

## Riboflavin, other dairy B vitamins and cardiovascular health

Professor Hilary J Powers University of Sheffield United Kingdom



# Scope of the talk

- Importance of dairy products to B vitamin intakes
- Epidemiological evidence linking B vitamins with cardiovascular disease
- The mechanistic basis for such links



# Epidemiology of milk consumption and CVD

- Ischaemic heart disease or stroke
  - 10 cohort studies
  - High degree of consistency
  - Pooled OR for highest v lowest consumers
    - IHD 0.87 (0.74-1.03)
    - Stroke 0.83 (0.77-0.90)

Elwood et al (2004)



## Contribution of milk and milk products to B vitamin intake

| Vitamin                         | Preschool<br>children<br>(1-4y) | Children<br>and<br>young<br>people<br>(4-18y) | Adults<br>(16-64y) | Older<br>adults<br>(65+y) |
|---------------------------------|---------------------------------|-----------------------------------------------|--------------------|---------------------------|
| Thiamin                         |                                 |                                               |                    |                           |
| $(B_1)$                         |                                 |                                               |                    |                           |
| Riboflavin<br>(B <sub>2</sub> ) | 51                              | 35                                            | 27                 | 34                        |
| Pyridoxine<br>(B <sub>6</sub> ) | 25                              | 12                                            | 12                 | 15                        |
| Cobalamin<br>(B <sub>12</sub> ) | 47                              | 46                                            | 18                 | 22                        |
| Folate                          | 17                              | 12                                            |                    |                           |







Folate intake according to age





A metabolic basis for a link between B vitamin and cardiovascular disease





Elevated Plasma Total Homocysteine is a Risk Factor for Cardiovascular Disease

#### **Prospective Studies:**

-----

The Physician's Health Study Stampfer et al (1992) JAMA &: 877

Arneson et al (1995) Int J Epidemiol



BUPA Study (Perry et al (1995) Irish J Med Sci 164:16



RR of stroke =2.5 for top quartile v bottom quartile of tHcy

Top 5% for tHcy had a RR

for MI of 3.4

| Dietary determinants of plasma |                 |                                             |  |  |
|--------------------------------|-----------------|---------------------------------------------|--|--|
| Variable                       | Range (per day) | P* (trend for<br>regression<br>coefficient) |  |  |
| Folate                         | <191->387 µg    | <0.001*                                     |  |  |
| Vitamin B12                    | <3.05->7.57µg   | 0.06*                                       |  |  |
| Vitamin B6                     | <1.25->2.40 mg  | <0.001*                                     |  |  |
| Riboflavin                     | <1.11->2.21mg   | 0.003*                                      |  |  |
| B Vitamin supplements          | Yes or No       | <0.001                                      |  |  |
| Jacques et al 2001             |                 |                                             |  |  |



# Does increasing B vitamin intake lower homocysteine?









# Breakfast cereal increases B vitamin status

| Variable                | Treatment group | Control group |
|-------------------------|-----------------|---------------|
| Folate                  | 24.7 (0.7)      | 24.7 (0.7)    |
| nmol/l                  | 32.2* (0.7)     | 22.4 (0.7)    |
| Vitamin B <sub>12</sub> | 296 (10)        | 293 (10)      |
| pmol/l                  | 354* (13)       | 290 (10)      |
| Vitamin B <sub>6</sub>  | 51.8 (4.9)      | 45 9 (2.6)    |
| nmol/l                  | 82.3* (5.5)     | 42.1 (2.4)    |





# **Riboflavin is an independent** predictor of homocysteine

5,10 methylene THF 5 methyl THF **MTHFR** (FAD)



#### **Epidemiological evidence for a link** between B vitamin intake and CVD

- Case control studies Prospective cohort – Friso et al 2004 OR 1.89 for  $B_6$ - Cattaneo et al 2001 OR 1.80 for  $B_6$ - Robinson et al 1998 OR for folate 1.50. 1.81 for B<sub>6</sub>
- - Rimm et al 1998 RR for highest quintiles, 0.69 for folate, 0.67 for  $B_6$ .
  - -Merchant et al 2003 RR for highest quintile for folate 0.67



# Low plasma vitamin B<sub>6</sub> associated with increased CAD risk

|                | Unadjusted           | Model 1         | Model 2         | Model 3        |
|----------------|----------------------|-----------------|-----------------|----------------|
| OR<br>(95% CI) | 1.71 (1.26-<br>2.32) | 1.61<br>(1.05-  | 1.73<br>(1.11-  | 1.89<br>(1.18- |
| (95% CI)       | 2.32)                | (1.05-<br>2.45) | (1.11-<br>2.72) | (1.1<br>3.03   |

Model 1: adjusted for major risk factors Model 2: plus inflammatory markers Model 3: plus tHcy, vitamin B<sub>12</sub>, folate



### Intakes of folate and B<sub>6</sub> associated with CHD risk

| Quartiles<br>of intake | 1   | 2    | 3    | 4    | 5    | P for<br>trend |
|------------------------|-----|------|------|------|------|----------------|
| Folate<br>RR           | 1.0 | 0.86 | 0.86 | 0.78 | 0.69 | 0.003          |
| Vitamin<br>B6<br>RR    | 1.0 | 0.92 | 0.86 | 0.88 | 0.67 | 0.002          |





# B vitamin interventions and clinical outcomes

- Very few trials
- Usually patient groups and moderate to high B vitamin intakes (usually folate and  $B_6$ )
  - Vermeulen et al 2000; 2004 showed folate plus B6 lowered markers of atherosclerosis
  - Doshi et al 2001 showed improved endothelial function in CAD patients, with high dose folate



# Do B vitamins have homocysteineindependent effects on CVD?





| High o           | lose folate and endothelial<br>function                                       |
|------------------|-------------------------------------------------------------------------------|
| Participants     | 52 CAD patients<br>double-blind placebo-controlled crossover                  |
| Protocol         | 6 weeks of 5mg folic acid or placebo with<br>16weeks washout                  |
| 📫 Endpoint       | endothelial function (FMD)                                                    |
| Result           | impaired FMD improved, and increased plasma folate but also reduction in tHcy |
| Doshi et al 2001 |                                                                               |



# Hey independent effects of folate on endothelial function

- 10 CAD patients
- 5-MeTHF infused at 50µg/min for 30 mins
- Endothelial function measured as FMD
- FMD improved over 30 mins, no reduction in plasma tHcy
- Folate acts directly on endothelial function, independent of homocysteine lowering effect

Ooshi et al 2002





## Conclusions

- Milk makes a useful contribution to the dietary intake of B vitamins
- Milk intake declines with increasing age in young people
- Folate, pyridoxine, riboflavin, and vitamin B<sub>12</sub> all contribute to homocysteine metabolism
- Homocysteine-lowering may have vascular protective effects
- There may be homocysteine-independent protective effects of some B vitamins