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Overview

• Fundamentals of Ultrasonics
• Ultrasonics in the Production Cycle
• Ultrasonics in the Cleaning Cycle
• Ultrasonic Effects on membranes and milk
• Conclusions and Future Work

Fundamentals of Ultrasonics
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Standing Wave Patterns

Bubbles smaller than the resonance size 
accumulate at the pressure antinodes, larger 

bubbles accumulate at the nodes
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Power Ultrasound can:

– Provide vibrational energy
– Agglomerate particles or bubbles 
– Disperse particles
– Scour surfaces through cavitational collapse

Experimental Equipment
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Low Power Delivery

• Power to bath water – 20 W per litre
• Power to membrane – 2 W per litre
• Alfoil test shows minimal cavitation
• Peroxide test shows no free radical 

formation

Ultrasonics in the Production 
Cycle
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Steady State flux after 4 hours permeation of 6% whey at 
300 kPa transmembrane pressure
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Effect of Spacers
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Steady State flux after 4 hours permeation of 6% whey at 
300 kPa transmembrane pressure

Effect of Trans-membrane Pressure
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Steady State flux after 4 hours permeation of 6% whey at 
540 ml/min with no spacers

Combined Pore Blockage and Cake Filtration Model
Developed by Ho and Zydney
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Steady State flux after 4 hours permeation of 6% whey at 
300 kPa transmembrane pressure with spacers

Cake Resistance
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Intermittent Ultrasound is Ineffective
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Permeation of 6% whey at 55 kPa with no spacers
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Ultrasonics in the Cleaning Cycle
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Cleaning Efficiency Improves

Cleaning with water only for 10 minutes. Unit contains spacers.

30 minutes fouling with 6% whey at 300 kPa
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Effect of Surfactant

Cleaning at neutral pH for 10 minutes at 55 kPa. 
30 minutes fouling with 6% whey at 55 kPa 60
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Alkali Cleaning Cycle at Ambient Temperatures

Cleaning with 6 mM SDS for 10 minutes at 55 kPa. 
30 minutes fouling with 6% whey at 55 kPa
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Temperature Effects

Cleaning with no surfactant at pH 12  for 10 minutes at 
55 kPa and 970 ml/min feed flow. 

30 minutes fouling with 6% whey at 55 kPa

Ultrasonic effects on membranes 
and milk
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Membrane Life

• No change in clean water flux over many months of 
experiments

• No evidence of membrane damage

a ba b

Damage to Dairy Solutions

• No change in soluble protein composition
• No change in particle size distribution
• Literature indicates that some denaturation

of whey proteins can occur at above 
ambient temperatures 

Preliminary Economic Analysis

• Application to production cycle has potential 

• Application to cleaning cycle in isolation is unlikely to be 
economic but may be warranted for triple bottom line

• Capital cost of transducers is a significant contributor

Conclusions

• Production cycle enhancement factors of  
1.2 to 1.7 

• Some benefits during the cleaning cycle
• No damage observed to membranes or 

whey solutions
• Low power delivery is the key

Future Work

• Full size Spiral Wound Unit to be built at 
Food Science Australia

• Economics to be further developed


