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Fecha de entrega del Informe

Nombhre del coordinador de la gjecucion

EDMUNDOQ ACEVEDOQO HINOJOSA

Firma del Coordinador de la Ejecucion

1. ANTECEDENTES GENERALES DE LA PROPUESTA
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Entrenar a un grupo de profesionales del agro que se desempefien en agencias ptiblicas y
privadas de docencia, investigacion y extension en el uso de las nuevas técnicas de analisis
estadistico muitivaniado.

Objetivos Especificos:
+ Contrastar disenos de experimentos repetidos y no repetidos.
» Realizar analisis espaciales y de interaccion GXE.
« Conocer y aplicar modelos lineales-bilineales para estudio de estabilidad.
s Conocer {a estructura y uso de biplots y sus aplicaciones.,
+ Estudiar los modelos SHMM y SREG para agrupar ambientes y genotipos sin interaccion.
Estudiar ia GXE de entrecruzamiento.

Se reunidé un grupo diverso de profesionales del agro que trabajan en instituciones de
investigacion y Extensién Publicas y Privadas (U. de Chile, U. de Valdivia, iNIA, Semillas
Pioneer Chile Ltda.,, Semilias CIS), junto a estudiantes de pregrado y postgrado. Estas
personas trabajan en el area del mejoramiento genético y seleccion de variedades, por lo que
los conocimientos adquiridos durante el curso seran de gran utilidad en la mejor comprensiéon
de la informacién cbtenida de sus ensayos.

Los Objetives Especificos planteados al inicio del curso, que comespondian a las materias a
tratar, se& cumplieron a cabalidad.
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Usar de manera mas eficiente de la informacion de ensayos de experimentacion agricola, ya
sean de investigacion o de extension. Esto permitira un avance mas rapido y preciso de [a
investigacion agrondémica. Los participantes se invitaran con el criterio de que a través de su
labor difundan estas técnicas con rapidez en el pais.

Los asistentes se introdujeron en las técnicas de analisis estadistico de punta, las que se

perfeccionardn mediante la aplicacién practica en los distintos niveles de trabajo de cada uno.
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La diversidad de origen de los asistentes asegura el uso de estos conocimientos a nivel de
docencia e investigacion.

Establecimiento de un vinculo permanente entre el Dr. José Crossa y los participantes, de
manera de interactuar con él frente a dudas, problemas de aplicacidn o interpretacion,
referentes al curso o a otras materias estadisticas.
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Los asistentes cuentan con una herramienta mas de analisis que les facilitara la interpretacion ||

de la informacién de campo, en particular la interaccion Genotipo x Medioambiente. A futuro
les permitira hacer disefios de campo mas eficientes en la estimacion del efecto ambiental.

El curso fue una introduccion a técnicas avanzadas de analisis estadistico, y en la medida que
se empiecen a utilizar seria necesario una profundizacion de los conceptos que se entregaron,
lo que justificaria una nueva visita del Dr. José Crossa.
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Fecha Actividad Objetivo Lugar
12/10/2004 | Dissfio de experimentos repetidos Blogues Area de Computacion Facuitad
completos de Ciencias Agronomicas,
Bloques incompletos: Universidad de Chile
- lalice tradicionales
- alphalatices
- hileras-columna
- lalinizados
Ejemplo del uso de |alice en ensayos de
maiz en condiciones de sequia
12/10/2004 | Diseric de expeiimento no repetidos Area de Computacion Faculiad
L por que? cuando y ¢como? de Ciencias Agronomicas,
Universidad de Chile
12/10/2004 | Analisis espacial Area de Computacion Facultad
Modelo autoragresive en el sentido de las de Giencias Agronomicas,
hileras y las columnas Splines y olros Universidad de Chile
13/10/2004 | Interaccion GXE Area de Computacion Facuitad
de Ciencias Agronémicas,
Universidad de Chile
13/10/2004 | Modelo de regresion simple para estudiar la Area de Computacion Facultad
astabilidad de genotipos de Ciencias Agrondmicas, .
Universidad de Chile
13/10/2004 | Modelo lineales-bilineales para estudiar la Area de Computacién Facultad
estabilidad de genotipos de Ciencias Agronomicas,
Universidad de Chile
13y 14 Biplots ds los modelos lineales-bilineales Area de Computacion Facultad
10/2004 de Clencias Agronomicas,
Universidad de Chile
14/10/2004 | Los modeles SHMM y SREG para agrupar Area de Computacion Facultad
ambientes y genotipos sin inleraccion de Ciencias Agrondmicas,
Universidad de Chile
14/10/2004 | GxE ds enfrecruzamiento Area de Computacion Facultad

de Ciencias Agronomicas,
Universidad de Chile
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Institucion/ P
Empresa/Organi- Contacto Cargo Fono/Fax| Direccion E-mail
‘ zacion
Instituto de
(63} 221723 | Produccion y ) ;
Universidad Austral Daniel Calderini Prafesor Fax: Sanidad Vegetal, fgﬁﬁﬁn
(63} 221233 | Campus Isla Teja, '
Valdivia. X Region
Coordinador &
. Investigador del 02-7575154 | Santa Rosa 11610, | gsaavedr@p!
Bl Babal Bamar Depto. de Hortalizas y | 02-5417667 | La Pintana atina.inia.cl
Cultives
, ; » gaston.delar
pemiles lonest (e | Gastin Delard 3622337 d@pioneer.c
2 om
Semillas CIS Ltd Rodrigo Carvach aJr? feslzr?r%?a o0s5193 |7 ElBosqueNerle | rearvacho@e
ik o - i Al | e 0440, piso 8 ischile.cl
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Uinlofcontelinformeltecn cofseldeverentregaguilcefdeliodolelimaterialliecopiladoydlizante]ia
actividadideftormacionl(escritclyiatidicvistiaifoidenadofdelaclierdofallcladiofqticlselpresenta
falcontintiacionl(cebenisenalarselaatflaskiotogiafiastnceipetadasientel[plin (GL)s

Tipo de Material N° Correlativo (sies Caracterizacion (titulo)
necesario)
1 Crossa, J., Comelius, P.L. and Weikai Yan.

2002. Biplots of Linear-Bilinear Models for
studying crossover genotype environment
interaction. Crop Science 42:619-633.

2 Vargas, M., Crossa, J., Sayre, K., Reynolds,
M., Ramirez, M. and Talbot, M. 1998.
Interpreting Genotype x Environment
interaction in wheat by Partial Leasl Squaras
regression. Crop Science 38:679-689.

Linear-Bilinear models for the anaiisis of
Genotype-Environment inferaction. 20602,
Crossa, J. and Comeiius, P.L. In: Quantitative
Genetics, genomics and Plant Breeding. M.S
Kang {Eq).

4 Trethowan, R., Crossa, J., Van Ginkel, M. and
Articulo Rajaram, 5. 2001. Relationships among Bread
Wheat International Yield Testing Locations in
Dry Areas. Crop Sci. 41,1461-1469.

5 Yan, W., Comelius, P, Crossa, J.and L. A
Hunt. 2001. Two Types of GGE Biplots for
analyzing Multi-Environment trial data. Crop
Sci. 41:656-663.

& Vargas, M., Crossa, J., Van Eeuwiik, F.,
Ramirez, M. and Sayre, K. 1899, Using partial
Least Squares Regression, Faclorial
Regression, and AMMI Models for interpreting
Genotype x Envircnment interaction. Crop Sei.
39:855-967.

Crassa, J., Van Eeuwijk, F., Comnelius, P. and
7 Vargas, M. Linear, Bilinear rmodels for
analizing Genolipe x Envronment interaction.

Foto

User's guide for spatial analysis of
Libro (manual) field variety trials using ASREML.
A. Cadena, J. Burguefio, J. Crossa
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4. PROGRAMA DE DIFUSION EJECUTADO
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Actividad realizada:
Curso

Fecha;
12 al 14 de Qctubre de 2004

Temas tratados:
Diserio estadistico, Interaccion Genotipo x Medioambiente, Analisis espacial, Analisis de
estabilidad de rendimiento, Andiisis de componentes principales, Biplots (AMMI, SREG).

Asistentes:

Participaron de este curso 24 personas, entre los que se cuentan profesionales que trabajan
en investigacion, Mejoramiento Genetico y Seleccion de variedades. Estos pertenecen a
distintas instituciones, publicas y privadas. Ademas participaron estudiantes de pregrado de la
carrera de Ingenieria Agrondmica de la Universidad de Chile, estudiantes de postgrado del
programa de Doctorado en Ciencias Silvoagropecuarias de la U. de Chile y del Programa de
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Magister de la U. Austral

Instituciones asistentes:

Instituciones Publicas: Facultad de Ciencias Agrondmicas de la Universidad de Chile, Facultad
de Ciencias Forestales de la Universidad de Chile, Facultad de Ciencias Agrarias de la
Universidad Austral, instituto Nacional de Investigaciones Agricolas (INIA).

Instituciones Privadas: Semillas Pioneer Chile Ltda. y Semillas CIS.

Expositor:
Dr. José Crossa, Jefe de la Unidad de Biometria y Estadistica del Centro Internacional de
Mejoramiento del Maiz y Trige (CIMMYT), México.

Tipo de Invitacion:
Las invitaciones fueron dirigidas, de manera de reunir a profesionales y académicos que se
enfrenten a la problematica de la interpretacion de la interaccion Genotipo x Medioambiente.

Mateviallentregadolenliasfactividadestdeldifusion

Entregaduollistadofde imatenalkelaboradolyldistiblidcRconimotivoXdefiafactividadfolm atetial
encliovisnel cdilis came viebe, deleshen, e cires.,

AdemasHiseldepelenticgardacintofaifinioimeRingseifcdeliodofelfnatenfentiegadofenias
(Escritofyfaudiovistaifoicenadoldefaciedofallctadiolguelselpresental
alcontinliacions

liambienlseldebentad lintaigotogialias ab gesanoliadaMEmatenal
Sefcebelad intagentomalimpic saplenlunlmediolnagneticol(disgueteldiscelcempacta)s

Tipo de material Nombre o identificacién Preparado por Cantidad

Disco compacio Clases dictadas por el Dr. José Crossa 1
Crossa

Disco compacio | Ejemplos de conceptos José Crossa 1

entregados en clases, programa
estadistico ASREML (version
libre}, ejercicios practicos de
aplicacion de conceptos.
Articulos relacionados y manual
de uso del programa estadistico
escrito por el Dr. Crossa.
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Nombre ) |Ecimundc'
Apeliido Paterno Acevedo
Apellido Materno Hinojosa

RUT Personal

Direccién, Comuna y Regién

Santa Rosa 11315, La Pintana. Reg. Metropolitana

Fonec y Fax

(2) 678 5858

E-mail

eacevedo@uchile ¢l edmundoacevedo@vtr.net

Nombre de la organizacién, empresa o
institucién donde trabaja / Nombre del
predic o de la sociedad en caso de ser
productor

Universidad de Chile, Facultad de Ciencias
Agronomicas

RUT de la organizacion, empresa o
institucion donde trabaja / RUT de la
sociedad agricola o predic en caso de ser
agricultor

Cargo o actividad que desarrolla

Profesor titular
Rubro, area o sector a ia cual se vincula o Agronomia
en la que trabaja
2
Nombre Paola
Apellido Paterno Silva
Apellido Materno Candia

RUT Personal

Direccion, Comuna y Region

Fono y Fax

Santa Rosa :11315, La Pintana. Reg. Metropolitana

(2) 678 5858

E-mail

psilva@uchile.cl

Nombre de la organizacion, empresa @
institucién donde trabaja / Nombre del
predio o de la sociedad en caso de ser
productor

Universidad de Chile, Facultad de Ciencias
Agrondmicas
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RUT de Ila organizacidn, empresa o
institucidon donde trabaja / RUT de la
sociedad agricola o predio en caso de ser
agricultor

Cargo o actividad que desarrolla

Profesor asistente

Rubro, area o sectorala cual se vincula o Agronomia
en la que trabaja

3

Nombre Herman
Apellido Paterno Silva
Apellido Materno Robledo

RUT Personal

Direccién, Comuna y Regién

Santa Rosa 11315, La Pintana. Reg. Metropolitana

Fono y Fax

(2) 678 5858

E-mai!

hsilva@uchile.cl

Nombre de la organizacién, empresa o
institucién donde frabaja / Nombre del
predio o de la sociedad en caso de ser
productor

Universidad de Chile, Facultad de Ciencias
Agronomicas

RUT de l!a organizacion, empresa o
institucion donde trabaja / RUT de la
sociedad agricola o predio en caso de ser
agricultor

Cargo ¢ actividad que desarrolla

Profesor asociado

Rubro, area o sector a la cual se vincula o
en la que trabaja

Ecofisiolégia vegetal

4

Nombre Alberto

| Apellido Paterno Mansilla
Apellido Materno Martinez

RUT Personal

Direccién, Comuna y Regién

Luis Durand 40686. Santiago, RM

Fono y Fax

2213861 6785802

E-mail

amansill@uchile.cl

Nombre de la organizacion, empresa o

Universidad de Chile. Fac. Ciencias Agronémicas

3
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institucién donde trabaja / Nombre del
predio 0 de la sociedad en caso de ser
productor

RUT de la organizacidbn, empresa ©
institucién donde trabaja / RUT de la
sociedad agricola o predio en caso de ser
agricuitor

Cargo o actividad que desarrolla

Profesor Titular de Estadistica

Rubro, area o sector a la cual se vincula o
en la que trabaja

Modelos Biclogicos. Biometria

b

Nombre Eduardo Enrigue

Apellido Paterno Martinez
Herrera

Apellido Materno

RUT Personal

Direccion, Comuna y Regidn

Pje. Cosmos 2367, Conchali, Santiago

Fono y Fax

7352296, 6785858

E-mail

emartine@uchile.cl

Nombre de la organizacion, empresa o
institucion donde trabaja / Nombre del
predio o de la sociedad en caso de ser
productar

Universidad de Chile, Facultad de Ciencias
Agronémicas

RUT de la organizacion, empresa o
institucion donde trabaja / RUT de la
sociedad agricola o predio en caso de ser
agricultor

Cargo o actividad que desarrolla

Estudiante Programa de Doctorado en Ciencias
Silvoagropecuarias y Veterinarias de la U. De Chile

Rubro, area o sector a Ia cual se vincula o
en la que trabaja

Rotaciones de Cultivos

5]
Nombre Susana Rebeca
Apellido Paterno Valle

Toledo

Apellido Materno

RUT Personal

Direccion, Comuna y Regidn

Santa Rosa 11.315 La Pintana

12
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Fono y Fax

6785858

E-mail

susanavallet@yahoo.com

Nombre de la organizacién, empresa o
institucién donde trabaja / Nombre del
predio ¢ de la sociedad en caso de ser
productor

Universidad de Chile, Facultad de Ciencias
Agronémicas

RUT de Ila organizacion, empresa ©
institucion donde trabaja / RUT de la
sociedad agricola o predio en caso de ser
agricultor

Cargo o actividad que desarrolla

Estudiante — Tesista

Rubro, area o sector a |a cual se vincula 0
en la que trabaja

Trabajo de Tesis de Ingeniero Agrénomo

7
Nombre Maunicio Felipe
Apellido Paterno Ortiz

Lizana

Apellido Materno

RUT Personal

Direccién, Comuna y Regién

Molina 668, Buin. Regién Metropolitana

Fono y Fax

(2) 678 5858

E-mail

mauricioortiz@chilesat.net

Nombre de la organizacién, empresa o
institucion donde trabaja / Nombre del
predio o de la sociedad en caso de ser
productor

Universidad de Chile, Facultad de Ciencias
Agrondmicas

RUT de la organizacion, empresa o
institucién donde trabaja / RUT de la
sociedad agricola o predio en caso de ser
agricultor

Cargo o actividad que desarrolla

Ingeniero Agrénomo

Rubro, area o sector a la cual se vincula o
en la que trabaja

Resistencia a estrés hidrico

13
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Apeliido Materng

8

Nombre Marcela

Apellido Paterno Opazo
llanes

RUT Personal

Direccién, Comuna y Region

Venezuela 8814, La Florida, Santiago

Fono y Fax

(2) 6785858

E-mail

maoi_opazo@123mail.cl

Nombre de la organizacién, empresa o
institucion donde trabaja / Nombre del
predic o de ia sociedad en caso de ser
productor

Universidad de Chile, Facultad de Ciencias
Agronomicas

RUT de Ila organizacion, empresa o
institucion donde trabaja / RUT de la
sociedad agricola o predio en caso de ser
agricultor

Carge o actividad que desarrolla

Ingeniero Agronomo

Rubro, area o sector a la cual se vincula o
en la que trabaja

Produccién de semillas

Apellido Materno

9

Nambre Juan Manuel

Apellido Paterno Barrios
Martinez

RUT Personal

Direccion, Comuna y Regién

Santa Rosa 11.315 La Pintana

6785857, 6785905

}Fono y Fax

E-mail

ibarrias@uchile.cl

Nombre de la organizacién, empresa o
institucidon donde trabaja / Nombre del
predio ¢ de fa sociedad en caso de ser
productor

Universidad de Chile, Fac. Ciencias Forestales

RUT de la organizacion, empresa o
institucion donde trabaja / RUT de la
sociedad agricola o predio en caso de ser
agriouitor

60.910.000-1
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Cargo o actividad que desarrolla

Profesor adjunto

Rubre, area o sector a la cual se vincula o

Modelos de la Investigacion Operativa.

en la que frabaja Computacion

10

Nombpre Javiera

Apellido Paterno Gonzalez
Cruz

Apellido Materno

RUT Personal

Direccion, Comuna y Regién

Santa Rosa 11315, La_F"rntana, Region
Metropolitana

Fono y Fax

(2) 8785867

E-mail

javigonz{@uchile.cl

Nombre de la organizacién, empresa o
institucién donde trabaja / Nombre del
predio o de la sociedad en caso de ser
productor

Universidad de Chile, Faculiad de Ciencias
Agronomicas

RUT de la organizacidbn, empresa o
instifucion donde trabaja / RUT de la
sociedad agricela ¢ predie en caso de ser
agricultor

Cargo o actividad que desarrolla

Estudiante Programa de Doctorado en Ciencias
Silvoagropecuarias y Veterinarias de la U. De Chile

Rubro, area o sector a ia cual se vincula o
en la que trabaja

Fisiologia de cultivos

11

Nombre Carolina Ivon
Apellido Paterna Rivera
Apellido Materno Montoya

RUT Personal

Direccion, Comuna y Regibén

Algarrobo 7978, La Granja, Santiago

Fono y Fax

5254367 — 97291014

E-mail

criveramont@yahoo.com

Nombre de la organizacion, empresa o
institucién donde ftrabaja / Nombre del
predio o0 de la sociedad en caso de ser
productor

Fac. Ciencias Agronémicas Universidad de Chile
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RUT de f(a organizacion, empresa o
institucién donde trabaja / RUT de la
sociedad agricola o predio en caso de ser
agricultor

Cargo o actividad que desarrolla

Estudiante Ingenieria Agrondmica

| Rubro, area o sector a la cual se vincula o
en la que trabaja

Agronomia

12
Nombre Maria Verdnica
Apellido Paterno i Muftoz

Mufioz

Apellido Materno

RUT Personal

Direccién, Comuna y Region

Pasaje 50 casa 2037, Conchali

Fono y Fax

08-5444603

E-mail

veroagr@hotmail.com

Nombre de la organizacién, empresa o
institucién donde trabaja / Nombre del
predio o de la sociedad en caso de ser
productor

Universidad de Chile, Fac. Ciencias Agronémicas

RUT de la organizacion, empresa o
institucion donde trabaja / RUT de la
sociedad agricola o predio en caso de ser
agricultor

Cargo o actividad que desarrolla

Tesista de Ingenieria Agronamica

Rubro, area o sector a la cual se vincula o

en la que trabaja Rk
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Nombre Carlo César
Apellido Paterno . Montes
Apellido Materno jVerdugo

RUT Personal '

Direccion, Comuna y Regién

Salar de Llamara #10263 La Florida

Fono y Fax

2827691 /08 5172271

E-mail

Carlomontes@hotmail.com

Nombre de la organizacion, empresa o

Universidad de Chile
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institucion donde trabaja / Nombre del
predio 0 de la sociedad en caso de ser
productor

RUT de la organizacién, empresa o
institucion donde trabaja / RUT de la
sociedad agricola o predio en caso de ser
agricultor

Carge o actividad que desarrolia

Estudiante Ingenieria Agronomica

Rubro, 4rea o s_ector a la cual se vincula o Agronomia

en la que trabaja
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Nombre Daniel F.

