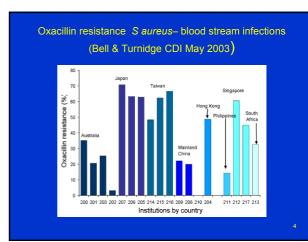
Antibiotic resistance – intensive vs. extensive industries

Professor Mary Barton
University of South Australia

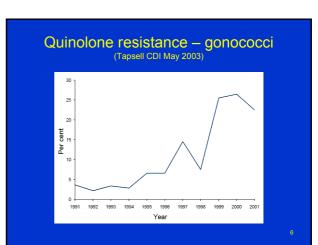
1


Outline

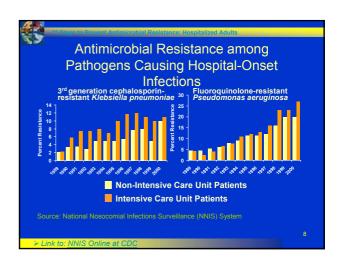
- · Human health concerns
- · Link between animals and humans
- · Patterns of use & emergence of resistance
- · Intensive industries
- · Extensive industries
- · Dairy industry
 - Adult cattle
 - Calf rearing units
- · Future directions & conclusions

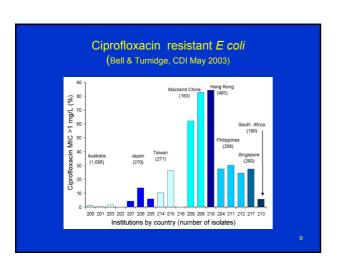
2

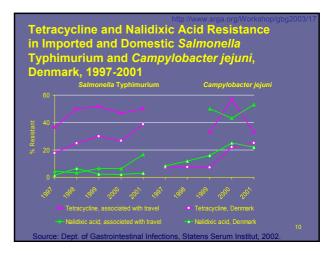
Human health concerns


- Major issues multi-resistant S aureus (MRSA), vancomycin resistant E faecium & E faecalis (VRE), multi-resistant Gramnegative infections, resistance in pneumococci & gonococci, multi-resistant tuberculosis
- Lesser issues resistant enteric bacteria multi-resistant salmonella & E coli, fluoroquinolone resistant campylobacter

Pen resistant blood stream isolates S pneumoniae (Bell & Turnidge CDI May 2003)

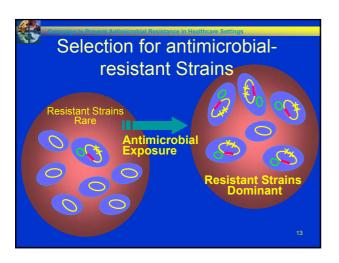

Output


Outpu



WHO Press release - 16 March 2004

 WHO's leading infectious disease experts estimate there are 300,000 new cases per year of MDR-TB worldwide. There is also new evidence proving drug resistant strains are becoming more resistant, and unresponsive to current treatments. 79% of MDR-TB cases are now "super strains", resistant to at least three of the four main drugs used to cure TB.



Links between animals & humans — spread of antibiotic resistant bacteria & genes Surface water — Culture for disease prevention and treatment — Food animals — Food animals — Food animals — Food animals — Food —

Inappropriate use of antimicrobials in human medicine is the major driver of human resistance problems Animal use is generally of less importance vanA type VRE – use of avoparcin Streptogramin (Synercid^R) resistant VRE – use of virginiamycin Fluoroquinolone resistant campylobacter, *E coli* & salmonella Multi-resistant salmonella & *E coli* – eg Salmonella Typhimurium DT 104 Macrolide resistance in enterococci, campylobacter – tylosin &

3rd generation cephalosporin AmpC resistance in salmonella –

other macrolide use in animals

Patterns of use

- Long term low concentration → selects for antibiotic resistant strains
- Higher concentrations tend to kill sensitive bacteria = less selection for resistance
- In agriculture growth promotant use patterns tend to select for resistance:
 - Avoparcin → vancomycin resistance
 - Virginiamycin → Synercid^R resistance
 - Tylosin → macrolide resistance???
- Inappropriate prophylactic use patterns can also be a problem

