



# **The Problem**

Microbiological contamination costs the NZ food industry many millions of dollars annually

Food poisoning alone costs about \$100m annually – MAF 1994



### Life As a Bacterium

- The "normal" mode of growth of bacteria is in films on surfaces at an interface
  - May be a few micrometres thick or several mm
  - Modern food processing equipment has many surfaces suitable for colonisation
    - Stainless steel, glass, plastics, rubber, even PTFE
- Conditions in the film are quite different from planktonic (free floating) environment
  - Major portions of genome may switch on or off when cells attach to surface
    - 525 proteins in Alcaligenes change expression over time



# **Definition: Biofilm**

An aggregation of microbial cells and their associated extra-cellular polymeric substances, actively attached to, growing and multiplying on a surface

If the organisms are sporeformers, 10% of the film cells may be in the spore form Sara Scott



# Thermophilic Bacillus Biofilm



## Advantages of Life in a Biofilm

- · Concentration of nutrients increased at surface
- · Decreased turbulence and scouring
- · Diffusion of exoenzymes decreased
- · Possibility of organization through signaling
- Transfer of genetic information resistance genes
- · Protection from bulk phase environment
  - Toxins, detergents, sanitizers, antibiotics



# Biofilm Life Cycle Growth Modification of gene expression Biotransfer to product flow Massey University

# Microorganisms in the Food Industry

- · Increasing evidence of biofilm involvement
  - rapid development in process lines
  - premature shutdown (forced or commanded)
  - increased operational costs
  - reduced profitability
  - interactions of species
    - Increased Listeria attachment and survival with Pseudomonas or Flavobacterium
    - · Campylobacter forms films with Enterococcus



# **Process Biofilms**

- Industrial processes may select populations
- Single species often predominates (10<sup>7</sup>.cm<sup>-2</sup> after 12 h)
- Growth may be very rapid ( $t_d = 18-24 \text{ min}$ )
- High numbers in product (10<sup>6</sup>.mL<sup>-1</sup>)
- · Different behaviour from "classical biofilms"





# **Biotransfer - Practical Significance**

- · Milk evaporator with perfectly clean surface
  - Inflowing milk <<100 thermophiles.mL<sup>-1</sup>
  - Mean residence time 20-30 mins
  - Outflowing milk up to 10<sup>6</sup>.mL<sup>-1</sup> within 18h
  - Microorganisms MUST have come from cells immobilised on plant surfaces







# **Predictions for Growth**

| Stage          | Separation | Preheat | 1 <sup>st</sup><br>Effect | 2 <sup>nd</sup><br>Effect | 3 <sup>rd</sup><br>Effect | 4 <sup>th</sup><br>Effect | Milk<br>Concentrate |
|----------------|------------|---------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------|
| Temp. (°C)     | 45-55      | 10-120  | 69-71                     | 63-66                     | 54-58                     | 45-50                     | 40-58               |
| A <sub>w</sub> | ~1.00      | ~1.00   | >0.97                     | >0.97                     | >0.97                     | ~0.97                     | 0.95                |
| B12-CM         | ~          |         | ×                         | ×                         | ~                         | ×                         | · x                 |
| B13-AM         | ~          | ~       | ×                         | ~                         | ~                         | ×                         | ×                   |
| B22            | ~          | ~       | ×                         | ×                         | ~                         | ~                         | ~                   |
| TP13b          | ~          | ~       | ×                         | ~                         | ~                         | ×                         | ×                   |

Pandeledis, Flint & Brooks, 2001, unpublished



# Removal & Control

- Biofilm cells may be very resistant to cleaning or sanitizing chemicals
- Evidence of greater heat resistance (?)
- Routine CIP cycles may not remove all cells
- Seeding or improved adhesion
  - If cleaning done *properly* total elimination *is* achievable
- · Surface roughness affects cleanability
- Use of enzyme cleaners may be more effective than acid or alkali



# **Experimental Study**

- Bacillus flavothermus from milk powder plant Morgan
- Biofilms generated on cold-rolled 316 stainless steel with 2B finish – standard dairy plant material
- Treated with chemicals by agitation in tubes (lab scale) or under turbulent conditions in a pilot scale cleaning rig (Re>2000)



# Pilot Plant Cleaning Rig Robins Device Heat exchanger Massey University















## **Prospects in Biofilm Control**

- Plant surface modification
  - Inhibition of attachment
    - Metalurgy ion implantation, UGI-clean "Hygienic Stainless"
    - Surface finish electropolishing
    - Passive coatings
    - · Electrical currents
  - Active coatings
    - Bound enzymes e.g. lysozyme



- Intelligent Plant Operation
  - Minimize area or time at optimum growth temperature
  - Temperature spike or "wave"
- Interference with biofilm organisation
  - Quorum sensing signals
  - Phage attack



# **Summary**

- · Biofilms form within processing equipment
- Proper CIP procedures can remove the films
- Peracetic acid/Hydrogen peroxide sanitizers can kill remaining spores
- Presence of organic matter significantly reduces effect of most sanitizers
- Damaged seals, dead flow areas or remaining fouling can protect bacteria from cleaning agents
- Intelligent operation of plant to deny niche
- Application of new knowledge and technology for control