Apellido Paterno Calderini
Rosso

Apellideo Materno

RUT Personal

Direccion, Comuna y Region

Instituto de Produccion y Sanidad Vegetal,
Campus Isfa Teja, Valdivia. X Region

Fono y Fax

(63) 22-1723 Fax: (63) 22-1233

E-mail

Danieicalderini@uach.cl

Nombre de la organizacién, empresa o
institucion donde trabaja / Nombre del
predio o de la sociedad en caso de ser
productor

Facuitad de Ciencias Agranas, Universidad Austral
de Chile

RUT de la organizaciéon, empresa o
institucién donde trabaja / RUT de Ia
sociedad agricola o predio en caso de ser
agricultor

Cargo o actividad que desarrolla

Profesor

Rubro, area o sector a ia cual se vincula o
en la que traba'a

Fisiologia de cultivos anuales
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Nombre Patricio Alejandro
Apeliido Paterno Sandana

Gomez

Apellido Matemo

RUT Personal

Direccion, Comuna y Region

Colon 577 Coyhaique
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E-mail

patriciosandana@uach.cl

Nombre de la organizacién, empresa o
institucion donde trabaja / Nombre del
predio o de la sociedad en caso de ser
productor

Universidad Austral de Chile

RUT de la organizacion, empresa o
institucién donde trabaja / RUT de Ia
sociedad agricola o predio en caso de ser
agricultor

Cargo o actividad gue desarrolla

Estudiante de Magister en Ciencias Vegetales

Apellido Materno

Rubro, area o sector a la cual se vincula o | Agronomia

en la que trabaja
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Nombre Claudia Isabel

Apellido Paterno Harcha
Cortés

RUT Personal

Direccién, Comuna y Regién

Campus Isla Teja s/n

‘ Secretaria: (63) 221232
'Fono y Fax Fax: (63) 221233

| Celular. 0-94515395
E-mail claudiaharcha@uach.cl

Nombre de la organizacion, empresa o©
institucion donde trabaja / Nombre del
predic o de la sociedad en caso de ser
productor

Universidad Austral de Chile

RUT de la organizacion, empresa o
institucion donde trabaja / RUT de Ila
sociedad agricola o predio en caso de ser
agricultor

Cargo o actividad que desarrolla

Estudiante de Magister en Ciencias Vegetales
Mencidn Fisiologia Vegetal

Rubro, area o sector a la cual se vincula o
en {a que trabaja

Agricultura
Investigacién
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Nombre

|Erika Roxana
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Apellido Paterno

Salazar

Apellido Materno

Suazo

RUT Personal

Direccidn, Comuna y Regién

Sta Rosa 11610, La Pintana, Santiago

Fono y Fax

5627575204 56 2 5416687(FAX)

E-mail

esalazar@platina.inia.cl

Nombre de la organizacién, empresa o
institucion donde trabaja / Nombre del
predio o de la sociedad en caso de ser
productor

Instituto De Investigaciones Agropecuarias Cri-La

Platina

RUT de la organizacion, empresa ©
institucion donde trabaja / RUT de la
sociedad agricola o predio en caso de ser
agricultor

Cargo o actividad que desarrolla

investigador, Encargada Banco Activo de
Germoplasma

Rubro, area o seclor a la cual se vincula o
en la que trabaja

Recursos Genéticos

Apellido Maternc
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Nombre Gabriel

Apellido Paterno Saavedra
Del Real

RUT Personal

Direccidon, Comuna y Region

Santa Rosa 11610 — La Pintana

Fono y Fax

02-7575154 y 02-5417667

E-mail

gsaavedr@platina.inia.cl

Nombre de la grganizacién, empresa o
institucién donde trabaja / Nombre del
predio o de la sociedad en caso de ser
productor

Instituto de Investigaciones Agropecuarias — CRI

La Platina

RUT de la organizacién, empresa o
institucion donde trabaja / RUT de la
sociedad agricala o predio en caso de ser
agricultor

Cargo o actividad que desarrolla

Coordinador e Investigador del Depto. de
Hortalizas y Cultivos

Rubro, area o sector a la cual se vincula o

Mejoramiento genético de maiz choclero y tamate
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| para procesamiento.
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Nombre

Juan Eduardo

Apellido Paterno

Zarhi

Apellido Matemo

Salim-Hanna

RUT Personal

Direccidn, Comuna y Region

;COyancura 2241 pisa 3, Providencia

|Fono y Fax

3622352 / B249890

E-mail

juan.zarhi@pioneer.com

Nombre de la organizacién, empresa o
institucion donde trabaja / Nombre del
predio o de la sociedad en caso de ser
productor

Semillas Pioneer Chile Ltda..

RUT de la organizacion, empresa ©

sociedad agricola o predio en ¢aso de ser
agricultor

institucibn donde trabaja / RUT de la|

Cargo o actividad que desarrolla

Agrénomo

Rubro, area o sector a la cual se vincula o
en la que trabaja

Investigacion y Produccion de Semillas
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Nombre Andrea Marisol
Apellido Paterno Salinas

| Apellide Materno Rubio

RUT Personal

Direccion, Comuna y Region

Santa Filomena ,“Buin

Fono y Fax

3622384

E-mail

andrea salinas@pioneer.com

Nombre de la organizacién, empresa o©
institucion donde trabaja / Nombre del
\predio o de a sociedad en caso de ser
|produc:t0r

Semillas Pioneer Chile Ltda..

iRUT de la organizacion, empresa o
institucion donde trabaja / RUT de Ia
saciedad agricola o predio en caso de ser
| agricultor
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Cargo o actividad que desarrolia

Agrénomo

Rubro, area o sector a la cual se vincula o
en la que trabaja

Investigacién y Produccion de Semiilas
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Nombre Gaston
Apellido Paternc Delard
Apellido Materno Rodriguez

RUT Personal

Direccion, Comuna y Region

Parcela 2fd Camino La Esperanza, Pirque

Fong y Fax

3622337

E-mail

gaston.delard@pioneer.com

Nombre de la organizacién, empresa o
institucion donde trabaja / Nombre del
predio o de la sociedad en caso de ser
productor

Semillas Pioneer Chile Ltda.

RUT de la organizacién, empresa o
institucion donde trabaja / RUT de Ia
sociedad agricola o predio en caso de ser
agricuitor

Cargo o actividad que desarrolia

Investigador asociado

Rubro, area o sector a la cual se vincula o
en la gque trabaja

Investigacion en maiz

Apellido Materno

(22
Nombre Miguel
Apellido Paterno Ibafiez
Vial

RUT Personal

Direccion, Comuna y Regién

Camino Las Fiores 11.929, Las Condes

Fono y Fax

2141701

E-mail

miguel.ibanez@pioneer.com

Nombre de la organizacion, empresa o
institucién donde trabaja / Nombre del
predico o de la sociedad en caso de ser
productor

Semillas Pioneer Chile LTDA.

RUT de la organizacién, empresa o

89.646.300-4
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institucion donde trabaja / RUT de la
sociedad agricola o predio en caso de ser
agricuitor

Cargo o actividad que desarrolla

Subgerente

Rubro, area o sector a la cual se vincula o
en la que trabaja

Investigacion en empresa de semillas.
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Nombre Rodrigo
Apellido Paternc Carvacho
Apellido Materno Baillon

RUT Persaonal

Direccion, Comuna y Region

Av El Bosque Norte 0440, piso 8

Fcno y Fax

203.51.93

E-mail

rcarvacho@ecischile.cl

Nombre de la organizacién, empresa o
institucién donde trabaja / Nombre del
predic o de la sociedad en caso de ser
productor

Compariia Internacional de Semillas Ltda

RUT de la organizacién, empresa o
institucion donde trabaja / RUT de la
sociedad agricola o predio en caso de ser
agricultor

Cargo o actividad que desarrolla

Ing Agrénomo, Jefe programa de Investigacion de
Remolacha

Rubro, area o sector a fa cual se vincula ¢
en {a que trabaja

Remolacha, lansa y empresas productoras de
semillas

Apellido Materno
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‘ Nombre Sybil Amalia

Apellido Paterno Herrera
Foessel

RUT Personal

Direccion, Comuna y Regién

CIMMYT, Apdo Postal 6-641. 06600 México, DF
México

Fono y Fax

52-55-5804 2004 ext. 22 46

E-mail

s.herrera@cgiar.org

Nombre de la organizacion, empresa o

CIMMYT/Swedish University of Agricultural
Sciences (SLU)
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‘institucic’:n donde trabaja / Nombre del
predic o de la sociedad en caso de ser
|productor

‘RUT de la organizacion, empresa o
\institucién donde trabaja / RUT de la
' sociedad agricola o predio en caso de ser
agricultor

Cargo o actividad que desarrolla Estudiante de dactorado

Rubro, area o sector a la cuat se vincula o | mejoramiento, fitopatologia, investigacion
en ia que trabaja

Evaluacionlde]lasfactividadesideldifusion

Ecpesiicer & @R db Gde ¢ [ES eciviiats prepussiEs, SEREERED 6 ERRes 6o s
picblemasHpresentadoshy mejereErles en & (e, Sereler Embicn (Bs
[asfcliatesyse aj poplestolinicialmenteMentos

Las actividades propuestas inicialmente, que correspondian al programa del curso, se
cumplieron en su totalidad.
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5. EVALUACION DE LA PROPUESTA

[Grganizacicnldurantellalactividadliindicagconjcuces)y

item Bueno Regular Malo
Recepcibn en pais o regién de destino segun lo X
programado
Cumplimiento de reserva en hoteles X
Cumplimiento del programa y horarnos segin [o X
establecido por |2 entidad organizadora
Facilidad en el acceso al transporte X
Estimacioén de los costos programados para toda la X
actividad

Evatuacionlde]lafactividadlde}formacion
Enfestalsect bnlseldebelevalliagalactividadienlielaciontallosls g llientestas petioss

a) Efectividad de la convocatoria

Buena, ya que se cumplio el objetivo de reunir profesionales de distintas instituciones y
empresas, asi como alumnos de pre y posigrado.

b} Grado de participacion de los asistentes (interés, nivel de consultas, dudas, eic)

Excelente, s& mantuvo la asistencia y el interés durante los tres dias que duro el curso. Los
participantes manifestaron sus dudas ¢ inquictudes permanentemente, l1as que siempre fueron
aclaradas por el profesar.

¢) Nivel de conocimientos adquiridos en funcion de lo esperado (se debe indicar si la actividad
contaba con algun mecanismo para medir este punto)

Los conocimientos adquiridos estuvieron a la altura de lo que se esperaba del Dr. José Crossa,
quien entregd conceptos complejos y aridos de entender con facilidad y claridad, mostrando la
aplicacién practica de estos. El profesor envid un gjercicio a los alumnos con el que evaluara la
comprension y aplicacion de los contenidos del curso.

d) Calidad de material recibido durante {a aclividad de formacién

' En casoc de existir un item Malo o Regular, sefialar lfos problemas enfrentados durante el
desarrollo de ia actividad de formacion, la forma como fueron abordados y ias sugerencias que
puedan aportar 2 mejorar.
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Bueno, ya que reunia conceptos entregados en clases, asi como ejercicios que permiten
aplicarlos.

e} Nivel de adecuacién y facilidad de acceso a infraestructura/equipamiento necesario para el
logro de los objetivos de la actividad de formacion.

Excelente, se usaron los computadores del Area de Computacion de la Facultad de Ciencias
Agrondmicas, Universidad de Chile, a los que se instald los contenidos y ejercicios del
Profesor. Cada estudiante disponia de un equipo lo que hizo muy fluido el trabajo.

f} Indique las materias que fueron mas interesantes, mas desarroliadas a lo largo de ia
actividad de formacion y las que generan mayor interés desde el punto de vista de la
realidad en la cual se desenvueive el participante.

Lo mas interesante fue el uso de los Biplots y sus variantes como medio de interpretacion
grafica de las relaciones e interacciones de los distintos factores que se analizan en los
ensayos agrondémicos y que representa una hemamienta poderosa de analisis.

g) Problemas presentados y sugerencias para mejorarios en el futuro

En general no se presentaron grandes problemas

IAspectosiretacionadostcontialpostulacionfaliprogramaldelformacionfolpromacion]

a) Apoyo de la Entidad Patrocinante (cuando corresponda)

X bueno regular malo

Justificar:

b) Informacion recibida por parte de FIA para realizar [a postulacion

_X_amplia y detallada aceptable deficiente

Justificar:

¢) Sisterna de postulacion al Programa de Formacion o Promocion {segin corresponda)

X _ adecuado aceptable deficiente

Justificar:

d) Apoyo de FIA en la realizacién de los iramites de viaje (pasajes, seguros, otros) (sdlo
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cuando corresponday)

bueno X regular malo

Justificar:

e) Recomendaciones (sefialar aquellas recomendaciones que puedan aportar a mejorar los
aspectos administrativos antes indicados)

Tal vez seria bueno contar con la aprobacién con mayor anticipacién de manera de realizar las

actividades organizativas de manera mas holgada.
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ANEXO 1
MATERIAL RECOPILADO DURANTE EL CURSO
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Preface

The last decade of the millenium has seen major improvements in the options available
for the analysis of field trials. Traditionally, the principal methed of handling spatial
variation in a trial was through the use of incomplete block designs. Experience with
many analyses has lead to the realization that spatial variation has multiple sources

and block designs often fail to do justice to the spatial variability.

This manual describes an approach to the spatial analysis of field experiments based
on the software package ASREML (Gilmour et al. 1999). It describes common sources
of spatial variation and explains how these can be identified and accounted for in an

analysis.

NSW Agricuiture makes no warranties with respect to ASREML. Use by CIMMYT of
any software does not imply endorsement or recommendation. The user takes full

responsibility for all manipuiations done with ASREML.

CIMMYT

The International Maize and Wheat Improvement Center (CIMMYT) is an internationally
funded, non-profit scientific research and training organization. Headquartered in
Mexico, the Center works with agricultural research institutions worldwide to improve
the productivity and sustainability of maize and wheat systems for poor farmers in
developing countries. It is one of 16 similar centers supported by the Consultative
Group on International Agricultural Research (CGIAR). The CGIAR comprises over 50
partner countries, international and regional organizations, and private foundations. it
is co-sponsored by the Food and Agriculture Organization (FAQ) of the United Nations,
the International Bank for Reconstruction and Development (World Bank), the United
Nations Development Programme (UNDP), and the United Nations Envircnment
Programme (UNEP).
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1 INTRODUCTION

The main objective of variety trials is to obtain precise estimates of variety means and
variety contrasts. Soil fertility, soil water-holding capacity, soil physical characteristics
and other environmental factors often vary across an experimental site. Previous
history, irrigation, plot trimming, direction of cultivation or harvesting are other man
induced sources of variation. Good experimental design can reduce the impact of
some of these factors but unless they are appropriately included in the statistical model
when they occur, they will result in poor precision in estimates of variety effects and

variety contrasts.

We use the term spatial {or nearest neighbour ) analysis to refer to an anaiysis where
we investigate the variance structure of each trial and use an appropriate structure for
estimation of effects in the trial. This approach does not obviate the need for good
experimental design but rather increases it because once a treatment effect is

confounded with an environmental effect, the two cannot be disentangled.

ASREML (Gilmour et al., 1999) uses the REML (Residual Maximum Likelihood)
estimation method to estimate variance components in the context of mixed linear
models. It is a useful tool for analyzing field variety trials as it allows for the fitting of
spatial variability within field trials in a variety of ways. It allows for various

experimental designs, multiple covariables and performs across site analysis.

This Manual describes how to:

1. install ASREML



2. prepare data files and ASREML command files to perform spatial

analyses of replicated and unreplicated variety trials

3. interpret ASREML outputs.

2 BACKGROUND

Spatial variability can be partly controlled by using an appropriate experimental design.
Most variety trials use complete or incomplete block designs and are analyzed using
the traditional analysis of variance. Block designs attempt an a priori reduction of the
experimental error considering spatial heterogeneity among blocks. This approach
does not consider the presence of spatial variability within blocks, and researchers face
the problem of having to find blocks in the field that are homogeneous without knowing
their most appropriate shape, dimension and orientation. When field variety trials are
laid out in a rectangular array of r rows and ¢ columns with replicates allocated
contiguously, then spatial analysis can be performed with the aim of improving

precision of estimates of variety effects and variety contrasts.

An appealing idea presented by Papadakis (1937} and developed by Wilkinson et al
(1983} is to adjust a plot for spatial variability by using information from the immediate
neighbours. One useful measure for examining the heterogeneity patterns of the soil is
the spatial autocorrelation of neighbouring plots within rows or within columns. That is
form the correlation between residuals at various distances apart. If there is no spatial
pattern, all the correlations will be low. If there is pattern in the residuals, neighbouring
residuals will be more similar and so have higher correlation. Gleeson and Cullis
(1987) proposed to sequentially fit a class of autoregressive-integrated-moving
average models (ARIMA) to the plot errors in one direction (rows or columns). This

was in the context of randomised complete block experiments. They found that



differencing along the block and then fitting a moving average (MA) correlation
structure to the residuals in that direction resulted in big gains in efficiency of the trial.
Cullis and Gleeson {(1991) extended the previous model to two directions (rows and
columns) assuming that, in the field, rows and columns are regularly spaced. However,
differencing in this two dimensional analysis was prone to discard treatment information
{as shown by Kempton et al, 1994). Grondona et al. (1996) analyzed 35 cereal yield
trials using the two-dimensional spatial analysis proposed by Cullis and Gieeson
(1991) and found that the autoregressive model in the direction of the rows and

columns was the most frequent best model.