14

Patterns of use

 Emergence of a problem with resistant strains in humans is a 2-step event:

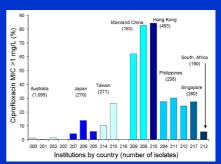
Eq vancomycin

- Avoparcin use in animals → avoparcin/vancomycin resistant *E faecium* (VRE) in gut of animal → carcass contamination → VRE in gut of human. No problem – but...
- If human goes to hospital & treated with vancomycin VRE in the gut selected & patient ends up with a VRE infection
- Note that this only applies to vanA VRE and not vanB VRE which is the major problem in Australian hospitals

15

Transfer of resistance

- Bacteria have the capacity to pass resistance genes from one to another
- Occurs frequently
- Often involves plasmids or other genetic elements which can carry multiple resistance genes
- Co-selection of resistant strains occurs where resistance genes are co-located on the some piece of DNA
 - Use of one antibiotic will select for strains resistant to all the antibiotics on that same piece of DNA
- The gut is an ideal environment for gene transfer eg
 - Enterococci ↔ enterococci
 - E coli ↔ E coli ↔ salmonella
 - Non-cultivable bacteria as reservoirs of resistance genes ↔ gut commensals & pathogens


16

Intensive industries

- · Use more antibiotics
- Use more growth promotants low dose regimens to prevent/control chronic diseases
- Opportunities for close contact between animals increases chance of spread of bacteria between animals
- Associated most frequently with problem organisms (VRE, fluoroquinolone resistant campylobacters & E coli)

Ciprofloxacin resistant *E coli*

(Bell & Turnidge, CDI May 2003)

17

Extensive industries

- Previously not under such close scrutiny
- Less antibiotics used (generally)
- Growth promoter/production enhancers not used as much
- Some changes
 - Fluoroquinolone use (overseas)
 - Ceftiofur use

19

Dairy industry - adult cattle

- S aureus associated with mastitis no evidence of transfer of resistance to humans
- Virginiamycin use to control lactic acidosis
- Ceftiofur originally registered for respiratory disease; clearly also used offlabel for foot rot & other conditions
- Little resistance in cattle respiratory pathogens, but

20

Ceftiofur

- 3rd generation cephalosporin key class of antimicrobials in human medicine
- Found to be associated with emergence of multi-drug resistant salmonella in USA – resistant to ceftriaxone & up to 5 other antibiotics
 - Specific gene (AmpC CMY-2 β-lactamase)
 - Transfers from one organism to another (plasmid)
 - found in human, cattle, pig isolates
 - Increase in resistance from 0.1% to 2% in human isolates in USA over 5 years 1996 - 2001
 - Same strain in sick child & cattle
 - Now reported in Canada, Eastern Europe, Thailand, UK in E coli as well as salmonella
 - Australia??

21

Calf rearing units

- · Stressed calves
- · Little or no colostrum
- Poor hygiene
- Scours & pneumonia
- Wide range of antimicrobials used multiple resistant E coli, salmonella common
 - Sometimes resistant to all available antibiotics

22

Future directions and conclusions

- The goal must be to reduce antibiotic resistance
 - Human health
 - Animal health
 - Cost of production

Strategic approach – the "5 Rs"

- · Reduce the quantities of antibiotics used
- Refine the way in which antibiotics are used
- Replace antibiotics with alternative disease treatment/control strategies
- Reverse resistance cause a decline in the resistance of resistant bacteria
- Research "resistant proof" antibiotics

25

2

Conclusions

- Antimicrobial resistance is an issue for both extensive & intensive animal industries
- AMR is also an issue for the dairy industry
- There are strategies available to address the issue
- Medical, consumer, veterinary/agriculture & farmer groups must cooperate to attack the problem

25