.666,6	C	23.333,3		34.999.8	
70.000	_S	40.000	S	30.000	S	40.000 [°]	s	28.333	

ESTRATO VI

Densidad requeri da inicialmente	Pradera	Matorral	Renoval	Bosque explo	Bosque poco intervenido
2,500	C	C 20.833,2	C 39.722	C 80.832,9	En esta situa
	\$ 2.500	S	S	S	ción solo exis
5.000	C	C 18.333,2	C 37.222	C 78.332.9	ten 300 ha.
	\$ 5.000	S	S	S	
7.500	C	C 15.833,2	C 35.666,5	C 75.832,9	
	S 7.500	s	S 1.944	S	
10.000	C	C 13.333,2	C 36.666,5	C 73.332.9	· · · · · · · · · · · · · · · · · · ·
	S 10.000	S	S 4.444	S	
15.000	C	C 13.333,2	C 36.686,S	C 68.333,2	·
	S 15.000	S 5.000	S 9.444	S	
20.000	C	C 13.333,2	C 36.666,5	C 63.333,2	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	S 20.000	S 10.000	\$ 14.444	s i	
30.000	C	C 13.333,2	C 36.666,5	C 59.999.9	
	S 30.000	S 20.000	S 24.444	S 6.666,6	
40.000	C	C 13.333,2	C 36.666,5	C 59.999,9	
	S 40.000	S 30.000	S 34.444	S 16.666,8	

ESTRATO IX

Densidad requeri da inicialmente		Pradera	Matorral			Renoval	0 o	sque explo tado	Bosque poco intervenido
2.500	C		Û	11.666,6	C	19,999,9	r c	69.166.6	En esta si-
	S	833,3	S	2.500	S	2.500	S		tuación solo
5,000	C		C	11.666,6	С	19.999.9	- c	86.666.6	quedan 900 ha
	S	3.333,3	S	5.000	S	5.000	S		inaccesibles
7.500	C	** **	C	11.666.6	C	19,999,9		64.166.6	
	S	5.833,3	S	7.500	İs	7.500	S		
10.000	C		C	11.666,6	-C	19,000,0	- c	61.666.6	
	S	8.333,3	S	10.000	S	10.000	S		
15.000	Ç		C	11.666,6	C	19,999,9	~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	56.666,6	
	S	13.333,3	S	15.000	S	15.000	S		
20.000	C		C	11.656,6	C	19.999,9	c	51.666,6	
	S	18.333,3	S	20.000	S	20.000	S		
30.000	C		Ç	11.666,6	C	19.999.9	c	50.000	
	<u>\$</u>	28.333,3	S	30.000	S	30,000	S	8.333,3	
40.000	C		C	11.666,6	C	19,999,9	— I	50.000	
	S	38.333,3	S	40.000	S	40.000	S	18.333.3	

ESTRATO X

Densidad requeri da inicialmente		Pradera		Matorral		Renoval	Be	sque explo	Bosque poco
2.500	C	10.000	C	90.833,2	7 c	109.166,3	- C	107.499.9	No existe es-
	S	2.500	S		S		s		ta clase de u
5.000	C	10.000	C	88.333,2	C	108.333,3	C	104.999,9	so actual de
	<u>\$</u>	5.000	S		S	1.666.6	İs		la tierra.
7.500	C	10.000	C	86.666,6	С	108.333,3	C	102.499.9	10 (10) 72.
	S	7.500	S	833,3	S	4.166,6	s		
10.000	C	10.000	C	86.666,6	C	108.333,3	c	99.999,9	
	<u>s</u>	10.000	S	3.333,3	S	6.656.6	s		
15.000	C	10.000	C	86.666.6	C	108.333.3	C	94.999.9	
	S	15.000	S	8.333,3	S	11.666.6	s	}	
20.000	С	10.000	C	86.666,6	C	108.333,3	C	93.333,3	
	S	20.000	S	13.333,3	S	16.666.6	S	3.333,3	
30.000	С	10.000	С	86.666,6	C	108.333,3	C	93.333,3	
	S	30.000	S	23.333,3	S	26.666,6	S	13.333,3	
40.000	C	10.000	С	86.666.6	C	108.333,3	C C	93.333,3	
	S	40.000	S	23.333,3	S	36.566.6	S	23.333,3	