Gitmour et al (1997) distinguished between global, natural and extraneous variation.
For natural variation arising from unevenness of soil moisture, soil depth or other
natural variation, they proposed using a separable autoregressive (AR) correlation
structure, without differencing. Thus, they model the natural variation as the direct
product of an AR correlation structure for columns and an AR correlation structure for
rows, denoted by AR1XAR1. Extraneous variation includes effects introduced by the
experimental operations. These operations are usually aligned with rows or columns
and are usually modeiled with random row and column effects. Global effects include
any major {(non-stationary) trends across the field. These are fitted as linear trends,

cubic smoothing splines, row and column contrasts and covariates.

The variogram is used by Giimour et al (1997) as a major diagnostic tool for checking
for the presence of extraneous variation, along with trellis plots of residuals and plots of
other random effects. It is essentially the complement of the spatial autocorrelation
matrix but is easier to view and interpret. If there is no pattern to the residual, the
variogram is essentially flat. Pattem shows itself in that the variance of differences
between residuals which are near to each other will tend to be lower than for those that

are from plots far apart. In other words, strong patterns in the variogram indicate that
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extraneous variation is present. We will display several variograms pointing out the
interpretation of some common patterns. The variogram is used in an informal way.
Terms added to the model are then formally tested with F-statistics (fixed terms) or

Likelihood Ratio tests (random terms).

The classical approach considers that the response variable Y is modelled by
Y= mu + variety effects + design effects + error

where the italics denote the random terms. Thus, this model inciudes a constant term
(mu), any covariates, and variety effects as fixed effects. Design or block effects are
fitted as random effects to recover between block treatment (variety) information. The
random effects are assumed to be independent random variables distributed Normal(0,

o) with different variances for blocks and residuals.
The basic spatial model considers that the response variable Y is explained by
Y = mu + variety effects + global trend + design effects + error,

The differences are: the possible inclusion of polynomial trends and other special fixed
effects to remove systematic spatial variation, additional terms that are considered for
inclusion in the design effects and the provision for the random effects and/or the

residuals to be correlated.

An alternative is to assume variety effects are random. This is necessary in
unreplicated trials and the multi-site analysis of trials where we wish to have
correlations between the performance of varieties in different sites. It is often desirable
in two replicate trials. This raises the issue of the difference between treating varieties
as fixed and as random. As fixed effects, we obtain the best linear unbiased estimate
(BLUE) of the variety effect, that is, the best estimate of the performance of that variety
in that trial. Treated as random effects, we obtain the best linear unbiased predictor
(BLUP) of the variety effect, that is, the best estimate of the performance of that variety
7



in future trials. Historically, selection has been based on BLUE estimates and it is then
observed that performance after release is usually not as good as obtained in the trials.

This is simply because future performance is predicted by the BLUP, not the BLUE.

Gilmour ef al. (1997) proposed extending the Cullis and Gleeson (1991} approach in a
sequential manner. First a two-dimensional separable auto-regressive spatial model of
first order (AR1 x AR1) is fitted as the basic spatial model. The AR1 x AR1 model is
flexible enough to generally represent many different spatial patterns that arise. They
then propose looking at the variogram. K it has the classical AR1 x AR1 appearance
and there are no outliers or other obvious problems, this model is accepted.
Otherwise, the model is adapted as suggested by the variogram until a reasonable
result is obtained. This is an iterative process. It is helpful to discuss the models with
the experimenter who knows physical site characteristics and trial management details.
They often explain the characteristics of the variogram. These might include variability
due to agronomic and experimental practices and procedures such as irrigation flow,
sowing and harvesting methods and direction, slope, proximity to roads, trees or rivers,
machinery characteristics and site history. These are modelled as spatial covariances,
covariates and functions of the spatial coordinates using polynomial functions or cubic

splines.

Wald statistics or F ratio statistics can be used to test the significance of fixed effects
considered in the model. We prefer to include random terms rather than fixed terms in
the model so as to recover treatment information but some effects need to be included

as fixed effects. The likelihood ratio test is used to test random effects in the model.

There is often not a single best spatial model but rather, several reasonable spatial

models. A reasonable spatial model is one where global, extraneous and natural



sources of variation are included in the model and this will be reflected in a variogram

which has little structure other than the basic AR1 x AR1 structure.

A traditional statistic used to test for variety differences is the standard error of
difference (SED). This is appropriate for testing differences between fixed (BLUE)
variety effects. From spatial analysis, the SED varies for each particular contrast but
an average value is often reported. This may be used when al! varieties have
essentially the same replication. The SED is not an appropriate statistic for choosing a
spatial model because it is strongly influenced by the particular spatial model. The
best spatial model does not necessarily have the smaliest SED. The SED is not

appropriate for testing differences in BLUPs, i.e. random effects shouid be BLUPs.

In general, the approach proposed by Gilmour et al. (1997) for applying spatial model
to variety trials seems very attractive as it helps researchers to increase the precision
of the experiment and have a better understanding on how the data in each particular
environment was generated. Their paper should be read as it demonstrates the
process of fitting a spatial model to real data. Nevertheless, as pointed out by Brownie
et al. (1993), the presence of systematic variation within complete of incomplete blocks
does not invalidate the use and the analysis of the classical complete block or
incomplete block designs (such as lattices) but rather it strengthens the need for the
random allocation of varieties to plots within complete or incomplete blocks. In addition
improved statistical tools never compensate for precision lost white conducting an

experiment using poor design or inappropriate agronomic and experimental practices.



3 INSTALLATION OF ASRERML

ASREML is currently availabie on the internet. A compiled version for personal
computers (WINDOWS versions 95, 98 and NT) including manual can be found at the
web address: ftp://fip.res.bbsrc.ac.uk/pub/aar/. it is also available for Sun Solaris and
others operating systems. It requires a PC with at least a 486 processor, 16 MB ram,
50Mb hard disk and running WINDOWS® 95 or higher.

This section describes installation of ASREML for personal computers and assumes
that the program file ASRWIN.EXE has been downloaded to a floppy disc, or that the
user uses a floppy disc provided with this manual. Instaliation details are contained in
the file INSTALL.TXT. Briefly they are as follows:

1. Go to MSDOS Prompt

2. Type MKDIR CAASREML and press ENTER (or make a subdirectory
CAASREML using WINDOWS Explorer)

3. Type CD C:\ASREML and press ENTER
4 Place the floppy disk in Drive A and type A:ASRWIN and press ENTER

With these instructions, the program files are UNPACKED. It is highly recommended to

run a trial to verify that the program is functioning properly. For this, proceed as follows:
6. Type ASREML SHF and press ENTER

SHF is an ASREML instructions file generated when the program is UNPACKED. if
ASREML has been successfully installed, a variogram that is part of the ASREML
output will appear. You can scroll through the outputs and leave ASREML by
consecutively pressing the ENTER key.

ASREML memory requirements vary with the size of the job. Typically, analyses of a
single trial will require at least 10MB hard disc space. If there is not enough memory or

hard disc space, an error message describing the problem will pop up (INSUFFICIENT
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MEMORY) or a reference will be made to the error number 169 or to the fite

LF90.EER, which contains the text associated to the FORTRAN errors.

A complete manual for ASREML by Gilmour et af. (1999) in Postscript format can be
obtained by downloading the archive file ASRPS.EXE (available at
ftp:/ftp.res.bbsrc.ac.uk/pub/aar/) and running it to produce ASREML.PS. If you do not
have a Postscript printer, you can read and print the manual using the program

ghostscript (available at hitp://iwww.cs.wisc.edu/~ghost/index.htm!).

4 THE LINEAR MIXED MODEL

Formally, ASREML estimates variance components in a general linear mixed model
using the residual maximum likelihood (REML) approach. The equation for the general

mixed linear model is:

Y=Xt+Zu+n (1)

where

Y is the response vector

X is the design matrix for fixed effects

T is the vector for fixed effects

z is the design matrix for random effects

u is the vector for random effects

M is the vector of residuals

Matrix X is the design matrix for fixed effects such as overall mean and varieties (t).
Matrix Z is the design matrix for random effects (u} such as complete or incomplete

blocks, row and column effects, splines in the direction of the rows and/or columns.
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Here one can also include the extraneous effects due to agronomic practices and other

experimental procedures. The residual (n) is composed of:

L the local trend (£) which is modeled by the two dimensional auto-

regressive procedures in the direction of the row and columns, and
I the residual e after adjusting for all the other terms in the model.
Note that = £ + €. The random terms (u, £, €) are pairwise independent.

ASREML fits this model with u and £ or e having zero mean and variance-covariance
matrices given by Var(u) = G and Var(n) = R. The default cases are when R=0%l and

2
GFO’f l

5 DATA ANALYSIS USING ASRERML

This section provides a general outline for using ASREML. The examples in Section 6

will help the user to comprehend this outline.

5.1 DATAFILE

Data of field trials is commonly organized using a spreadsheet. Columns of the
spreadsheet represent the distinct attributes of each plot (factors, variables,
covariables). Data for each experimental unit are listed in rows. For ASREML to read a
data file properly, it should be saved as a comma separated file ( CSV). if not prepared
in a spreadsheet, the file shouid be prepared as an ASCI| text file with columns

separated by spaces.
Characteristics of the data file are:

o ldentifiers (headings, titles) of columns may be included.
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o lIdentifiers (headings, titles) and attributes (data, factor levels) must be

alphanumeric.

o Columns must be separated by at least one blank space, TAB or comma (in
.CSV file).

o Missing data must be represented by a dot/period (.}, an asterisk (*) or NA.
in a .CSV file, empty fields between commas are considered as missing
values; a row that begins or ends in a comma is considered as having

missing data at the beginning or at the end, respectively, of that row.

» If a row has insufficient data fields, the input record is completed by taking

values from the following row. This may result in wrong allocation of data.

e A number sign (#) and dollar sign ($) have special meanings. Neither may

appear in the data file.

In .csv format, a typical data file might begin like

Env, Expt Rep,Row block?checkﬁplotientryﬁyleld Column"

In space delimited ascii text form, it might look like

entrygyleld Colufin

5.2 COMMAND FILE

ASREML uses a command file that defines data file, attributes, model and variance

structure. The following rules apply:
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o The file must have a valid DOS name and the extension <name> AS (for
example: TRIAL1.AS). Avoid names with embedded spaces.

o The command file consists of five sections. These are:
3 Title
Il Definition of data columns
13 Name of the data file
IV.  Linear model
V. Variance structure (when necessary)
o All characters after a number sign (#) are ignored
o Blank rows are ignored.

o A blank space is the most commonly used separator, although a TAB may

also be used.
o Key words are sensitive to capital and lower-case letters.

o All rows starting with a! followed by a blank space are copied as comments

to the output file.

Example of command file to analyse a single trial

Spatial analysis of a field trial g i # TITLE -
env expt ) _ " # DEFINITION OF COLUMNS
rep 2
row. 8 block 8 check:
plot :
entry 64 1T
yield
column 16

# Some data as Comments

¥ 414 1 1 1 0 8eQ1 8601 3.47 1

# 414 1 1 2 © 8602 8602 3.58 2

# 414 1 1 3 O 8603 8603 4.17 3

# 414 1 1 4 1 8604 g604 3.87 |

f 414 1 1 5 0 2.92‘ 5.

8605 8605
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trial.dat !SKIP 1- # Name of data file; skip header
line IR -

yield v mu.entr

row row AR .1
cel col AR .1

In this quide, we present the information required for coding ASREML for spatial

analyses. Much more information and many more options are in the reference manual.

i Title

The first line in the command file is used for the title. 1t should clearly identify the trial

for future reference to this analysis.

il Definition of columns in the data file

Each column of the data file must be defined. The definition consists of a <name>.
Factors are defined by also specifying the number of <levels> and usually a
<qualifier>. Column definitions must be indented. While several definitions may

appear on a line, it is less confusing to have one definition per line.

» <pname> A column name may have up to 20 characters preceded and

followed by a blank space.

e <levels> If the column contains a variable, <levels> is set to 1 or omitted; if
the column contains a factor, <levels> is set to 2 or the actual number of

factor levels.
o <qualifiers> The major qualifiers are !A and !l.

IA means that the data in this column is alphanumeric. ASREML will recode

them in the order of appearance.
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I means that the data in this column is numeric but not 1 -- <levels>,

ASREML will recode them in the order of appearance.

No qualifier: If <levels> is greater than 1 but no qualifier used, the data in

this column is considered as a factor coded 1 to <levels>. Otherwise the

values are considered as a variable.

ASREML has some capacity to transform data which is described in the reference

manual. We recommend new users transform data in a spreadsheet before using
ASREML.

]| File name for the data file and general qualifiers

A data file must always be specified after defining the data columns. Its name must

begin in the first position of the line. The data file name must include the path if it is not
in the same directory as the command file.

There are many qualifiers that can be placed on this line after specifying the name of
the data file. The most commonly used are

Iskip n indicates to skip over the first n lines (those containing calumn

headings) in the data file

Imaxit m establishes the maximum number of iterations in m. The default is

10 iterations.

v Linear model
The linear model is a list of terms, each separated by a space in the form
<variable Y> ~ <maodel>

<yariable Y> is the name of the data field which will be analyzed.
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<model> lists the terms of the model. <variable Y> is separated from

<model> using the symbol (~).

Some common model terms are:

mu

<name>

factor
<name>.<name>
Ir
if

myv

Examples of models are:
Y ~ mu entry

Yield ~ mu entry !r block

represents a constant term or the intercept

is the name of an explanatory variable or

is the interaction of two terms
indicates that the following term is random
indicates that the following term is fixed

if there are missing values in the response
variable <variable Y>, mv needs to be placed

among fixed terms i.e. before Ir or after !f.

Height ~ mu con(entry) lin{col} !r spl{col)

con(), lin() and spi() are model functions described beiow.

Some rules when writing the model

+ Terms in the model are sensitive to capital and lower-case letters.

¢ Wherever possible use the full name of factors and covariates when listing

the model terms as this avoids confusion. However, it is legal to truncate

names provided ambiguity is avoided.
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o ASREML provides several model functions to achieve particular forms in the

design matrix. The major ones are:
con{entry) in place of entry constrains entry effects to sum to zero,
linfcol) in place of cof treats the factor cof as a covariate, and

polfcol t} forms a t-orthoganal polynomials from co; the mean is excluded

if it is negative, pol(col,-t).

spi(col), used as a random term in conjunction with finfcol) as a fixed term,
fits the cubic smoothing spline to col.

con() lin(}, and pol() should only be used in the fixed part of the model.

spl{) shouid only be used in the random part
o Interactions between factors can be simplified. For example
a'b expandsto a b ab

af{b cd e expandsto ab ac ade

v Variance model

A random term has a variance structure associated with it. The default variance
structure is independent (uncorrelated) effects with equal variance. For the models
covered in this manual, it is sufficient to assume the effects in all random factors other

than the residual are uncorrelated and that the residuals may be correlated with a
separable autoregressive structure. ASREML can handle much more complicated

situations.

Random effects: Uncorrelated random effects are in¢cluded in the linear model by

listing them after Ir. These commonly include factors like row, column, block, rep,
spi{row), spi(cof) and some interactions.

Residuals: The residuais may be modelled as distributed independently or with a

separable autoregressive structure [AR(rows) x AR(columns)] and occasionaily as a
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combination of these. For the first case, nothing extra is required. For the second

case, three extra lines are required. Typically they will be

1 277"
column column AR1 .1
row-srow AR1 .1 S -

These lines mean:
¢ that we are analysing a single experiment laid out in the field in two dimensions;

s that the data file contains two factors called row and cofumn which index the field

positions and

« that ASREML is to fit an autoregressive structure to each of these dimensions using

0.1 as the initial correlation.

With this specification, ASREML checks that the spatial arrangement is correct.

Example of randomised block analysis

A randomised block analysis could be specified in ASREML with:

ndomised block analysis

mydata'dat’ - -1SKIP" “U1: " File naméfor data file ©
y ~mucon(entry) irrep.. © . .. Linearmodel

The data file has 1 header line and 330 data lines. Each data line contains a rep
number (1—3), a genotype (entry) number (1—107), a yieid, a row number (1—15) and

a column number (1—22). The spatial information is ignored in this analysis.
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The fixed model includes the general mean [mu] and entry effects with the restriction
that the sum of all entry effects equals zero [con(entry)]. Replicate effects are fitted as
random effects with variance var(u)=c’yl; and residuals are distributed with variance

Var(e)=021330.

Example: Initial spatial analysis
The initial spatial analysis as advocated by Gilmour et al (1997) could be coded as:
Command file | Explanation

Example of spatial analysis Title

L2

: Vanance structure=. -
Varniance structure

l
rep 3 | Column definition -
:éentry . 107 | - Column definition -
yield SR Column definition -
row 22 |- Column definition -
col .15 DR Column definition
mydata.dat 1SKIP 1 | File name for data file
Yy ~ mu c(entry) | Linear modef ‘
: 5 | Varance structure ;-
|
|

The fixed model is as before, replicates are not fitted but the residuals are distributed
with variance var(n)=c"Za(dco) ® Za(drow) Where Za(d) is a matrix of auto-regressive
correlations, with the parameter ¢ corresponding to columns and rows, respectively.

Correlation parameters between 0 and 1 are valid.

5.3 RUNNING THE PROGRAM

The command to run ASREML is
CAASREML\ASREML.EXE -<option> <command file>

where common <option>s include ¢, m, n and s2 and <command file> is the

name of the command file. This command may be typed directly at the command
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prompt in an MSDOS box, may be associated with the .as filename extension within

Explorer or entered after clicking Start Run
Concerning the options, use:
-c to resume a run continuing iterations from the current point ;
-m to invoke ASREML’s Menu for interactive running and viewing output,
-n to suppress the graphics and
-s2 to increase memory size.
-g11 to save the graphics to WMF files.

Multiple options should be concatenated. E.g. -cms2 to combine ¢, m and s2.

5.4 RESULTS

The results are written in various output files. A detailed summary of the analysis
appears in the file <name> ASR. The file <name>.SLN includes adjusted effects. In

both cases, <name> is the same as the command file.
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6 EXAMPLES FOR SPATIAL ANALYSIS OF A VARIETY TRIAL

All data and command files used in this manual can be found in the following internet

address www.cimmyt.cgiar.org/biometrics

6.1 SPATIAL ANALYSIS OF A VARIETY TRIAL WITH REPLICATES

This section presents a sequence of programs in ASREML used for spatial analysis of
replicated field trials. Data from two trials will be shown (TRIAL1.DAT and
TRIAL2.DAT). Note that the appropriate use of ASREML for spatial analysis of field
trials is not automatic and can not be done by simply pressing a couple of keys. As
proposed by Gilmour et al (1997), the analysis proceeds through a series of steps to

produce an appropriate spatial model.

6.1.1 TRIAL 1

| Preparing the data file

Our first example is a variety trial designed as an alpha-lattice design (Patterson and
Williams, 1976) with 16 varieties planted in three contiguous replicates laid out in 6
rows and 8 columns. Each replicate had 2 rows. Each row had 2 blocks of 4 plots.
Data for this example are in file TRIAL1.DAT. The first rows of the data file are shown

beiow.

