Selenised dairy protein and colon cancer prevention

Graeme McIntosh

CSIRO Health Sciences & Nutrition Adelaide, South Australia

Selenium 34 -essential nutrient

- Essential trace element –for birds and mammals, selenocysteine-21st amino acid in functional proteins/enzymes
- Food sources: wheat/yeast selenomethionine, or milk/eggs/meat - selenocysteine, or Organic Selenium Compounds eg allicin in garlic, isothiocyanates in cruciferae (broccolli)

$$\begin{array}{c|c} 0 & H_{i,N^*} & S\xi_{CH_{3}} \\ \vdots & \vdots & \vdots \\ S_{i} & O_{i} & CO_{i} \\ Sodium selenate & Selenomethionine Methylselenocystein \\ \end{array}$$

Selenoproteins (35) and functions

Selenoproteins	Functions
Glutathione peroxidase (GPx1-4)	Antioxidant function in plasma and tissues, reduce oxidative damage
Sperm mitochondrial membrane selenoprotein	Phospholipid-GPx (GPX4) protects sperm
Thioredoxin reductase	Reduces nucleotides in DNA synthesis,
Iodothyronine deiodinase	maintain cellular redox state, Energy metabolism- activate thyroid hormone (T3) from T4
Selenoprotein P	Plasma-protects endothelium, Se storage
Selenoprotein W	Redox? muscle, brain
Selenoprotein (15kd)	Redox function, prostate, thyroid

Selenium: human health and well being

Deficiency could result in:

- Muscle (including heart) myopathies- (eg Keshan disease in China), Increased ischaemic heart disease risk?
- Diminished thyroid function
- Altered mood states-depression, anxiety, confusion, hostility
- Poor immune status-viral infections/cosackie viruscardiomyopathy, AIDS
- Infertility- male sperm motility, female -miscarriages
- Increased cancer risk

Selenium and cancer prevention

- Antioxidant enzymes responsible for peroxides and free radical removal
- Redox state -Repair of cell components (DNA) damaged by free radicals
- Inhibits activation of oncogenes, eg c-myc
- Induces apoptosis via P53 tumour suppessor gene
- Increases immunity eg N K cell activation
- Detoxification systems –phase 1 & 2 enzymes

Form in which Selenium is ingested could have significant influence

Metabolic pathways of Se compounds Selenite Se-methylselenocysteine Plant foods Selenomethionine GS-Se-SG Selenomethionine GS-Se-SG Selenomethionine Selenophosphate Selenophosphate

International selenium intake data Australian RDI (1990) – 70-85µg/d

	μg Se/day	
New Zealand	38	
Sweden/UK	40	
France	47	
Italy	49	
Netherlands	67	
Australia	70 ?	
Finland	98	
USA	113	
Japan	133	

nb Selenium has never been included in any Australian diet nutrient survey

Human plasma selenium status

Tasmania 77±13)(Daniels et al, 2000) South Australia 88±20

Australia 94 (Lyons et al 2003)

New Zealand 60--88 (Thompson, 2004) Finland 1970 > 1985 50 > 100 (Aro, 1999)

• USA 106-120 (Clark et al 1996)

Deficiency status < 85 ug/L (plasma) (Shortt et al 1997)

 Plasma Se − 100 ug/L for optimal GsPx activity (Rayman, 2000)

DNA stability and serum Se in high risk group for prostate cancer (NZ)

For half of male population with serum Se below 98ug/L, serum levels showed a significant inverse relationship with overall accumulated DNA damage in leucocytes, suggesting increased susceptibility to cancers and some other degenerative diseases

Karungasinghe et al (2004) Cancer Epidemiol Biomarkers Prev 13:391

Selenium anticancer intervention trial

- Nutritional Cancer Prevention Trial- USA multicenter placebo controlled, double blind involving 1312 patients presenting with skin basal cell or squamous carcinomata
- Background selenium intake of 90ug/day
- 200ug Se per day supplement as selenised yeast over 4.5 years and 6.4 year follow up period (1983-1994)
- Primary end point- non melanoma skin cancer
- Secondary end points- total cancer incidence, prostate, colorectal and lung cancers