ESTRATO VII

Densidad requeri da inicialmente	Р	radera		Matorral	[Renoval	Bo:	sque explo tado	Bosque poco intervenido		
2.500	C		С	50.833,1	C	33.333,3	0	37.499,9	С	54.166,6	
2.300	S	2.500	S		S	500	;;		S		
5.000	C		Ç	48.333,1	C	33.333,3	1)	34.999,9	C	51.656,6	
2.000	S	5.000	S		S	3.000	5		S	-~	
7.500	C		C	45.833,1	C	33.333.3	1;	32,499,9	C	49.166,6	
7.500	S	7.500	S		S	5.500	::				
10.000	С		C	43.333,1	ε -	33.333,3	1,	29,999,9	С	48.666,6	
10.000	S	10.000	S		S	8.000	5		S	-~	
15.000	Ç		C	43.333,1	C	33.333,3	1;	24.999,9	С	41.566,6	
13.000	S	15,000	S	5.000	S	13,000	::	*•	\$		
20.000	C		C	43.333,1	Ĉ	33.333,3	1.	23.333,3	C	36.666,6	
20.000	S	20.000	\$	10.000	S	18.000	1.	3.333	S		
30.000	Ç		C	43.333,1	С	33.333,3	7,	23.333,3	C	36.666,6	
20.000	S	30.000	S	20.000	S	28.000	5	13.333	s	10.000	
40.000	C		C	43.333,1	C	33.333,3	1,	23.333,3	C	36.666,6	
40.000	S	40.000	S	30.000	S	000.88	İs	23.333	S	20.000	

ESTRATO VIII

Densidad requeri da inicialmente	Pradera	Matorral	Renoval	Bosque explo tado	Bosque poco intervenido
2.500	C 833	C 104.999,4	C 31.332,9	0 110.276,9	C 132.499.2
	S	\$	S 1.166,0	::	S
5.000	C	C 102.499,4	C 31.332,9	0 107.776,9	C 129.999,2
	S 1.666,6	S	\$ 3.666,6	\$	S
7.500	C	C 99.999,4	C 31.332,9	(. 105.276.9	C 127.499,8
7.500	S 4.166,6	S	S 6.166,6	5	S
10,000	C	C 97.499,4	C 31.332,9	C 102.776,9	C 124.999,8
	S 6.666,6	S	\$ 8.666,6	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	S
15.000	C	C 94.166,4	C 31.332,9	0 97.777,4	C 119.999,8
	S 11.656,6	S 1.666,6	\$ 13.666,6	S	S
20.000	C	C 94.166,4	C 31.332,9	G 97.221,9	C 118.333,2
	S 16.666.6	\$ 6.865,6	S 18.566,6	S 4.444	S 3.333
30.000	C	C 94.166,4	C 31.332,9	C 97.221,9	C 118.333,2
	\$ 20.666,6	S 16.666,6	S 28.666,6	S 14.444	S 13.333
40.000	C	C 94.166,4	C 31.332,9	C 97.221,9	C 118.333,2
	\$ 36.656,6	S 26.666,6	S 38.666,6	S 24.444	S 23.333

ESTRATO III

Densidad requeri da inicialmente	ļ p	'radera		Matorral		Renoval	Bo	sque expl <u>o</u> tado	Bosque poco intervenido
2.500	C		C	30.000	С	18.333,3	C	66.832	En esta situa
2.300	S	2.500	S	833,3	S	2.500	S		sólo hay 1.800
5.000	C	*	C	30.000	C	18.333,3	C	64.332	hectáreas.
3.000	S	5.000	S	3.333,3	S	5.000	S	~	
7.500	C		C	30.000	C	18.333,3	Ĉ	61.833	·
7.500	S	7.500	S	5.833,3	S	7.500	S		
10,000	C		C	30.000	C	18.333,3	Tc -	59.333	
	S	10.000	S	8,333,3	S	10.000	S		
15.000	C		C	30.000	C	18.333,3	C	54.665	
	S	15.000	S	13.333,3	S	15.000	S	353	
20.000	C		С	30.000	C	18,333,3	C	54.666	
20.000	\$	20.000	S	18.333,3	S	20,000	S	5.333	
30.000	C		Ç	30.000	С	18.333,3	C	54.665	
30.000	S	30.000	S	28.333,3	S	30.000	S	15.333	
40.000	С		Ç	30.000	C	18.333,3	C	54.666	·
40.000	S	40.000	S	38.333,3	S	40.000	S	25.333	