First rows of the data file TRIAL1.DAT:

rep bik - row col plot Variety yid
1 11 1 1 16 2556
1 1 1 2 2 1 1361
1 1 1 3 3 6 1567
1 1 1 4 4 10 1797
1 2 1 5 5 11 2753
1 2 1 6 6 4 2089
1 2 i 7y 15 2531
1 2 1 8 8 5 3144
1. 3 2 1 g 12 2189
Sl 3. 2osF2 100 731864
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1 3 2 3 11 2 1400
3 2 4 12 7 1006

Each column or data field is separated by blank spaces and represents an attribute
(factor, variable). The first line is a header line. There is then a line for each
experimental unit, or plot. Thus the second line indicates that this experimental unit is
from replicate (rep) 1, block (blk) 1, row 1, column (col) 1, plot 1, variety 16 and has a
grain yield (yld) of 2556 kg ha™.

The usual first model to fit following the approach of Gilmour et al (1997) is assume
separable AR1 x AR1 correlated errors. However, to introduce the coding of ASREML,
first present the traditional RCB (randomized complete block) analysis and the

incomplete block anaiysis.

i Analysis as a randomized complete block design (RCBD})

The command file, RCBD.AS, contains the instructions for analyzing the data in

TRIAL1.DAT as a randomized complete block design.

Command file RCBD.AS for analyzing TRIAL1.DAT as a randomized complete block

design:

T17dat !skip 1.
yld ~ mu var 'r rep

This file has four sections:
Title: Randomized complete block analysis with ASREML

Definition of columns: The column definitions must ail start with a blank space.
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o rep is a factor with 3 levels.
o blk is a factor with 12 levels coding blocks within replicates
o row is a factor with 6 levels.
o col is a factor with 8 levels.
o plot is a factor with 48 levels.
o var is a factor with 16 levels.
o yld is the dependent variable
Name of the data file: trial1.dat !skip 1
Iskip 1 causes ASREML to ignore the first line of the data file since it is a header line.

Linear model. The mean {mu) and variety are fixed effects. rep is declared to be a

random effect by placing it after !r.

Results: ASREML generates several output files. The primary output fite, with file
extension .asr, for the compiete block analysis foliows. A detailed description of the
contents of this file is given with the ASREML output from the incomplete block
anaiysis. The Loglikelihood from this RCB analysis is REML logl=-223.482.

Output file RCBD.ASR for TRIAL1.DAT analyzed as a randomized complete block
design:

ASREMIL [2 Sep 1999] Randomlzed complete block analysis with’ ASREML T
28 Sep 1999 14:46:10.450" 8 OO “Mbyte rcbd

Reading triall.dat FREE FORMAT skipping 1 lines
Univariate analysis of yid . | -
Using 48 records [of ,fﬂB,tead from 48 lines of triall.dat .-}~

Model term size Type ©COL  Minimum Mean Maximum  #zero #miss
1 rep 3 Factor 1 1 2.0000 3 0

° 2 blk 12 Factor 2 1 6.5000 12 70

’ 3 row 6 Factor 3 1 3.5000 6 0

° 4 col 8 Factor 4. 1 4.5000 B _ ’0

° 5 plot 48 Factor 7:5. 1 24.5000 18 0

0 . .
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16 Facter . 6

0] Lo L onstant
Forming 20 eqguations: 17 dense s
Initial updates will *he shrunk by factor-

0.22317E406
.21198E+06
.2076TE+06 -

LongCohverqed'

Finished: 28 Sep 1999714:46:13,750

1] Analysis as a randomized incomplete block design (RIBD)

The command file BLOCK AS contains the instructions for analyzing the data in

TRIAL1.DAT as an incomplete block design.

Command file BLOCK.AS for analyzing TRIAL1.DAT as an incomplete block design:

trlall .dat !sk;pfl




yld ~ mu var !'r rep blk

The only difference to the previous program (RCBD.AS) is the addition of the random
factor blk. If the blocks were coded 1...4 within reps rather than 1...12 across reps, the

block factor would need to be fitted as rep.blk.

Results: The primary ASREML output has 6 sections which are discussed in detail. It

is important to understand the output to avoid accepting invalid analyses.

Section 1: The first line displays the compilation date of the program and the title line

for the job. The second line displays the date and time of the run, the size of the data

space being used and the name of the job being run. The third line gives the name of
the data file and number of header lines being skipped. The fourth line names the
dependent variable. The next line indicates how many data records have been read

and how many are being used in the analysis.

ASREML ‘[ 2 Sep 1999] Incomplete block analysis
05 Oct 1999 14:52:35.370 §.00 Mbyte blOCk as
QUALIFIERS: !skip 1 - -
Readlng triall. dat FREE FORMAT sklpplng l }Q'

" Univariate analysis of y': . , RS e

Using 48 reéords [of ~ “ 48 read from ¥ 48 lines of triall.dat = ]

Section 2: This contains a summary of the data. Things to check here are that the

labels for the terms match the data values, that the ranges, number of zeros and

missing values are correct. An idiosyncrasy of ASREML is that the Minimum is

determined ignoring zeros since these are reported in the #zero column.

Model term Size Type . . COL  Minimum  Mean -Maximum fizero #miss
1 rep . “s 3 Factor 1 1 2.0000 . 3 0 0
2 blk 12 Fadtor 2 1 6:5000 i 12 0 0
3 row 6 Factor 3 1 3.5000 6 0 0
4 col B Factor 4 1 4.5000 ] 8 0 0
5 plot 48 Factor 5 1 24.5000 48 0] 0
6 var 16 Factor 5 1 8.5000 16 0 0
7 yld 1 Variate 4 228.0 1331. 3144, 0 0
8 mu 1 Constant Term
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Section 3 reports information produced while analyzing the model. The 32 equations
refer to the order of the mixed model equations. That is 1 + 16 + 3 + 12. These are
divided into a ‘dense’ set, the first 17 and a ‘sparse’ set, the 15 random effects. The
update factor limits the step size of the parameter updates in the first few iterations.

This is a strategy to facilitate convergence.

Singularities are linearly dependent equations. One singularity occurs because
ASREML cannot estimate, without a constraint, 16 variety effects and a mean. The
constraint used is to fix the first variety effect to zero such the overall mean effect, mu,
is actually the mean of variety 1 and that the variety effects are actually deviations from

variety 1.

Next is a report of the iteration process. The logl value is the Loglikelihood which
increases to a maximum of REML LoglL=-221.417. S2=0.13322E+06 is the converged
estimate of the residual variance. There is then a statement of the number of residual
degrees of freedom (32). This is a maximum value to use in testing any F-statistics

shown below. This is followed by the values of the variance parameters at each

iteration.

Forming 32 equations: 14, dense ,

..Initial updates will .be nk by factor

“NOTICE: -1 (more)*singularities, = . TR

LogL=-221.417 827 322E+06 - . 32 df - 1.000.
LogL=-221.417 §2="0 2E+06 - 32 df ~1.000
Final parameter values e - 1.0000

Section 4 summarizes the analysis. The first table presents the variance components.
The variance components are derived from the Gamma values {used in the iteration) by

multiplying them by the Variance (S2).

The Comp/SE is similar in concept to a t-statistic and provides a measure of the size of
the component. It is usual to test variance components with a LikeLihood Ratio test

(LRT), i.e. test the decrease in the REML log! value produced by dropping the term
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from the model. The LRT is usually not significant if Comp/SE is less than 0.5 and is

usually significant if Comp/SE is greater than 1.5.

The % column is the percentage change in the parameter in the final iteration. At
convergence it will be 0. The final column indicates any parameter constraints. A "P"
in this column indicates the parameter is in parametric space, a “B” indicates the
parameter has been fixed at a boundary. An "S” in this column indicates the variance

model is over-parameterized and there is no information to update the parameter.

The analysis of variance table provides tests of fixed effects. Two F ratios are
presented. The first is like the SAS Type | test. It tests the addition of this term in the
model after adjusting for all effects not in the table or higher in the table. The second F
ratio is like the SAS Type Il test. It tests the term after adjusting for all other terms in
the model. The Type lil test is meaningless for some terms when there are
singularities and interactions in the model. ASREML also reports an average Standard

Error of Difference (SED) for main effects when the model is simple.

Source “Model terms Gamma - “Component Comp/SE % C
rep 3 3 1.50773 . 200856, 0.87 0P
blk . & 120 12 0.652285 - B6B95.9 1.33. 0P

' Variance S48 32 1.00000 - -133218. 3.26 0P
Analysis of Variance DF F-incr F-adj -StndErrDiff

7 mu S - 1 23.01 6:48
5 var ' S 15 2.75 2.75 = 326.4

Section 5 shows the overall mean (mu) and solutions for the fixed factors. For this
simple model, variety means are calculated by adding mu to the variety effects. For
example, for variety 1 the adjusted mean is 907.978, for variety 2 the adjusted mean is
the sum of mu (907.978) and the effect for variety 2 (-284.283), giving an adjusted
mean of 623.685. All effects in the model are listed in the .sin file. For more
complicated situations you will need to refer to chapter 6 of the ASREML reference
manual to see how you might form linear functions of these solutions. T-value and T-
prev, test hypothesis of effect equal zero and differences between consecutive effects

respectively.
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S3olution : Standard Error T=value T-prev

5 wvar LTt
2 333.736 70.85 .
.3 335.587 147 .42
4 y.294 . 320.937 . .. S 2.18.. .64
5. 863.399 323.003 o 20670 0 0.51
6 - 23019743 309.614 0.0 - -=2.49
i 323.003 : -0, 44

333.736.
333,600 °
320,937
. 333.600.
335.587 "

*320.937 -
322.862
333.600 -
320.937

82
.78 . ¢
15
281 .
21
;24
.49
.60
.52

S mu oo S
S 075978 356.640
1 rep © . 3 effects fitted
8 blk.rep 712 effects fitted

Section 6 gives the time and date when the analysis was concluded and indicates if
there was convergence in the iterative process, both, log-likelihood and parameters

estimates. Three termination messages are commaon:

LoglL converged indicates that the iteration process has converged satisfactorily. It
occurs when LoglL difference in two consecutive iterations is less than 0.002 and the

variance parameters are also not changing.

WARNING: LogL Converged; Parameters Not Converged indicates the LogL values
are very close but the variance parameters are stili changing. The percentage change
of each parameter in the last iteration i1s reported in the % field of the variance
component report. ' You may choose to accept the result or force a few mare iterations
by rerunning the job using the -c command line option [e.g. ASREML -c BLOCK] which
will do an extra 2 or 3 iterations. This has been the case here and other exampies of

this manual.

Warning: Logl not converged means you should review the job. If it was converging
and just needs a few more iterations, you can rerun the job with the ICONTINUE

qualifier and/or using the !IMAXIT qualifier to request more iterations. Both are placed
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on the data-file-name line. 'CONTINUE causes the analysis to resume with the results
from the most recent iteration. Putting say IMAXIT 20 increases the number of
iterations from the default 10 to 20. The - command line option is equivalent to
specifying ICONTINUE. If the LogL is erratic look for some explanation, simplify the

model and rerun.

Finished: 05 Oct 1999-14:52:37.950 LogL Converged
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v Spatial analysis using the AR1 x AR1

The spatial modeiing approach of Gilmour et al (1997) begins by fitting the AR1 x AR1
error model and looking at the residuals and a variogram of them in a graph. The AR1
X AR1 model fits the natural local variation well. The plot of residuals often reveals

anomalous points and global trends in the data. Use the following ASREML program:

Command file AR1AR1.AS for analyzing TRIAL1.DAT using the AR1 x AR1 model:

Al pha latfice example™ -
rep 3%

This model does not include any random terms other than the residual. There are
three lines on the end which define the structure of R, the covariance structure for the
residuals. 1 2 indicates that the analysis is conducted for one site laid out in two
dimensions. The next two lines define the two dimensions, associating them with the
factors row and col and indicating that an AR model is to be fitted to both dimensions.
The double occurrences of row and col have specific meanings. The first is used to
declare the size of the dimension, i.e. how many rows (columns) are present and
depends on the row (col) factor being declared as a factor with the correct number of
rows (columns). The actual number of rows (columns) could be inserted into the first
position rather than referring to the factor. The second is used to control the order of
the records. ASREML needs to know the field order. If the second field is zero, the
data is assumed presented with, in this case, columns nested within rows. Naming the
respective row and column factors causes ASREML to sort the records so that there is

no chance of confusion on this count. R is therefore recommended that row/column
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coding be included in the data and that they be used in this way to ensure the correct

field order is assumed.

The AR1 0.1 coding indicates that a first order autoregressive correfation structure
with initial correlation value of 0.1 is required. The main alternative used in spatial
modeling is the ID coding. Note that no parameter value is required for the identity in

this context.

Partial output file AR1AR1.ASR for TRIAL1.DAT analyzed using the AR1 x AR1 model

6 AR=AutoR 0.10
8 AR=AutoR 0.10.
Forming 17 egquations: 17 dense

Initial updates will be shrunk by factor 0.548
NOTICE: 1 {more) singularities,
.-LogL=-229.632.. 52= 0.36929E+06 df 1l 0.1003, 0.1000
“LogL=-223.070% s2= 0;31100E4+06 - df 1 0.2784° 0.5000: -
" Logl=-221.639 S2="0:36032E+06 " df L. 0.2616 0.6811"
LogL=-221.490 S$2= 0.39375E+06 df 1. 0.2339 0.7321
LogL=-221.475 $2= 0.40786E+06 df 1. 0.2271 0.7476
_LogL=-221.473 $2= 0:41303E+06 df 1..000 0.2246 0.7527
. Final parameter values - CLn 1.0000 0.22376 0.75451
Source Model terms Gamma ‘Component ‘Comp/SE % C
_Variance ’ .48 32 .. .1.00000 413035, 7 2.78 0P
Residual i, AR=AlitoR & 0.223765 ~.0.223765 . 0.79 07U
. Residual = AR=AutoR 8 “0.754510 °° 0.754510 -. 7.67 OU
Analysis of Variance . DF F-incr F-adj StndErrDiff
7me a1 46:79 13,40 - LE
5 var . < 15 2.63 263 296.1

We note first that the REML logl is —221.473, 2.01 higher than the —223.482 obtained

from the complete block model, and 0.05 lower than (almost the same as) the -221.417

obtained with the incomplete block analysis with the same number of parameters.

When conducting a spatial analysis with a two-dimensional structure to errors,

ASREML generates two graphs of interest:

o trellis plot of the residuals with marginal means. (Figure 1, left) where the marginal
diamonds indicate the mean, minimum and maximum of the residuals in the row

(right side) or column (top) and

o the variogram of the residuals (Figure 1, right) where rows are plotted on the left
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side and columns are on the right side.

The variogram is a fundamental tool that guides us in improving the basic AR1 x AR1
spatial model. However, there are no formal tests or procedures associated with these
displays. We formalily test terms suggested by these figures using likelihood ratio tests
(for random effects) or approximate F tests (fixed effects) and limit our selves to terms
for which there is a plausible biological basis. Common terms are strong (non-
stationary) trends across the experiment, edge effects and row/column effects probably
induced by agronomic processes associated with conducting the trial (serpentine

sowing or harvesting, unequal plot sizes, machinery effects).

Alpha lattice example Row/Column residuals 1 Alpha lattice example Variogram of residuals 1

AN
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—— ]
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Figure 1 Trellis plot (left) and Vanogram (nght) of residuals from the AR1 x AR1 mode/
produced by ASREML. Row distance is on the left axis, column distance is on the right

axis.

We first note from Fig 1 that there are no obvious points which might be outliers. Such

points would stand out with huge diamonds in the margin pointing to them.

Second, we note the variogram is quite smooth with strong effects which do not have
the typical AR1 x AR1 appearance. In particular residuals in the same row have much

less variation than residuals in the same column. /.e. there are strong row effects. This
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suggests there are non-stationary trends present. The trellis plot margins suggest that
these might be strong curvature associated with the row means of the residuals and
weaker curvature associated with the column means of residuals. The typical pattemn if

there was just autoregressive spatial vanation is to have a generally flat pattern except

at low row and column lags.

There are two approaches for fitting such curvature. The traditional approach is to fit
polynomials. Another approach is to use cubic smoothing splines. We prefer the latter
because it is a non-parametric curve. Both models fit the same linear component.
They only differ in the way the curvature compoenent is fitted. An advantage of the
spline model is that it allows for recovery of {reatment information from the curvature
component because it is fitted as a random effect. The quadratic model does not

provide such recovery because is fitted as a fixed effect.

V. Spatial analysis using the AR1 x AR1 plus extensions

Command file for analyzing TRIAL1.DAT using the AR1 x AR1+pol(row,2) model:

Alpha lattice example
rep 3

blk 12

row 6

col 8

plot 48

var 16

yld

triall.dat igkip 1
yld ~ mu var pol{row, -2}
12

row row AR1 0.1

col col AR]1 0.1

This analysis produces the trellis plot of the residuals in Fig. 2a and the variogram

depicted in Fig. 2b. The F ratio for pol{row,-2) is 13.38 (P < 0.01) and it can be seen
that the major non-stationarity along rows in Fig 1 has been removed in Fig 2a. The
REML logl for this model is —203.69 (Table 1). However, the trend along the columns

appears stronger now, because we have removed row effects, indicating we may also
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need to fit pol(col,-2). The command file (not shown) for this model just includes
pol(col -2) right after pol{row,-2).

Alpha fattice example Row/Column residuais 1 Alpha latlice example Row/Column residuals 1

a c

>< = &> S s oo
s L e - ) e
= = e S <b <——_.--*—"'i.-’\h\-._ .
o SN X e Er o
P ———

Alpha lattice example Variogram of residuals 1

d

Figure 2 Trellis plots (above} and variogram plots (below) for spatial modeis for: (a)
and (b) ARI x ARl+ pol{row,-2) and(c}and(d) AR1 x AR1+ pol(row,-2)

+ pol (col,-2) as fixed terms in the model.

The F ratio for pol(col,-2} is 5.01 {(P<0.05) So, after adding a quadratic trend for both
rows and columns the log-likelihood is -189.61. Note that the addition of fixed effects is
tested by F-ratios and not be the comparison of log-likelihood values. Trellis plot and

variogram of that model are shown in Figs. 2c and 2d.

A cubic smoothing spline is fitted in ASREML by including the terms lin(row) Ir spl(row).

The lin(row) term is an alternative to poi(row -1) which does not centre or rescale the
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variable fitted. The spl{row) term fits the curvature. The commands file for the final

model is

Alpha lattice example

rep 3

blk 12

row &

col 8

plot 48

var 1€

yld .
triall.dat !skip 1
yld ~ mu var lin{row) lin(col} !r splirow} spl{cel)
1z

row row AR1 0.1

col col ARL 0.1

T

Note that the terms spi{col) and spl(row) are written after Ir and thus are considered as

random effects.

The plots from this model are shown in Figure 3 and are very similar to those for the

two dimensional polynomial model.

Alpha lattice example RowfColumn residuais 1 Alpha lattice example Variogram of residuals 1
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Figure 3 Trellis plot (left) and variogram plot (right) for spatial models with 1in (row}
lin{col) !r spl(rew} spl(col)terms inthe model

Replacing the quadratic terms with cubic spline effects makes very little difference in

this example. The cubic spline medel may fit slightly better on the basis of the average
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SED ({278.4 for quadratic model, 274.6 for the cubic spline model)}.