Clark, L.C. et al. (1996) JAMA 276: 1957-1963

Relative risk of cancers in placebo and Se treated subjects

No beneficial effect seen in skin cancer expression,

total cancer mortality reduced by 41%. Clark et al. (1996) JAMA 276: 1957-196

Cancer risk relative to commencing plasma selenium concentration

NCP intervention trial -200ug Se /day as yeast for 4.5 yrs, 6.5 yrs follow up

Plasma Se	Cases	Controls	RR*	p
<106	28	56	0.52	0.005
106-121	39	49	0.64	0.40
>121	45	41	1.00	0.99

Relative Risk for lung, colon and prostate cancers

Rayman and Clark (2000) TEMA10

Selenium in dairy milk & products

	Selenium	Protein	
	(ppb)	(%)	
Whole milk	17.5	4.0	
Full cream milk powder	179	26.0	
Casein	362	63.5	
Whey	212	58.0	
Casein/ colon cancer study	2310	54	
Commercial casein (Aust)	143	85.0	

Rat colon cancer (AOM induced) study using Se rich casein

- 25 male SD rats per treatment group
- Tumour induction 2 x 15mg/kg AOM doses S/C one week apart
- Experimental AIN diets, post induction

© Evaluate tumor incidence/burden/TMI*/malignancy (Dukes classification) at necropsy TMI * =tumor mass index

Possible mechanisms of selenium in cancer chemoprevention

- Modulating tumour suppressor gene P53 -initiates apoptosis
- Inducing cell oxidative changes in mutated cells which triggers apoptosis
- Inducing Fas ligand and Jun NH2-terminal kinasemediators of apoptosis
- Inhibiting protein kinase C, reacting with S groups of catalytic domain- critical intracellular signal molecule in cell proliferation
- Binding nuclear regulatory transcription factors- eg Nuclear Factor κB
- Modulating phase 1 and 2 enzyme activities-carcinogen inactivation
- Inhibiting matrix metalloproteinases and tumour vascular endothelial growth factor production – blocking angiogenesis

Nutrition and Cancer (2001)- V40:1

Conclusions

- Selenium has significant cancer inhibiting effect rat cancer studies, human intervention studies and epidemiological studies show Se status is related inversely to cancer risk
- Colon cancer (AOM induced) in rats was significantly reduced when fed 1ppm Se as casein, not seen in rats fed Se yeast at 1 or 4 ppm. Reduced colon crypt height in Se casein rats was inversely related to plasma selenium status
- Australians and New Zealanders may be marginal for Se status in a significant proportion of mature population; evaluated by some relevant biological markers of health and selenium status
- To optimise anticancer benefits intakes exceeding several fold current RDI (50 μg/d) may be required. Identify specifically Se rich foods or food fortification with Se.
- Dairy foods appear to offer a potentially beneficial option

Acknowledgements

- Peter Royle and Ben Scherer
- Alltech Biotechnology Pty Ltd-Selplex™
- Dairy Australia-supporting research
- Food Science Australia- casein production
- Dr Peter Doyle and Glen Walker Department of Primary Industries-Vic

Wheat selenium and colon cancer prevention – ACF data

- •Aberrant crypt foci (ACF) preneoplastic lesions / colon cancer risk biomarker
- Chemically induced in rats by azoxymethane (AOM)
- Methylene blue stained & visible under low power microscopy

0.1 ppm Se wheat	0.5 ppm Se broccoli + Se wheat	2.0 ppm Se wheat	2.0 ppm Se wheat (1.5ppm) +Se broccoli (0.5ppm)
76 ^b	82 ^b	50ª	57 ^{ab}
180 ^b	198 ^b	125ª	152 ^{ab}
2.4	2.4	2.5	2.7
	Se wheat 76 ⁵ 180 ⁶	Se wheat Se broccoli + Se wheat 76b 82b 180b 198b	Se wheat Se broccoli + Se wheat Se wheat 76b 82b 50a 180b 198b 125a

Finley & Davis (2001) BioFactors 14:191-190