ESTRATO IV

Densidad requer <u>i</u> da inicialmente		Pradera	Ţ	Matorral		Renoval	Bo	sque explo tado	Bosque poco intervenido
2.500	C		C	49.999,3	С	26.566,5	ε	102.165,7	En esta situa
	\$	2.500	S		S	2.500	S		ción solo que
5.000	C		C	47.499,3	C	25.666,5	C .	99.665.7	dan 1.200 ha.
J,000	\$	5.000	S		S	5.000	S		
7,500	C		C	44.999,3	C	26.666,5	C	97.165,7	
	S	7.500	S		S	7.500	s	'	
10.000	C		C	44.166	C	26.656.5	Ē	94.665.7	
	\$	10.000	S	1.666,6	S	10.000	s		
15.000	C		C	44.166	Ĉ	26.666,5	C	89,665.7	·
15.000	S	15.000	S	6.666,6	s	15.000	S		
20.000	С		C	44.156	С	26.666.5		85.332,7	
	S	20.000	S	11.666,6	S	20.000	s	666,6	
30.000	C		C	44.166	С	26.666,5	<u>.</u>	85.332.7	
40.000	S	30.000	S	21.666,6	S	30.000	5	10.666	
40.000	С		C	44.166	C	26,666,5		85.332,7	
	S	40.000	S	31.666,6	S	40.000	S	20.666	

Simbología de especies principales

Ul : Ulmo

CUADRO № 53 : Totales de plántulas por especie, para cada situación de asocia ción de series de suelo y uso actual de la tierra. Valores ex presados en número de plántulas por hectárea.

Ca : Canelo Ma : Mañío

No : Notro

Co : Coigüe Ti : Tineo Av : Avellano

Ti : Tineo Lu : Luma Te : Tepa Arr : Arrayán

Estrato	Uso actual	7	-			- -		: lepa	Arr : A	rrayán											
Asuc. series suelo	de la tierra	Ca	Co	11	le	Tepu	Ü!	 L,u	Art	Ho	Av	Ma	liaca	Pitra	Maqui	Lingue	Keli	fuinque	Irevo	Fotal	Nº ∎uestras
]	4 5 6	34.444,4 37.777,7 101.666,7			3.333,3	ļ }	2.222,2	8.888,8		4,444,4 1,111,1 30,000,0	2.222,2		1.111,1		11.111,1	 				55.555,6 212.221,9 156.666,7	3 3 2
2	3 4 5 6	8.333,3	26.666,7			 	3.333,3					26.666,7 6.566,7	20.000,0	-						0 8.333,3 46.666,7	1 2 1
3	3 4 5 6	11.666,7	13.333,3		10.000		1.666,7	5.666,7 3.333,3 1.333,3		066,6	2.566,5	3.333,3								0 31.666,7 23.333,3	1 2 2
4	4 · 5 · 6	34.166,7 I.111,1 81.333,3	16.665,7	2.000	7.777,7		3.333,3	10.000,0				4.444,4	1.666,7	 				2.566,7	 	52,499,3 20,666,3 104,666,3	4 3 5
5	5 6	16.666,7 26.666,7 18.888,8	10.000					16.666,7			1.666,7	20.000	3.333,3						 	26.666, / 23.333, 3 46.666, 4	1 1 2
6	5 6	17.777,7	23.333.3	 , 			2.222,2	18.888,8	4.444,4		1.111,1	3.333,3	2.222,2							23.333,2 42.222 83.333,2	3 3 1
7	5 6 7	3.333,3 20.000,0 56.666,7			2.222,2 666,6	666,6	6.666,7 1.333,3 	22.666,7 6.666,7	665,6 	6.000		 	7.777,7 		 					53.333,1 35.333,3 39.999,9 56.666,7	3 5
8	3 4 5 6 7	3.333.3 60.933.3 3.333.3 55.000 60.000	4.166,7 3.333,3 1.666,7	833,3 666,6 6.666,7	1.333,3	6.666,7 1.111,1 13.333,3			30.000,0 7.777,7	1.666,7 - 555,5	 5.000	833,3 656,7 10.000 18.333,3	8.666,7 1.666,7		 					3.333,3 107.499,7 30.000 112.777,4	1 4 6
9	3 4 5 6	1.665,7		 	4,444,4			12.222,2	11.665,7					3.333,3						1.666,7 11.666,7 19.999,9 71.666,7	2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
10	5 6	10.000 43.333,3 5.000 30.000		6.666,7	20.000		10.000	70.000	13.333,3				15.000	 11.666,6		3.333,3				10.000 93.333,2 21.666,7 09.999,9	1 2