In general, the modeling approach for spatial analysis of variety trials should be done
trying, as much as possibie, to include terms in the model that are related to an
identifiable source of variation. Furthermore, modeiling smail data sets such as
TRIAL1.DAT, that has only 6 rows, should be done with caution in order to avoid
overfitting. For small data sets to identify a parsimonious model is more important than
to find a complex model. For this reason, for TRIAL1.DAT we have fitted a much
simpler medel than those showed before; this is model AR1xAR1+row (with random
rows) that fits one more variance parameter {4) than the simple AR1xAR1. A random
row term after the AR1xAR1 seems to provide with a variogram of residuals (Figure 4)
simiiar to those previously found and a decrease in the Log-likelihood value with
respect to the AR1xAR1 (Table 1). Thus, for TRIAL1.DAT with only 6 rows the only

justifiable model to use seems to be AR1xAR1+row.

Alpha lattice sxample  Rew/Column residuals | Alpha lattire example Variegram of resideals 1

SO G e

Figure 4. Trellis plot (left) and variogram plot (right) for spatial models with random row

term in the mode/
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Results of the different models, their Log-likelihood values, error variances and SED

are given in Table 1.
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Table 1. Results for various models.

In the linear model random terms are bold

spi(col)

Linear model Error Log- Error Standard

Mu + entry Variance likelihood | . e | emorof
Model difference
IdxID -232.13 424504 532.0

+ rep ldxID 22348 | 206588 371.1

+ rep + blk |dxID -221.42 133293 326.5

AR(1XAR(1) | -221.47 413035 296.1

+ row AR(1)xAR(1) | -220.07 171003 299.5

+ pol(row,-2) AR(1)xAR(1) | -203.69 171946 292.3

+ lin(row) + spl{row) AR(1XAR{1) | -212.51 233964 293.6

+ lin(row) + spl{row) tdxID -213.91 148251 322.2

+ pol{row,-2) + pol(col,-2) AR(1)xAR(1)) | -189.61 126013 278.4

+ lin(row) + lin(col) AR(1XAR(1) | 21156 | 405426 298 8

+ lin(row) + lin{col} + spl{row) AR(1)xAR(1) | -208.90 172706 299.1

+ lin{row) + lin(col) + spl(row) + | AR(1)xXAR(1) -206.84 110718 2746

spi(cof)

+ lin{row) + lin{col} + spl{row) + IdxID -207.52 110699 2901

Figure 5 compares the adjusted means of the RIBD, AR1 x AR1, AR1 x AR1 + poi(row.-
2)+pol{col,-2), AR1 x AR1 + lin(row) + lin(col) + sp!(row) + spl(col) and Ar1 x Art+row
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models. The greatest differences are between the adjusted means of the RIBD and the
other models. Notice that adding the extraneous model terms to the basic AR1 x
AR1model has not greatly altered the adjusted means and that in this example the two-
way spline model gives very similar adjusted means to the two-way quadratic

polynomial mode!l.

We conclude that there are highly significant row effects which are adequately fitted by
including lin(row) Ir spl{row) or possibly poi(row,2) in the model. Furthermore, there is
a suggestion of column effects such that similar terms fitted to columns are significant
(P<0.05) and so probably should be included but will have little effect on the adjusted

means.

Once the row effects are in the model, the AR error correlations become non-significant
and could be dropped. However, the estimated correiations are smail and generaily

there is no loss in efficiency from leaving them in.
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Figure 5. Comparison of adjusted means from various models.
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6.1.2 TRIAL 2

| Preparing the data file

The second example is a variety trial designed as a row-column design (Nguyen and
Williams, 1993) with 64 varieties planted in two contiguous replicates laid out in 8 rows
and 16 columns. Data are in file TRIAL2.DAT.

First rows of the data file TRIAL2.DAT:

rep row col variety yield{t/ha)
1 1 1 5 1.5318
1 1 2 19 2.2211
1 1 23 55 1.4588
1 1 4 23 1.2436
1 1 -5 27 1.8989
1 1 6 38 1.3366
1 1 7 1.8566

C 64

I§ Analysis of the row-column design

The command file, RCD.AS, for analysis of the row-column design:

Row-column example
rep 2 '
row B8
col 16
variety 64

y
TRIALZ.DAT !skip 1
y ~ mu variety !r rep rep.row rep.col

The linear model used in the file RCD.AS considers variety as fixed effect and rep,

rep.row and rep.col as random effects.
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Output file RCD.ASR for TRIAL2.DAT analyzed as row-column design:

ASREML [ 2 Sep 199%] Row-colum example ’
28 Oct 1958 11:54:01.060 8.00 Mbyte -~ ¢:\RCD.AS .
Univariate analysis of y T

Using 128 records [of 128 read from 128 lines of TRIALZ.DAT ]
Model term Size Type .COL Mlnlmum -* Mean Maximum fzero Hmiss
-1 rep 2 Factor -s1°.° TH 175000 2 0 0

2 row 8 Factor .2 -~ 177 “.4.5000 8 0 0

3 col 16 Factor 3 - 1. . 8.5000 16 0 0

4 variety 64 Factor A ] ‘ . 64 0 0

57y . © 1 Variate .5 4.783 0 0
6 mu i ‘1 “Constant" Term ‘

7 rep.row 16 Interaction 1 ke 2 2 row 8

a g

rep.col 32 Interaetion'-
“- Forming -*125 - equationsi:
ﬂt;al updates w1ll be 8

1.000

Tlo00,
$13000
(.52="0. 2o £1.000
52=-10, 1798 L 487, 7 1.000
LogL“—25 5287 52= 0. 179604 ( ;0.9166  .1.219 1.000
Flnal parameter valuesjhﬂﬁ. 79105 916560 1.2188°  1.0000°
“Source Lol 'Moﬁeli?’: “Smponent ~ Comp/SE"~ % C
rep i '0.191650° 0.55 0 pP
rep.row 16 ) 0.1e64612 1.52 0 r
‘rrep.coll ; CRR A A » 218903 - 2.57 0P
i Variance = ... 7, 128,- --0..179598 . 3.78 0P
Analysis of Variance - DF j StndErrDiff
6 mu . . ’ .
4 varlety S .63 - 0.5227

>

Finished: 28 Oct 1999 11:54:04.560 Logl Converged

The Log likelihood for this model is —-25.5287 with an error variance of 0.179598 and a
SED of 0.5227.

lil Spatial analysis using the AR1 x AR1

Following the approach of Gilmour et al. (1997) the error model AR1 x AR1 is fitted and
the trends of the residuals are examined in the ftreilis plots and variogram. The

command file for this analysis:
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AR1 x AR1
rep 2
row 8
col 1@
variety 64

¥
TRIALZ.DAT !skip 1

Yy ~ mu variety
12

row row AR1 0.1
col col ARL 0.1

The Log-likelihood value of the AR1 x AR1 model is —17 .79 (Table 2) an increase of
7.74 with respect of the Leg-likelihood of the row-column analysis despite the reduction
in parameters. The SED, with respect to the row-column analysis decreases from
0.523 to 0.443. The trellis plot of residual and variogram for the AR1 x AR1 analysis
are in Figure 6. The smoothness of the variogram is indicative of strong non-stationary
trends. The shape is indicative of a curved pattern for rows and a flatter pattern for

columns. The trellis plot shows that both appear curvilinear.

ARl x ARl Row/Column reatduals 1

ARI »x ARl Variogram of residuals 1

Figure 6. Trellis plot (left) and variogram (night) of residuals from the ARTxAR 1 model.
Row distance is on the left axis, column distance is on the right axis.
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IV Spatial analysis using the AR1 x AR1 plus extensions

Our next model fits cubic smoothing splines to both rows and columns. Note that each
spline, as implemented in ASREML requires two terms to be fitted: lin{(row) and lin{col)
as fixed terms, spl(row) and spi(col) as random terms. The spl() terms may be omitted
to just fit a linear trend. Since this involves adding fixed terms, we test the linear terms
using F-ratios and then the spl() terms using likelihood changes (Table 2). We see a
huge increase in the REML logl values going from the lin(r) + lin(¢) model (REML {ogi=-
19.88) to the lin{r) + lin(c) + spl(row) + spl(col) model (REML logl=-9.24) and the F-
ratios for lin(row) and lin(col) in this final model are huge (/0.4 and 41.6 respectively).

The trellis piot and variogram from this spline model is acceptable (Figure 7).

Qutput of the AR1 x AR1 +Iin(r) + lin(c)+spl(r) + spl(c}:

Formlng 87 equatlons 87_~d

ﬁNOTICE ) 1 (more) 51ngular
FLOGL=-9.23934 - S52= (0.14822.7:62 %
Logl=-9.23934 52= 0.14822 62_df
Final parameter values =

182 '1.000. 0.94138-02 0.1151 .
0.1162 '1.000 0.9430E-02 0.1152
11816 1.0000 0.34340E-02 0.11516

‘aSource S L _“:Moae

Component “.Comp/SE. % C
‘spl{row) - T 6 **°0.192924 ° 1.10 0O P -
spl {col) 14 ' 0.175129E-01 0.99 0 P
Variance = . ,-0.148219 4.75 0 P
‘yRésidual. .. :079434038-02 - 0.04 0 U
0 6.51 : 0 U.

lReé;dungﬁ' ;3115165 v

Analysis of Variance stndErrDiff
] l(col) Te e -
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Figure 7. Trellis plet (left) and variogram f(right) of residuals
from model with lineal plus spline effects in row and column.
Row distance Is on the left axis, column distance 1s on the
right axis. .

Table 2. Resuilts for various models. In the linear model, random terms are bold.

Linear model Error REML Error Standard
Mu + variety Variance Log- Variance Error of
| Model Likelihood Difference
+ rep + row + column idxID -25.83 0.18 0.523
AR(1)xAR(1) A7.79 0.62 0.443
+ lin(r) + lin{c) AR(1)xAR(1) -19.88 0.46 0.450
+ lin{r) + fin{c) + spl(r) AR(11xAR(1) -17 45 0.30 0.441
+ lin(r) + lin{c) + spl(r) + spl(c) |AR(1)xAR(1) -9.24 0.15 0.404
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6.2 SPATIAL ANALYSIS OF A VARIETY TRIAL WITHOUT REPLICATES

| Preparing the data file

A total of 280 varieties were planted in a rectangular array of 14 rows and 31 columns.
There is one check variety planted in every 3 column (1, 4, ..., 31). The data file name
is UNREP.DAT and the first rows of the data file are shown below. Columns are: check

(1 = check entry, 2 = no check entry), entry, column, row and yld.

First rows of the data file UNREF.DAT:

5

. [} Spatial analysis using the AR1 x AR1 model
The following lines constitute the ASREML command file for the initial spatial analysis.

Command file UNREP.AS for analyzing UNREP.DAT using the AR1 x AR1 model:

row row ARI 0.1
col ceol AR1 0.1
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In this model, the variety including check is considered a random effect. Some workers
(for example Cullis et al., 1989) fit the difference between CHECK lines and TEST lines
as a fixed effect. However, since the check line is so highly replicated, it is easier and
almost equivalent to do as we have here. The two-dimensional AR1 x AR1 model for

the residuals is specified in the last three lines.

Output file UNREP.ASR for UNREP.DAT analyzed using the AR1 x AR1 model.

ASREML { 9 Aug 1999} Spatial analysis of an unreplicated fleld trial
11 Aug 1999 10:27:19.230 32.00 Mbyte unrep
Reading unrep.dat” FREE FORMAT sklpplng l - line "=
Univariate analysis. of yld:. | T g
Using - 434 records {of 434 réad from, 434 lines of unrep.dat]

Model term Size Type - COL -~ Minimum Mearn: Maximum #zZero Hmiss
1 check . 2 Factor 1 1 1.6452 2 w0 0
2 entry 281 Factor 2 1 91.6452 281 0 0
‘3 col 31 Factor 3 1 - 16,0000 31 0 0
1 row % 14 Factor 4 - 1 7.5000 14 0 0
5 yld - 1 variate 5 #2.115 . 6.340 9.333 0 0
6 mu : 1 Constant Term = - -

14 AR=AutoR . 0.10
31 AR=AutoR ..0.10 .
Forming 283 equations: 2 dense : o
Initial updates will be shrunk by-factor . (.548. e L
LogL=-237.568 52= 1.0348 433 df 0.1000 1.000 0.1000 0.1000

LogL=-225.231 S2= 0.81449 433 df 0.4252 1.000 0.8531E-01 0.2133E-~
01 -' S - ‘ .
LogL=~213.282 S2= 0.54985 433 df 1.405 1.000 0.9564E-01 ~0.1001
Logl=-211.827 S2= 0.50148 433 df 1.783 1.000 ¢.1068 —0.2064
LogL=-211.731 52= 0.49989 433 df 1.815 1.000 0.1186 -0.2359
LogL=-211.725 §2=-0.49944- 433 df 1.824- 1.000 0.1234 T-0.2414
Final parameter values A ' 1.8262  1.000 0.12493 . =.24263
Source . Model terms Gamma Component Comp/ 58 % C
entry h 281 281 . 1.82619 0.912075 7.18 0 F
Variance . . 434, 433 . 1.00000 0.:499443 8591 op
Résidual - ©  AR=AutoR 147 °0.124530 “0.1249307 1.7 1 U-
Residual AR=AutoR 31 ~0.2428635 ~0.242635 -2.65 ou
Analysis of Variance DF F-incr F-adj StndErrDiff

6 mu ) 1 8329.18 8329.18

Solution Standard Error T-value T-prev
6 mu . -
i s 6. 44048 0.705695E~-0L, . 9l.26
“D¥entry A 281 effects fitted e el

Finished: 11 Bug 1999 10:27:23.570 " LogL Convergéd'
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A variogram of the residuals and trellis plots are shown in Figure 8. As in the case of

the replicated trial, this AR1xAR1 model can be improved.

Spatial analysis of an unreplicated field trial  Row/Column residuals 1 patial analysis of an unreplicated field trial Variogram of residuals
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Figure 8. Trellis plot (left) and variogram (right) of residuals for the unreplicated data of
the model AR1xAR1. Row distance is on the left axis, column distance is on the nght
axis.

Looking at the variogram, we see strong ridges associated with columns but they do
not persist across the whole variogram. This indicates column effects which locally
have a sawtooth pattern but not consistently. This is aiso indicated by the negative
autocorrelation parameter associated with columns. Looking at the trellis plot (Figure
8), we can see the sawtooth pattern does seem to persist over all the columns. The
columns containing the checks (every fourth) also stand out because they have bigger
residuals (having true replication). We therefore add random column effects and fixed

sawtooth effect to the model by changing the model line to read

yid ~ mu altcol !r entry col
where altcol is a new covariate added to the data which is 1 for odd columns and O for

even columns. Some models are summarised in table 3.

Adding cof to the initial model increased the LogLikelihood to -201.4, a significant

increase of 10.3. Adding altcol to the base model, altcoi was significant with an F ratio
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of 38.3. Adding cof to this model| still improved the likelihood significantly but altcol
remains significant.

Table 3 Summary of models fitted to unreplicated
trial. Al modeis fitted with AR1xAR1 error correlation.

Random effects are in bold.

Model REML
loglikelihood

mu + entry 2117

+ ¢ol -201.4

+ altcol -199.5

+ altcol + col -196.6

This analysis assumes that entries are truly randomly distributed. In experiments
where entries come from families and are laid out in the field in family blocks, then
these column effects could be family effects. Thus, appropriate design is required for
spatial analysis.

Figure 9 show the variogram and residual plot after adjusting for AR1xAR1 plus column
effects. The variogram is fine.
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Spatial analysis of an unreplicated field trial Row/Column residuals 1
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patial analysis of an unreplicated [ield trial Variegram of residuals

Figure 9. Trellis plot (left) and variogram (right) of residuals for the unreplicated data
corresponding to the analysis of the mode! AR1xAR1 + col. Rows are on the right side

and cofumns are on the left side.

This is a reasonable model for this data. We note that that the residuals tend to be
larger in the CHECK columns (1, 4, ...31). This is because these are the replicated
plots and so there is a good estimate of the mean, hence of the residual. Second, we
note that column effects which appear present would be better estimated if check plots
occurred in every column. For this reason, check plots are often run diagonally. These

are design issues which need to be addressed.
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Predicted values for checks and entries of UNREP.DAT as listed in UNREP.SLN for the

mode! with only col :

The file UNREP.SLN contains the Best Linear Unbiased Predictors (BLUPSs) for the
entries inciuding the CHECK line. The predicted mean is obtained by adding the mean
(mu = 6.450) to the BLUPs. Thus for the check line (= Entry 0), the mean is 6.1368 =
6.450 - 0.3132. The adjusted mean for entry 1 is 5.7349 compared with the unadjusted

data value of 5.131.

The mean appears at the beginning of the output followed by the yield effect of each
entry, the column effects and lastly the 14 x 31 residuals. The last column contains the
standard error of the effects and, for the residuals, is the predicted value for that plot.
In this case the predicted value involves the mean, entry effect and the column effect.
Thus, adding the column 1 effect (0.3281) to the CHECK mean (6.1368) gives 6.465.

mua

Lentry s

““entry
entry
entry

entry
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Biplots of Linear-Bilinear Models for Studying Crossover
Genotype X Environment Interaction

Jose Crossa,® Paul L. Corncelius, and Weikai Yan

ARBSTRACT

Lincar-bitincar models, such as ihe Shifted Multiplicative Model
(SHMMj and Sites Regression Madel (SREG), have heen used 1o
develop clustering procedores for finding subscts of sites (or cultivirs)
withoui cuftivar vrossover inleraction {nen-COL). Riplots of these
aadels are useful for visual evaluation of collivar responses across
eavirnnnenis. The main purposes of thiv sudy were to investigate (i)
SREG; and SHMM, biplots with the fiest multiplicative compoaents
constenined 0 e non-COE SREG, and SHMM, solufions, (i) how
the hipkots van be used for itlentilfying subsels of sitey and cultivars
with different tevels of COF and with non-COL, and Gi) how these
biplots enmpaee with results sbinined when clusteriig only sifes or
cultivars withowt cultivar rank change. Tronsfocmed and untrans-
formed data from iwo ywlliesyirowment coltivar trisfs were used
for illustration, Biplods from SHMM, and SRIEG, madels praphically

dixplay the inieraction virintion due w low level CO1 or non-€CO1
.I’arst mulfiplicative leem) yvenus the inderaction varistion duc é0 CUL
(vecond multipBeative torm. The biplots obitvined by mesns of the
aon-COb fiest tecmr gonstrnined sodution of the SREG, and SHMM,
models have fhe same interpretubilily proporties sy the standard
hiplsts obtaioed by means of the sncondeained solution. With the
unconstrained and consteained solutions, iUy possible o identify sub-
sets of ysites and cultivars witly low lesel CCH and an-COE Riplats
hased on enscaled or seated duta produced simitar results, Groups of
sites wnd cultivars with Iow level CON rad nop-COl were similar to
those found when only sites {or cullivan) nere chustered into pon-
COI groups using the SHMM and SREG clustering approach,

ULTIPLICATIVE. MoDLS for multsite eultivar tnals
have been used for studying genotype X environ-
ment ipteraction (GEL) and for developing methods for
clustering sites or cultivars into groups with statistically
n(.yu,;hh, Crossover inferaction ((OI) {Conelins ¢t al.,
FQU2, 1893: Crossa ot al., (Y93, 1995, 1996; Crossa and
Cornelius, 1993, 1997, Abdalia ot ., 1997), Multiplica-
tive models have an additive (fincar) component {i.c.,
'n!crccpl‘ main effects of sites and/or cultiviars) and a
multiplicative (bilincur) component (GEI) and thus are
itlso named lincar-bitinear models (Cornelius and Sey-
cdsadr, 1997). Two types of Uacar-hilincar modcls are
suitable for grouping sites and cultivars without cultivar
rank change: the shifted multiplicative model (SH MM},
R I i K ¥ Y + |-.,,, .mtl the sites regression
model (SREG), Yi = iyt Zb o Mgy + g, wherc
¥. is the mean of the ith cultivar in the jth envitonment

Lo Crassa, Brometrics and Stisties Unin, [nternationid Maize and
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a1y

for g cultivars and e sites (F = 1.2, and j = 12..¢);
B is the shift parameter; p; is the site mean; M(h, = A,
= ... = X} arc scaling constants (singular vatecs) that
aflow the hnposition uf arthonormality constraints on
the singular vectors for cultivars, cc; - (u o, S ), and
SUHCS, ¥ = (Ype¥a ) such that Yed = Yyi = | and
gt = ey = O for k< k' ay and vy, for £ =
1.2.3...,are called primary, seconduary, rertiary,..., effects
of ith cultivar and the jth site, respectively: g, s !!u,
restdual error assumed to he NID (0, o¥fr) (where o
is the pooled error variance and ¢ is the number of
replicates). The number of bilincar tenins 1 = min(g, ).
Estimates of the multiplicative paramcters in the &th
bilincar term are obtained as the Ath component of the
singular value decomposition {SVD) of the deviations
from the additive part of the model. In the SHMM
modc!, the bilinear teems absorb the environmentat and
genotypic main effects and the GEL whereas in the
SREG madel. only the main effeets of cultivars plus the
GEI are absorbed into the bilincar terms.

1f SHMM and SREG madels with one multiplicative
component (SHMM, and SREG, ) are adeguate for fit-
ting the data {second, third. and higher order multiplica-
tive components are negliyible) and primary ef(cets of
the sites, ¥, arce cither all non-positive or all non-nega-
tive, SHM M, and SREG: predict non-COLL On the con-
trary, it 4. are of different signs, SHMM, and SREG,
models predict COL Moreover, the non-CQOI property
of SHMM, and SREG, (whm Yy are cither a1l non-pos-
itive or all non- T‘JLgEi[l\fL} 1% 4 consequence of a propor-
tionality condition, i.c., coltivar differences in any one
site are propoctional to their differences in any other
sife,

In various clustering studies based on SHMM or
SREG (Cornclius et af,, 19492, 1993; Crossa andd Corne-
Hus, 1997), the measure of dis!:mcc (i.e.. dissimilarity)
between a pair of sites was the residual sum of squares
(RSS) after fitting SHMM, or SREG,, RSS{SHMM, )
or RSS(SREG, ), ruspcctivc]y. Sevedsadr and Corne-
lius (1993} proved that if ¢ = g RS$S(SHMM,. ) =
RSS(SREG., ;). Thus, for a subset of data containing
only two sites, RSS(SHMM,) = RSS(SREG). If the
resulting §; have the same sign, RSS(SHMM, ) is 4 non-
COl solwtion; but if 3, arc of different signs, constrained
SHMM, and SREG; solutions nced to he compnted.
Crossa ¢t al, (1993), in clustering sites into groups with
non-COL, used constrained least squares (LS) SHMM,
solutions for pairs of sites needing constrained sotutions,
but Cornelius et al. {1993), in clustering cultivars into
groups with non-COIl, uscd constrained singular value

Abbreviations: SHMM, Shifted Mulniplicative Model, SREG, Site
Regressions Model, GEL genolvpe = environment ioteraction: OO,
cromsaver interaction: LS, leastsguares, SV singuar value deeonipo-
aition,
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Tabte L. Grain-yield rank of nine (G1-G9) maize cultivars at 20 test sites {Friad 1) and the standard error of cultivar means (SE) (kg

ha~') at each site.
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decompositions (VD) to obtain SHMM, solutions. The
constrained SVD solution will force only the most ex-
treme primary cffect of a site (located at left or right
of the graph) to be zero, whereas the constrained LS
solution will assign a value of zero to primary cffects
of a3 many sites as necessary to assure that site primary
effects are cither all non-negative or all non-positive.

Biplots arc useful for summarizing and approximating
patterns of response that exist in the original data (Ga-
bricl, 1971, 1978). Yan ct al. (2000) presented standard
biplots of the SREG model that helped cnhance its
interpretation for selecting the best performing cultivars
in subsets of sites. The authors proposed (i) connecting
the markers of the farthest (most responsive) cultivars
in the biplot such that they are the corners (vertices)
of an irregular polygon and (ii) for each side of the
polvgon, drawing a linc segment perpendicular to that
side and passing through the origin. These linc segments
subdivide the polygon into sectors involving different
subsets of sites and cultivars. The cultivar that is at
the polygon corner located in one sector is the best
performer (due to large positive GEI) in sites with mark-
ers included in that sector, but it is the worst performer
(duc to large negative GEI) in sites with markers located
in the opposite sector of the biplot. The biplot from the
SREG modcl shows that ideal cultivars should have
large primary cffects (high mean vield) and near-zero
sccondary effects (more stable) and the ideal sites
should have large primary effects (high power to dis-
criminate cultivars} and small secondary cffects. Such
properties tend to occur if the primary effects of culti-
vars are highly correlated with the cultivar means (Yan
et al., 2001).

For SHMM; and SREG; modecls, the biplot of the
first two multiplicative components would represent the
graph of the interaction variation due to non-COI (first
multiplicative term) (or proportionality of cultivar re-
sponse in sites) versus the intcraction vanation duc to
COI (second multiplicative term) {or disproportionality
of cultivar response in sites). This is accomplished if,
and only if, the scorces of the first singular vector for
sites, ¥, arc all of the same sign. If 4, arc of differcnt
signs, a constrained solution for SHMM, and SREG; is
required, such that the first multiplicative term should
show a non-COIl pattern. For SHMM,, this is simply
obtained by constraining the first multiplicative term by
the standard constrained SVD solution and using the
sccond multiplicative component of its SVD as the sce-

ond muitiplicative term. For the SREG model, the §VD
non-COl solution is not that simple.

Previous rescarch using the SHMM and SREG mod-
els led to the development of clustering procedures for
finding subsets of sites with non-COl or subscts of culti-
vars with non-COI (Cornelius ct al., 1992, 1993; Crossa
et al, 1993, 1995, 1996; Crossa and Comnelius, 1993,
1997}. However, these procedures do not simultane-
ously identify non-COl subsets of cultivar and sites.
The main purposes of this study were to investigate (i)
SREG; and SHMM, biplots with the first multiplicative
components constraincd to be non-COI SREG; and
SHMM, solutions and to compare these with the biplot
of Yan et al. (2000) in cases where the unconstrained
solution does not yield a non-COI solution, (ii) how the
biplots can be used for identifving subsets of sites and
cultivars with different leveis of COT and with non-COl,
and (iii} how these biplots compare with results obtained
when clustering only sites or cultivars without cultivar
rank change.

MATERIALS AND METHODS
Experimental Data
Trial 1

The data are the same as in Cornelius ef al. (1992, Table
53, Cornelius et al. (1996, Table 2), and Crossa and Cornelius
{1993, Fip. 75-1) where ninc {g = 9) CIMMYT maize {Zea
mavy L.) cultivars were evaluated in a randomized complcte
black design with four (r = 4) replications at each of the 20
(e = 20) international sites. The rank of the cultivars in each
site and the standard error of cultivar means at cach site are
shown in Table 1.

Trial 2

This data sct involves 11 winter wheat {Triticum aestivim
L.) cultivars tested in 26 environments (year—site combinations
during 1996-1998). extracted [rom the Ontario winter wheat
performance trial database maintained at the Univ. of Guelph.
The Ontario winter wheat performance trials arc sponsored
by the Ontario Ministry of Agriculture. Food and Rural Af-
fairs. the Ontario Wheat Producers Marketing Board. and
spansors of the varictics to provide information to Ontario
wheat prowers about the performance of the available winter
wheat cultivars. The trials at the various test sites were in
randomized complete block designs with four to six replicates,
but only the cultivar X environment mean yield data of g =
11 and ¢ = 26 arc available. The ranks of the cultivars in each
test environment are presented in Table 2,
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Table 2 Grain-yield ranks of 11 (GI1-GI1) winter wheat cultivars (Trisd 2) at 26 fost sites.

@

Cuhivar

Sige [M] @2 G G4 G5 G6 G7 G8 G9 Gl Gn
1 3 11 H [ ] 10 4 2 7 1 9
2 1 1 5 10 1 9 7 f 2 3 H3
3 1 9 2 ] it 10 5 3 [ & 4
4 11 5 [ ] i1 4 i ] 1 2 7
5 5 i ] 1 7 6 k) 4 g 2 ]
6 7 4 ] 11 10 5 6 ] 1 2 3
7 o ] L] 3 L] B 5 1 2 1] 1
L] [ 7 1 5 16 1 9 3 d 2 Hi
9 4 11 2 i 3 3 1n 5 6 ki K
14 10 3 2 B 131 5 4 [ 1 5 7
11 1 L} 7 11 1% 5 q 8 2 ¥ [
1 7 10 1 5 13 ] H 4 R 2 9
13 2 4 b [ 4 11 3 1 B 1{[] 7
14 [ 3 T 10 11 7 4 5 1 P 3
15 6 k) 5 11 2 9 9 3 7 8 1
Ia B 3 1] T 11 F 2 4 9 10 1
17 2 2 10 11 9 ] s 6 1 7 4
18 ] ] 1 9 3 7 11 6 2 4 k]
13 8 i1 1 9 1 4 3 2 6 7 5
b} 10 1 3 $ 7 B 6 9 1 H 5
21 3 4 s 7 9 10 3] 5 i [ 2
2 2 [ T 5 10 ] 4 1 1 R 2
3 6 4 [3 3 # 2 o 11 1 19D 1]
9 11 2 [ & 10 4 i 8 1 3
a5 H 18 4 5 il 9 A I 8 7 2
sl 6 4 H] 11 1 7 2 8 3 9 1

Stcaled Dyata and Nolation

in both trials, the nor-COT unconstrained and constrained
SVD and LS SRLEG and SHIMM solutions were computed on
the basis of the unscaled values of the cell means {¥;} and on
the basis of the scaled data (¥;). The scaled data were com-
puted as in Crossa and Coraclus (1997). that is, I; =
T, /057, where § 3s the crror vagjance in the jth site and r
15 the number of replicates.

The notation used for the SREG, and SHMM,; analyses
and the corresponding biplots using unscaled and scaled data
and unconstrained and constrained solutions is as follows: the
lirst capilal letter in parenthesis denotes the type of data used
(U = unscaled. 8 = scaledj and the second capital letter
represcnls the type of solution applied (U = unconstrained:
Civp = constrained SVID: Cp o = constrinned LS SREG, as
the frst term and with the sccond ferm taken ns the first
componenl of the SYD of residuals [rom the SREG, con-
.itraim:d LS solution). Thus, SREG(Li/U} denotes the sites

regression model on upscaled data and applving an uncon-
strained solution; SREG:{U/Cyyp) denotes the sites regression
maodel on unseaied data and applying a constrained SVD solu-
tinn: SREG{S/U) denotes the sites regression model on scaled
data und using an uncenstrained solution: SREG:{S/Cavp} de-
notes the sites regression model on scaled data and using a
constrained SV solution: SREG,{S/Cy5,,) denotes the sites
regression madel on sealed data and using a constrained LS
solution. Similar notation is used far biplots of the SHMM,
model wherc only constrained SV solutions are computed.

Constrained SVD Non-COl Solution
for the SHMM Muaodel

The constrained SVD non-COJT solution of the SHMM
model lor two or more cultivars is deseribed in Cornelius cf
al. (1993]. and for two or more sites, they are given in Crossa
ct al. (1995, 1996). Briefly, the matrix subjected ta SV is
7= gl = % — Bl The vesidual sum of squarcs for STTMM,
15 RSS(5] i'\ﬂ\l ) = tracc(Z'Z) — Ly, where Ly is the fargest
cigenvalue of Z'Z. In this casc, the value of f is selected such
that the smallest or the largest ¥, is zero. For a pair of sites, 1

and 2, dndgcullwar\ the closed-form SVD non-COT SHMM,
solutions for § arc given by

= I ' i Ve |22
g = (]Sl(:iH + }2) -+ \‘(57 4+ ?1)3 = d)_n) JL\"LJ }‘
£

provided that
(5o + 3oy~ 22 o g
.4

Both splutions force 2’2 1o be difseonal One solution has
1. = 0 and 4y = 1 and the other 9y = 1 and 4y = . For
either value of i, RSS(SHMM, ) = trace(Z'Z) — L, reduces
to the sum of squared deviations of the cullivar means in the
site with 8. so that the solution is the one lhm gives the
minimum RSSISHMM, ) = min[3,(F: — BF. D7 — RY).

[or morne than two sites, the 3VD non-C O_f SEIMM, solu-
tion does not exist in elosed Torm (Cornglios ¢t al., 1993). 11
site s is selected 1o have 9., = 0. the constraint js Ny =
X 6al(Vm — B) =} for which

5 — El&ﬂyﬂj
B — Al Lo
h:
which is liceatively computed and where w;, s estimated by
the SVD of Z. {Note thal here Z also changes ileratively.)

Constrained SYD Non-COI Solution
for the SREG Model

For the constrained SV D non-COI solution for the SREG
model, a selution is required such that Z = |z} = {7 — )
has clements of its first right singuiar vector all of the same
sign {or zero). The proposed solution to this problem is 4o
pulfi, = y; -+ f and choose B to satisfy the required condition.
Note that, after shifting the i, values {from 7,;). the fiy shoukd
no longer be pereeived as estimates of site means.

IT a eonstrained solation is needed, the §; valucs in the
snconstrained solution will contain both positive and ncgative
values. Let §™ and §7 denote the sum of squares of the negative
and positive 4, values. respectively. If 87 < 57, choose the
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site with the most negative 44 value to be the site to have ity
% value foreed to zero in the constrained solution. Conversely,
if §7 > §*. choose the site with the largest positive ¥, value
to have its §,; value forced to zero. Suppore these rules lead
1o a Silc m as the site so chosen. L.2.. § will be chosen 1o foree
8w = (. Solutions for § are

e =56 5
B = + | L SE [Jl

f==m

Derivation of this result is given in Appendix 1. Herate until
the vatue of B converges. consistently chaosing either the
positive or negative solution on every iteration. At conver-
gence, the quantily under the radical in Eq. [1] is necessarily
positive. Tn practice. to ensure that the iteration actually gets
started. replace the quantity under the radical with its absolute
value if it js negative. .

Typically. the nepative solution for B will make most of the
a; values of the same sign as the nonzero 9, values. The
positive solution for @i will have the opposite effect. Absolute
values of the 3, and also of the %;. will be the same for cither
solution. but this will not held for the &, or for the &, The
singular values (R) and sequential sum of squares will be the
same for cither solution. Predicted values (¥} will differ. but
cultivar differences within any particular site will be the same
under either solution,

Constrained LS+1 Non-COI Solufion
for the SREG: Model

If the 4 are 1o be forced to 2ero for e, sites in se1 .5, and
left unconstrained in the complementary set 5 consisting of
e = ¢ — ¢ sites. the residual sum of squares is

T E - I Y 0 - i)
PoEs i sh

(Crossa and Cornelius, 1997). Both terms in this cxpression
are minimized by putting fi; = ¥, with A, &, and §; for siles
in set S, abtaincd as the first componem of the SVD of the
g X e matrix of deviations of ceil means from site mcans.
¥y — ¥ insel S

In practice. one mukes a first choiee of a site, which we will
denale as Site . 1o have ils 4y forced 1o zero, i.c., a8 a first
choice for a site 10 be put into sel §;. This chaice will be made
as deseribed for choosing Site & for the constrained SVD non-
COI solution. If the g, for the e — 1 siles remaining in set 5,
includes values differing in sten. choose a second site to have
its ¥, forced to zero, Continue this process until the SVID of
set S: gives the remaining nonzero 4, all having the same sign.

The fitted non-COI SREG, -, model is obtained by means
of the non-COT LS SREG, solution as the first multiplicative
term and then extracting a second muitiphcative term as the
firsi eomponent of the SV D of the matrix of deviations of the
cell means from the non-CO! 1S SREG, solution. Vectors of
¥ and 4, values appear to be orthogenal to onc another. but
this does no1 hold for vectors of &y and &, values.

SREG Model Using Mandel's Solution

The biplot abtained from the SREG modcl with Mandcl's
solution has been recently suggested by Yan et al. (20(H) and
consists in plotting. as primary ¢ffect, Mandel's solution for
site regression and the first principal component extracied from
thc regression deviations as the sccondary cffect (SREGy).
The SREGy 9 model is ¥, = p; + b + Ay + & where
b; is the regression coefficient of the jth site on the cultivar

main cffecws (g) and the other terms defined as in previous
cases. This equation is Mandel's siles regression (¥, = u, -
bg + E;), plus one additional multiphcative term {Ac:d,)
estimated by subjecting the matrix of deviations from the
Mandel's regression model (7, ~ p, — g} o SV,

Biplot

Biplots obtained from linear-hilinear models. such as SHIMM
and SREG, are constructed from the SVD of the two-way
table of deviations of empirical cell means {rom Jeast squares
estimates of the additive components. On a two-dimensional
Cartesian coordinate system. smerkers Tor cultivars are plotied
with primary elfect {score in first swiliplicative term} and
secondary cifect (score in second multiplicative term) as coor-
dinates. A set of markers for sitcs is plotted on the same
figure, also with primary and secondary eflects as coordinaies.

A full description of the interpretation of the hiplots of
multiplicative maodels is given in Gower and Hand {1996).
Briefly, the cultivar and site scores are represented as vectors
in a two-dimensional space. 0 it is useful 1o interpret biplots
in terms of directions of the veetors and their projections.
Culiivar and sile vectars are defined as vectors from the origin
(0.0 to the end points determined by their markers (scores}.
An angle # < 90° or 8 > 27° between a cultivar vector and
a site vecior indicates that the cultivar had a positive response
at that site. A ncgative cultivar response is indicated if 90° <
8 < 270°. Note that in thc SREG model. the interpretation
of the biplot is with respeet (o the variation for which main
cffects of cultivars (G) and the GEl {G+GLI) account,
whereas in the SHMM biplot. the interpretation is on the
deviations from the shift parameter. Performance of a cultivar
in a site can bec approximated by the orthogenal projection
of the cultivar vector onto the line determined by the direction
of the site vector; that is. if we consider the line containing
the site vectar, the cultivar’s response at that site is approxi-
mated by the Iength of the segment of that line extending from
the arigin to the point where that line can be perpendicularly
intersected by a line drawn from the cultivar marker.

The cosine of the angle between twa site {or cultivar) vee-
tors appreximates the phenotypic correlation of vield perfor-
mance of the twosites (or eultivars). An angle of zero indicates
a correlation of +1: an angle of 90° {or —Y(). a correlation
of ( and an angle of 180°, a correlation of —1. Furthermore.
the cultivar scores for the first multiplicative component of
the SREG mode! will usually be closely assoctated with the
culiivar main effects.

The biplot methodology of Yan ct al. (20084) forms 4 poalygon
by joining the most extreme cultivars of the biplot wilh line
scgments, one for cach gide of the polygon drawn from the
ongin ta perpendicuiarly intersect that side of the polygon,
These perpendiculars are further cxtended suthiciently fas to
subdivide the hiplot inte seetors so that each site marker and
cach cultivar marker is contained within one {and only one)
sector. When a polygon cannot be formed because primary
effects of cultivars, as well as primary elfects of sites. are ail
of the same sign. but the signs [or cultivars are opposite to
those for sites, one can still draw straight lines joining the
most extreme cultivars 1o form a polygon. as well as lines that
pass through the origin and are perpendicular 1o the sides of
the polvgon. In many cases. perpendicular lines from the cen-
ter of the biplot are drawn. but their intersection falls on the
extension of the side of the polygon beyond the corner {vertex)
where the side ends.

Ruscaling the Singular Vectors

For the graphical display of the biplots, it is advisable 1o
absorb the singular values of the first and second muitiplicative
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components. &, and A into the singular vectors of sites (4,
and 4,) and cultivars (&, and &,} in such a way that the products
of rescaled primary and secondary eficcts are cqual to the
contributions .Mu.w,. and i‘u.w,z of the firs1 and sccond multi-
pheative components. respectively. to the predicied values of
the attribute.

Let the rescaled values of the smgular vectors of cultivars
and sites be &% = A &; and 4% = A" 9,. respectively, with
0= A =< L Scleet a valuc of A, such that it will force the
range ol values in the singular veetor for sites to be equal to
the range of values in the singular vector for cultivars, that
is. max{&fF) — min(&¥) = max($¥) - min(¥f). Define C =
ma\(&[) — min{&;} and D = max(¥,} — min{%¥;) (whcrc max
and min denote the largest and smallest clements of the vee-
tor. respectively). Then choose A such that (“(}(‘) DA™
or equivalently. AP = DJC. Solving for A gives (24 — 1)
log(A,) = log(I¥C) and then

~h-tel

2L log(As)
and
A [legDio)]
. (L=a)= 2|.'J [ log(h,) ”

If the tanges are the same, ic, D = C then A = (1 — A) =
0.5. Value {or A for rescaling the vectors in the second mullipli-
cative term is computed similarly.

Defining Levels of COI

It is useful to classify subscts of sites and cultivars with
different levels of COIl, defined in terms of how much rank
displacemcnt has occurred in the COL An order A—1 adjacent
COJ subset will be defined as a subsct of ¢, sites and a subset
of A cultivars such that the ranks of this subset of cultivius in
the ranking of all cultivars in each of the sites in the subsct
is some permutation of the integers r+1, r+2.... r+h. with
these permutations not being the same at all sites in the subset.
but with r being a constant integer. ¢ < r < g — £, The ievel
of the adjacent COI subset will be defined as the maximum
cultivar rank change that occurs from enc site to another in
the subset. Qur main intcrest will be the cases where r = @
and A = 2 {or 3). which constitute cascs where the best two
(or three) cuftivars are the same two (or three) cultivars in
cvery site in the subset. In other words. we will be interested
.n order 1 adjacent COI and order 2 adjacent COL

For our purposes in this paper, an adjacent subset will be
considercd fonw Jevel if #s order 1s =2. Thus, since the level
of an adjacent COI subscl cannol exceed its order, cases where
h = 2 or 3 are necessarily low level. In the sequel. for brevity
we will drop the weord adjacent, and simply characterize such
subsets as {ow level COTI subsets. Note that a level 0 adfacent
COI subset cannot exist, because there must be at least two
cuflivars with rank changes if more than onc permutation of
the subsctl ol ranks exists. Thus, only a non-COI subse! can
be at level ¢ with respect to cultivar rank changes. In our
usage. for a subsct of cultivars to be udfacent, the members
of the subset must not only be “adjacent™ in every site, but
they also must be consistently adjecent, i.c.. rmust be constant,
When r is not constant but differs from site 1o site, the subset
of cultivars is inconsisicatly adjacent in the subsct of sites.
{An extreme case would be when three cultivars are the threc
best in same sites and the three worst in other sites.)

Software

Unconstrained and constrained SVD non-COI SREG; and
SHMM: solutions can be computed by the FORTRAN pro-

gram EIGAQOV that can be run on a personal computer. The
constrained LS+41 solution for SREG was obtained by im-
porting the constrained non-COI LS SREG, solution [rom
EIGAOV into SAS/IML (SAS Institute. Inc., 1989) 1o com-
plete the computation. Information about the use of the CI-
GAOV programs can be obtained [rom the sccond author.

RESULTS AND DISCUSSION

Trial 1

Standard errors of the cultivar means ranged from
142 kg ha™" (Site 10) to 722 kg ha™! (Site 19) (Table 1).
The Bartlett's test rejected the hypothesis of homoge-
neous within site error vanance, and the Shapiro-Wilk
test for non-normality of residuals at cach site indicated
that the normality assumption is acceptable for all sites.
Cultivars G4, G35, and G6 had low level COl (mnkcd
within the best three cultive ws) in Sites 4, 5, 13,
15, and 16. Similarly, there was low-lcvel CO[ hc.twu_n
Cultivars G3 and GY 1in Sites 2, 4, 7, 13, 14, 15,16, and
17 (Cultivars G3 and GY ranked between dth and 6th).
Cultivars G1, G2, G7, and G8 ranked among the worst
five cultivars in Sites 4, 3,9, 11, 12, 13, 14, 15, 16, and
20. In Site T, the best cultivar was G8, whereas in Site
8, the best cultivar was G1, so Cultivars G8 and Gl in
Sites 1 and 8 showed a high level COL

Rankings of the cultivar predicted values in cach site
for SHMM. and SREG; models based on scailed and
unscaled data, and for the different non-COI con-
strained solutions are presented in Tables Al and A2
{Appendix 2}

Unconstrained and Constrained SREG,
Solutions and Their Biplots

For the unscaled data and unconstraincd moded,
SREG,(U/U), the Fy test of Cornclius et al. (1992),
which assesses the significance of the residual variation
after fitting the first & — 1 multiplicative components,
found no significant residual (P = 0.05) after fitting the
second multiplicative component, whereas the Fgyy test
(Comelius et al., 1996) used for judging the significance
of sequentially fittcd multiplicative terms found three
significant terms (P = 0.05). For SREG{U/Csyp ). three
and four significant terms were found significant (P =
(.05) by the Foyy and Fy tests, respectively. For the scaled
data and unconstrained model, SREG,(S/U), three and
four terms were significant (P = 0.05) by the Fgy: and
Fy tests, respectively, and for SREG(S/Cgvn ), both tests
found four significant terms (P = 0.05).

The biplot of the SREG, maodel, using unscaled data,
SREG.(U/U) (Fig. 1A) shows that cultivars, based on
the sign of their primary effects (&), arc divided into
two groups, [G1, G2, G3, G7, G8) vs. {G4, G5, G6, GY).
Sites, based on the sign of their primary effeets (%1),
are divided into two groups {1, 3, 8, 10} vs. {2, 4, 5, 6,
7.9, 11, 12,13, 14, 15, 16, 17, 18, 19, 20). Cultivars G1,
G2, G3,G7, and G8 have a positive response in terms of
their primary effects and GE[ at Site 8 (their orthogonal
projections onto the line containing the site vector are
in the same direction as the site vector) as opposed to
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the projection of Cultivars G4, G5, G6, and G9 that are
located in the opposite side.

Since the correlation between the primary effects of
cultivars and their main effeets is high {0.97), the biplot
can be used for cultivar evaluation with respect to per-
formance ability {a; ) and stability (&;) and site evalua-
tion with respect to discrimination (4,,) and represcnta-
tiveness (¥2) (Yan et al, 2001). In Fig. 1A, genotype
(G4 has the largest primary effeet (high mean yield) and
near-zero scecondary cffect (stable across most sites),
whereas Sites | and 3 do not discriminate cuitivars well
(relatively small §;,), and rclatively large 9, values pre-
dict large GEI, that is, inconsistency of cultivar re-
sponses in Sites 1 and 3 as compared with their responses
in other sitcs.

The polygon has seven vertices located at markers
for Cultivars G1, G2, G7, G9, G4, G35, and G8. In the
upper right sector of Fig. 1A, Cultivay G4 had the best
SREG, predicted values at Sites 2, 4 through 6, 9, 11
through 14, 16, and 18 (Table 3), but it ranked among

the worst three cultivars {7th, 8th, and 9th ranks) in
sites located in the opposite seciors containing Sites 1,
3, 8, and 10 (Table 3). On the contrary, Cuitivar G8 is
the winner m Sites |, 3, and 10 and the loser in sites
located in the opposite sector, Sites 2, 4 thvough 6. 9,
11 through 14, 16, und 18. Thus, Cultivars G4 vs. G8
and Sites 1, 3, 8 and 10 {with negative primary effects)
vs. Sites 2, 4 through 6, 9, 11 1humk,h 14, 16, and 18
(with positive primary effects and located in opposite
scctor of the biplot) had a cicar COT pattern. Cultivars
Gl and G5 are the winner (1st rank) and loser (Yth
rank} in Site 8, respectively (Table 3). Similar patterns
of COl can be observed for the cultivar subsct |G 1 and
G2} vs. GS at Sites 7. 15, 17, 19, and 20 (with positive
primary effcets) as compared to Site B (with negative
primary effects). The Site 8 marker was located far away
from the other site markers so that it can be congidered
very different from the other sites.

The vertex cultivars located in opposite scetors of the
biplot, along with the sites included in those sectors,
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Tahle 3. Crossover interaction subscts of enltivars and sites represented hy the winner (Ist rank) and Toser (7th, 8th, und 9th ranks)
cultivars in spedfic sites based on predicted values for each type of modcl-data-constraint combination for Trial 1 data.

Sites where cultivar is

Sites where cullivor is

Culivar Winner Laser Culivar Winner Loser
SREG.(UfUyt SREGx./(S)
Gl 8 24-75,11-20 G1 38 1,4.5,7,11,14,15,17.19,20
G4 246911141618 1,3,8,10 G4 17,19 38,10
GS 7.15,17,19,20 8 Go Z4-79,11-16,18,20 18,10
G8 1310 2,4-6,9,11-14,16,18 G8 L0 2-4,6,7.9,11-16.18
SREG{UICyp) ——M88M8M8M8M8 SHMM (UML)
G1 13,10 24-69,11-18 Gl 3R 24,5,7,9,11.13,15-19
G4 4.5,11-13,15,18 138,10 G4 2.4.5,7,9,11,13.15-18,20 138,10
Go 2,6,7,9,14,16,17,19.20 - GS 6,114 L1
G8 8 2,4-7.9.11-20 G8 L 2,4-6,9,11-18,20
GY 19 18
SREG»S&/U) - SHMMA{UICp)
G1 8 2,4-79,11-20 Gl 138,10 2,4,5,7,9,1L13,15-20
G4 24-79.11-16,18,19 138,10 G4 2457911131519 1,3,8.10
G5 17.20 34,10 GS 6,12,14.20 -
GR 1,310 2,4-6.9,11-16,18
SREGS/Cyy ) SHMM.(S/U)
G1 1,3,8,10 24-6,11-13,15-18,20 Gl 1L38,10 2,4,5,7.9.11-13,153-2¢
G4 2.3,4,11-13,15,16,18 138,10 G4 24.5,79,11-13.15-20 138,10
30 6.7,9,14,17,19.20 - GS 6,14 -
——— SREGJ{UICy ) —M8M8M8Mm SHMM(U/C,,_}
Gl 38,10 1,2,4,57.9,§1,12,14-20 Gl 133,16 2.4,57,9,11,13,15-19
G4 1,2.4-7.9.11-20 3810 Gd 245.79,11,13,15-19 138,10
Gs 6,12.34.20 -
SREG:(SCyuui)
Gl 138,10 2,4-57.9,11,12,34-20
G4 24-79.11-20 1.3,8.10
SREGy, (U}
G4 2,5.1112.14,18 L3810
Gs 370720 -
G 4,6.9,13,15,16,19 L&10
G8 1.8,10 2.4-79.11-20

t SRIEG{UW/U) = sites regression model on unscaled data and unconstrained solution;
SREGAUICyvp) = sites regression model on unscaled data end constrained SV solution;
SHREC5/U) = sites regression model on scaled data and unconstrained solations
SREG,(8/Cyp) = sites regression snodel on scaled data and constrained SVI) solution;
SREG;(UfCyy.y} = sites regression model on unscoled data and constrained LS + 1 solution:
SREG,(8/Cyy41) = sites regression model on scaled data and constrained LS + 1 solution:
SREG . ({U) = Mandel’s sites regression inedel on unscaled data and unconstrained solution;
SREG.({S) = Mandel's sites regression model on scaled data and unconstrained solution;
SHMM{U/U) = shified muitiplicative model on unsealed data and uaconsirained sobution;
SHMM,(UMCyvi) = shilted multiplicative model on unsealed data and constrained $YD solution;
SHMM,(S/U) = shiffed multipticative model on scaled duia and unconstrained solution:
SHMM,(LIC,;,,} = shiflted multiplicative model on unscaled data aod consteainect LS + 1 solution.

q‘ormed COI subsets of cultivars and sites. Detecting
ow level COI and nou-COIl groups, however, docs not
require development of the polygon, but rather identifi-
cation of subsets of cultivar and site markers with the
same directions. For exampie, in Fig 1A, Cultivars G4,
(G5, and G6 arc the best three performers in Sites 4, 3,
7,9, 11, 14 through 17,19, and 20 {esscntially the lower
right quadrant) (Table 4), closely followed by Cultivar
GY; these cultivars had projections onto the positive
directions of site vectors for those sites, but they were
the worst three cultivars in Site ; they project onto the
negative direction (opposite quadrant) of Site 8. Thus,
Cultivars G4, G35, and G6 and Sites 4. 5, 7, 9, 11, i4
through 17, 19, and 20 formed a clear fow level COl
subset. Other subsets of sites with non-COl for all culti-
vars are Sites 2, 6, 12, 13, and 18 (upper right quadrant
of Fig. 1A) and Sites 1 and 3 (lower Ieft quadrant of
Fig. 1A) (Table AL, Appendix 2).

in general, the ranking of the SREG,(U/U) -predicted
values of Table Al (Appendix 2) approximates the
ranking of the observed values of Table 1, although

some distortions are noteworthy, e.g., the observed
valuc of Cultivar G4 that ranked 3rd at Site |, whereas
its SREG;-predicted value ranked 7th and Cultivar G35
that ranked 8th at Site 1, but its SREG,-predicted value
ranked 2Znd. This result would suggest that, because
Site | has small cultivar differences, data from it will
fit practically any multiplicative model used. A similar
statement can be made concerning Site 7 vis-a-vis Culii-
vars G4 and G7.

The biplot of the constrained SREG; modcl using
unscaled data and SVD non-COI constrained solution,
SREG:(U/Csp) (Fig. 1B), showed Sites 1, 3, and 10
with §; > 0 and Site 8 with 4; = 0. Similar to the
SREG,(U/U} model, twa groups of cultivars are formed
{G1, G2, G3,G7, G8 and {G4, G5, G6, GY. Constraint
of the first term of SREG; gave all primary effects for
cultivars with negative values and all primary effects for
sites with non-negative values (7ero for Site 8). The
lower dispersion of the points in this biplot reflects the
lower variability expiained by the constrained solution
as comparcd with that obtained by the unconstrained
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‘Fuble 4. Low tevel crossover interaction (CO1} and non-COl sub-
sets of cultivars and sites based on predicted values for each
type of model-data-constraint combination for Trial 1 data.

Sites where the cultivars have

Cultivar low level CO1 or non-COl
SREG,(U/Wyt
G4.G5G6 4.5,79.11,14-17.19,20
G4,G6.GY 2.6,12.13,18
G5,G6.GR 1,3
— e - ——— ——— SREG;{UCywp )
G4,G5,G6 2,4-79,11-20
G1,G3 1,310
SREG{(SU)
G4,G5.G6 2,4,5,7.9,11-20
G1,G2.GR 3,10
SREGANCvp)
G4.G5,G6 2,4-79.11-20
GLGAGO 13
G1.G2,GR .10
SREG,(U/Cy.i)
G4,G5,G6 1.2,4-79,11-20
G1,G2,G3 18,10
SREG:(S$/Cys1y)
Gd.G5,G6 2.4-79.11-20
GLG2,G3 1,3,8,10
SREGw.. ()
G4.G5.G6 4,6.7.9,13-17,19.20
G1.G8 1.8.10
G4 GR.GY 2,511,12,18
SREGy.(5)
G4.G5,Go 2,4-7.9.11-20
SHMM,(U/U)
G4.G5.G6 2.4-6,9,11-1820
GLG2 38
SHMM,(UFCoug )
G4.G5.G6 2,4-7.9.11-18.20
GLG2,G3 L310
SHMM,(S/U)
G4GE,GH 2.4-79.11-20
GLG2 1,310
SHMM(UIC 1)
G4,G5,G0 2.4-7.9.11-20
G1.G2.G3 13
G1.G2 8,10

T SREG(U/L)Y = sites repression model on unscaled data and uncon-
strained solution;
SREG:(LHVC vp) = sites regression model on unscaled data und con-
strained SV wolution;
SREG.(S/U) = sites repression model on scaled data and uncon-
sirained solution:
SREG.{S/C,,p) = sifes regression model on scaled duta and constrained
S$VD solution;
SREG(UICp,y) — sites regression model on unscaled data and con-
strained LS + 1 solution;
SREG{S/C,, 41 ) = sites regression model oa scaled datn and coastrained
LS + 1 solution;
SREGy, {U) = Mandel's sites regression madel on unscaled data and
ancoeastrained solution;
SREGy.;(S) = Mandel’s sites regression model on scaled daw and un-
constrained solofion;
SHMM,(U/U)} = shilted multiplicotive modc! on unscaled data and un-
constrained solution;
SHMM(U/C.yy,) = shifted multiplicative model oo unscaled data and
constrained SV solation;
SHMM,(S/U) = shifted inultiplicative model on scaled data and uncon-
sirained solution;
SHMM;(U/C 5.1) = shified muliiplicmiive model on unscaled data and
constrained LS + 1 solution.

solution. Although a polvgon that contains the plot ori-
gin {(t, 0) cannot be drawn, the propertics of the biplot
remained the same as those given for the biplot obtained

with the unconstrained solution. Figure 1B predicts COlL
for Cultivars G1 and G4 at Sites 1, 3, and 10 as com-
pared to Sites 4, 5, 11 through 13, 15, and 18 (Table 3).
Similarly, COT is found betwcen Cultivars G6 and G8
in Sites 2, 6,7, 9, 14, and 16 through 20 as compared
with Site 8. The Site 8 marker i1s far away from the
others in the biplot; the constrained solution sets its
primary cffects equal to zero, und 50% of the variation
explained by the second multiplicative component is
due to cultivar differences within Site 8. The line perpen-
dicular to the segment joining Cultivars Gl and G6
separates the two non-COT groups of sites and cuitivars.
One low order COl subset comprises Cultivars G4, G5,
and G6 and all sites except Sites 1, 3, 8, and 10 (note
that Cultivar G9 ranked fourth in most of these sites)
{Table 4). A non-COI group includes Cultivars Gl and
G3 and Sites 1, 3, and 10 {Tablc 4).

For the unconstrained SREG; model using scaled
data, SREG,(S/U), the biplot (Fig. 1C) gave results simi-
lar to those found for SREG,;(U/U). in the right scetor,
Cultivar G4 had the best SREG; predieted valucs at
Sites 2, 4 through 7, 9, 11 through 16, 18, and 19 (Table
3), but it ranked among the worst three cultivars (7th,
8th, and 9th ranks) in sites located in the opposite sec-
tors, Sites 1, 3, 8, and 10 (Table 3). On thc contrary,
Cultivar G8 is the winner in Sites 1, 3, and 10 and the
loser in sites located m the opposite sector, Sites 2, 4
through 6, 9, 11 through 16, and 18. Thus, Cultivars G4
and G8 show COI at Sites 2, 4 through 6, 9, 11 through
16, and 18 {with positive primary effccts) as compared
to Sites 1, 3, and 10 (with negative primary cffects). On
the other hand, Cultivars G4, G35, and G6 and Sites 2,
4,5,7,9, and 11 through 20 represent a fow level COL
group (Table 4); these cultivars with Sites 3, 8, and 10
formed a non-COI group but in the negative direction
(poor yield responsc). Also, Cultivars G1, G2, and G8
and Sites 3 and 10 formed a non-COI group.

The biplot of the SREG:(S/Cevp) {Fig. 1D) is similar
to the SREG,{U/Csvp) biplot. Cultivars G vs. G4 and
Sites 2, 4, 5, 11 through 13, 15, 16, and 18 vs, Sites |, 3,
8, and 10 formed a COI group (Table 3). Cultivars G4,
(35, and G6 were the three best ranking cultivars in all
sites except Sites 1, 3, 8, and 10, and thus formed a low
level COI subset. Cultivars G1, G3, and G6 in Sites |
and 3 and also Cultivars G1 and G8 in Sites 8 and 10
(Table 4) formed a non-COI group. Site 8 is very distinet
from the others and explained 51% of the sccond term
variability (data not shown). Biplot of the constrained
non-COIl solution showed less dispersion of points but
interpretation similar to the biplots obtained from un-
constrained solutions.

Constrained LS+1 SREG; Solution and its Biplot. In
the biplot of the LS+ 1 constrained SREG, model using
unscaled data, SREG-(U/Cys5. 3 {(Fig. 2A) produced a
polygon that is a triangle in which Cultivars Gl and G4
have a COl in Sites 3, 8, and 10 as compared to the rest
of the sites {Table 3}. Most of the variation described
by the second component (80%) is due to cultivar differ-
ences within Site 8. Sites 1, 3, and 10 arc located toward
the center of the biplot and thus cultivar differences at
those sites are small. Cultivars, based on the sign of &;;,
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Fig. 2. Trial 1 biplots of: (A) SREGUUIC, 4 ) = sites regression model on enscaled data and a constrained LS soluiion; (B) SREGS/Cjg,q) =
sites repression model on scaled data and constrained LS solution; (Cy SREGy, () = Mandel's sites regression nodel on unscaled dats
und unconstrained solulion: (D} SREGy,, {8} = Mandel’s sites regression model on scaled duta and unconstrained solution,

are divided into two groups, {Gl, G2, G3, G7, GH| w.
G4, GS, G6, G9}. Sites |, 3, 8, and 10 have 4, = 0,
sultivars G4, G5, G6, and G9 in ail sites. except Sites

3, 8, and 10, formed a clecar low level COI subset and

Cultivars G, G2, 33, 7, and 8 in Sites 3, 8, and 10

{Table 4) tormed a non-COT subset, Very similar COI

subscts of cultivars and sites are found for the biplot

on the scaled data, SREG:{(S/Cs..,) (Fig. 2B}, except
that now Cuitivar 8 ranked fourth in Sites 1, 3. 8. and

1 and that for Site | the best three cultivars were G1,

G2, and G3.

In this constrained solution, the first and second sin-
gular vectors for sites are orthogonal to cack other, but
the singular veetors for cultivars scem 1o have a negative
lincar association, reflecting the strong COL involving
Site 8 and, to a lesser extent, 3 and 10 versus the rest
with tospect to the complete predictive rank reversal
of cultivar sets {G1, G2, G3, and G7 vs. [G4, G5, G6,
and GY).

SREG Madel Using Mandel’s Solution and its Biplot.
Recently, Yan et al. (2001) showed that the biplots from
the SREG model using the Mandel solution (SREGy )

and the standard SREG; model gave similar winning
cultivars as well as GE1 interaction patterns. The advan-
tage of the SREG,,.; biplot is that the first component
indicates mean vield and the second component stabil-
ity; for the SREG, model, this i so oaly if the first
bilinear component is highly correlated with the cultivar
main cffects.

The hiplot of the SREG,.. model using unscaled
data, SREGy,:{U) (Fig. 2C} showed the same split of
cuMtivars and sites that was previously found, that is,
{Gl. G2, G3, G7, G8} vs. {G4, G5, G6, G9} and sites
{1, 3, 8, 10] vs. the rest. A polygon with six vertices G1.
G5, G6, G4, (Y, and G8 (counter-clockwise around the
polygon ) is formed with Cultivars G4 and GS at opposite
sectors having COI in Sites 1, 8, and 10 as compared
with Sites 2, 5, 11, 12, 14, and 18 (Table 3). Cultivars
G4, G35 and G6 had the best three predicted values in
Sites 4.6,7.9, 13 through 17, 19, and 20 (located toward
the lower right quadrant of the biplot} and thus formed
a low level COIl group (Table 4). Cultivars Gl and GB
are the best two in Sites |, 8, and 10 and formed a non-
COI group (Tablc 4 and Appendix 2 Table Al). Sites
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Fig. 3. Trial 1 hiplots of: (A) SHMM {U/U} = shifted multiplicative model on unsealed data and unconstrained solution; (B) SHMM U/C, ;) =
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data and unconstrained solution; (I3) SHMM,(U/Cy.. ) = shifted multiplicative model on unscaled dats and a3 constrained LS selution.

2,5, 11, 12, and 18 had very similar cultivar canking
and gave Cultivars G4, G6 and G9 as the best three
performers and thus formed a low level COI group.

The biplot of the SREG,, 11 model using scaled data
SREGu.+(8) (Fig. 2D} showed a COI pattern between
Cultivars GE and G6 in Sifes | and 10 as compared to
Sites 2, 4, 6, 7, 9, 11 through 16, 18 (Table 3). Similar
to the SREGy (L) case, Cultivars G4, G5, and G6 had
the best three predicted values in Sites 2, 4 through 7,
9. 11 through 20 and, thus, formed a clear low level COI
group (Table 4).

Unconstrained and Constrained SHMM,
and Their Biplots

For the SHMM,;(URAJ) and SHMM,(W/Csyp), the Fg
and Fgy, tests found that the first three multiplicative
components were significant {(# =< (1.05). For SHMM;-
{S/U), the Fy and Fgy, tests found that the first three
and four multiplicative components were significant
(£ = 0.05), respeetively. Since all primary effects of sites
for SHMM,(S/U) model were of the same sign, biplots

with non-CO! constrained SHMM, solutions for this
model were not required. The biplot of the SHMM-
(UMJ) (Fig. 3A) model had a subset of sites {1, 7, 8, 10,
angd 19) with negative values of site primary effects,
while the rest of the sites had positive values. All culu-
vars had positive and high values for their primary cfe
fects. The secondary effects of cultivars separated them
into two groups [Gl, G2, G3. G7, and G8| vs. [G4.
G5, G6, and GY. This subdivision of cultivars was also
obtained for SHMM,(U/Csvp) (Fig. 3B), SHMM,(S/U)
(Fig. 3C), and SHMM,(U/Cys.., ) (Fig. 3D).

All the biplots of the SHMM; model indicated a CO!l
pattern between most distant cultivars in the biplot, Gl
and G4 in Sites 1, 3, 8, and 10 as compared to Sites 2,
4,3, 7,9, 11, 13, 15 through 19 (Table 3). Low lcvel
COI and non-COT patterns between cultivars and sites
that are located toward the upper region of all SHMM,
biplots, as compared to those sites and cultivars located
inn the lower region, can be identified. For example, in
all the biplots. Cultivars G4, G35, and G6 ranked within
the best three predicted performers in Sites 2. 4 through
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Site

Cullivar
G7
Gl
G2 —
63 —
G8
G5
Gb
G4
G9

Fig. 4. Dendrogeams resuiting from clustering 20 sites and nine culii-
vars of Triad b using empidical cell means as inpul data.

¥

iy

6.9, 11 through i 8, and 20 {in most of thesc sites Cultivar
G9 ranked fourth) and thus forned a low-level COl
group {Table 4 and Appendix 2 Table A2). Note that
his pattern is also found in Siue 7 if the method is
SHMM(U/Csyp), SHMM(5/UY or SHMM.(U/Cieys),
and in Site 19 if the method is SHMM,(S/U).

Cultivar G1 is chosen by SHMM(U/Cap ). SHMM, -
(SAU), and SHMM{(U/Cogy: ) as best m Sites 1, 3, 8, and
10 and Cultivars G1. G2, and G3 are found ag a low
fevel COT group in Sites 1, 3, and 1G by SHMM(U/
Con ), in Sites 3 and 10 by SHMM.(S/U), snd in Sites
I and 3 by SHMM,{(U/Cys, ). Also, all the SHMM,
biplots indicated that Site 8 is very different from the
others, [t is apparent that the constrained SHMM, solu-
tions do not affect the interpretability of the biplots for
finding COI and non-COH groups of cultivars and sites.

Clustering of Sites or Cultivars info Groups
with Non-CO1

[t is usefid to investignte the clustering of sites {(or
cultivars) into non-COl subscts. This was done by means
of the SREG, model and the clustering strategy pro-
posed by Crossa ct al. (1993) for grouping sites, and

Site
1
10

19
15

17
20

Fig. 5. Dendrogranm cesuiting from clustering 20 sites of Teind 1 using
SREG shrinkage estimates of el means as inpud data.

the fusion method of Crossa and Cornclius (1993) for
clustering cultivars.

Recently, Cornelius et al. (1996) and Comelius and
Crossa (1999), in a cross-validation’study involving five
multienvironment cultivar trials, found that shrinkage
estimates of multiplicative models werc usually more
accurate for predicting the response of cultivars within
sites that were best truncated muitipheative models fit-
ted by least squares, best linear unbinsed predictors
(BLUPs) based on a two-wav random effects model
with interaction, and the empirical cell means. For Trial
L {Trial 3 in Corneling and Crossa, 1999), the shrinkage
estimates of multiplicalive models were better pre-
dictors than BLUPs und empirical eell means. Conse-
quently, clustering of sites {or cultivars} in Trial L into
non-COI groups was also computed by means of dis-
tance between sites computed with the empirical cell
(cultivar X site} means replaced by SREG shrinkagu
cstimates as input data,

Derdrograms and final groups of sites and cultivars
based on empirical cell means arc shown in Fig. 4 and
dendrogram and final groups of sites based on SREG
shrinkage estimates of cell means are shown in Fig. 5.
In both cases, sites arc grouped into two major clusters
{13, 8 10} vs. |2, 4,5,6,7,9 11, 12,13 14, 15, 16 17,
18, 19, 20}; cultivars are split into two inain subscts {G1,
G2, G3, G7. GS| vs. |G4, GS, G6. GY). This separation
of the sites and cultivars into two main groups was
consistently found in all model-data-constraint combi-
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nations previously described. The advantage of the
biplots, however, 1s that sites and cultivars can be simul-
taneously clustered into subscts with non-COLL

The two final clusters of cultivars obtained by the
fusion method clearly separated cultivars on the basis
of the maize population and the year of selection and
tad no more than three significant COL between all
possibic 2 » 2 within-cluster crossover intcractions
(Crossa and Cornchus, 1993). Cultivars G4. G5, and G6
were selected from CIMMYT maize Population 44 in
1984, whercas Cultivars G1, G2, and G3 were selected
from CIMMYT maize population 34 in [981. Two of
the three final groups of sites obtained from the empiri-
cal ccll means as input data {Fig- 4) are different than
those obtained from the SREG shrinkage estimates as
input data (Fig. 5). But the three final groups of sites
formed using the SREG shrinkage estimates, with the
exception of grouping Site § with Sites 1, 3, and 10,
agreed with subsets of sites delincated by sectors of the
biplot obtained from the SREG;(U/U} model (Fig. LA)
im which Cuittvars G4, G5, and GS were the winners.
Furthermore, the group of sites [7, 17, 19, and 20 tended
to cluster together in most of the biplots, including those
from the constrained SREG, and SHMM, models.

Trial 2

Unconstrained and Constrained SHMM; and SREG,
Solutions and Their Biplots. Tests of the statistical sig-
nificance of the multiplicative terms (Comelius et al.,
1992} nceded to describe the variation in the Trial 2
data showed that two multiplicative components were
significant (P << (.05) for SREG and SHMM. The
SREG,(U/T} biplot (Fig. 6A) is divided into five sectors
by five winaing cultivars: cultivar G2 was the predicted
winner in four environmenss (7, 13, 20, and 23): G3 won
in scven environments (3, 5, 8, 12, 18, 19, and 23); G3S
won in a single environment, 15; GY won in 10 environ-
ments (4, 6, 10, 11, 14, 16, 17, 21, 22, and 26); and G10
won in four environments (1, 2, 9, and 24). Cultivar G9
won in more environments than any ather cultivar and
had the highest mean yield. Cultivar G3 won in the
second highest number of environments and had second
highest mean yield. CO1 pattern 15 cvident from oppo-
site sectors of Fig. 6A. For example, G101s the predicted
winner at Sites 1, 2, 9, and 24 and the predicted loser
at Sites 7, 20, and 23; also G2 is the worst cultivar at
Sites 1, 2, and 24 and the winner at Sites 7, 20, and 23,
the observed values (Table 2) confirmed these approxi-




CROSZSA ET AL BIPLOTS FOR CROSSOVER GENOTYPE » ENVIRONMENT INVERACTION 631

mations. A similar COl pattern can be found between
the scctor where cultivar G5 s the winner versus the
scctor where GY is the winner.

The SREG( U/ s+ ¥ biplot (Fig. 6B) is virtually the
same as the SREG:(U/U) biplot {Fig. 6A), except that
sites with ¥, << 0 on the unconstrained solution are now
forced to have 4, = 0. No solution was obtained for the
SVD non-COIl constrained SREG;, probably becausc
as many as six environments had primary cffects with
a different sign for the primary cffect than did the com-
plementary subset consisting of 20 environments. The
SHMM. (UML) biploe {(Fig. 6C) showed that all cultivars
and sites have primary effects of the same sign, reflecting
a complete non-CQOl, and that only GY and G3 are
winncrs, whereas the SREG.(U/U) biplot showed these
as winners in only 17 of the 26 sites. The discrepancy is
probably due to greater power of SREG; to detect COL

Results of the clustering of cultivars into groups with
non-COl showed two main groups {G1, Gil, G4, G6,
G7, G2, GY vs. {G3, G0, G8, G5} (dendrogram not

hown). These two groups are clearly separated in the

three biplots (Fig. 6A-6C). The sites are clustered into
three major groups {1, 24, 9, 3, 25, 8, 12, 5, 19), |4, 6,
11, 14, 17.26, 7. 13] and {10, 20, 23, 18, 21} and Sites 2,
16, 15, and 22 arc left unclustered. The first of these
site groups tended to cluster in the lower left quadrant
of the SREG,(U/U) biplot (Fig. 6A), whereas the latter
two groups are located toward the lower right and upper
right quadrants.

In summary, the wheat data set confirmed the findings
from the maize data that both SREG; and SHMM,
biplots can be used o identify subsets of cultivars and
sites with COI and non-COL Since the SREG,; focuses
on and explains morc of the cultivar main effect and
the GEI, which arc the sources of vield variation that arc
relevant to cultivar evaluation and cultivar performanee
bascd on megacnvironment identification, the SREG;
biplot gives good discrimination and resolution of the
cultivars and the sites. This is consistent with the conclu-
sion of Crossa and Cornelius (1997) when comparing

.‘SREGl with SHMM, in studying COL

CONCLUSIONS

Biplots from SHMM; and SREG, modcls can graphi-
cally display the imteraction variation duc to low level
COl or non-COI (first multiplicative term) versus the
interaction variation due to COI (second multiplicative
term). This is accomplished if, and only if, the scores of
the first singular vector of sites, ¥, arc of the same sign.

The biplots obtained using the constrained non-COl
first term solutions for the SREGy and SHMM, madels
have the same interpretability propertics as the standard
hiplots obtained wsing the unconstrained solution and
give a good approximation to the paticrns existing in
the observed data. However, the biplot based on the
unconstrained solution explains more variation and,
therefore, has greater power to separaie both cultivan
and sites. With the constrained solution, it is possibie
to identify subsets of sites and cultivars with low level
COI and non-COl.

Results of this study indicate that the biplots of the
SREG; and SHMM, modcls are useful for identifying
subsets of sites and cultivars with COI, Tow Tevel COI,
and non-COL. [n general, biplots based on unscaled or
scaled data gave risc to similar results. Groups of sites
and cultivars with low level COI and non-COl were
similar to those found when only sites {or cultivars)
were clustered inte non-COT groups using the SHMM
and SREG clustering approach. This result confirms the
benefits of using the biplots for finding simultaneous
subsets of sites and cultivars with COIL, Jow-level COI,
and non-COI for breeding and agronomic purposes.

APPENDIX 1
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the text.
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APPENDIX 2

{SREG,) fiticd to unscaled and scaled data with unconstrained solutions, constrained SVI (singular value decompaosition) solutions

Tahle Al. Grain-yield rank of nine (G1-GY} maize cultivars at each of 20 test sites (Trial 1) predicted by the sites regression model
and constrained LS (lcast squares) solutions and Mandel’s first term solution plus ane additional term (SREG,,.,).
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.
s

siles regression model on unscaled dada and coastrained LS - 1 solution

SREGY(S/Cyser } = sites regression model on scaled data and constrained LS 4 1 solution:

G(S/Ci0) = sites regression model on sealed data and constrained SV solution:

SREGAUIC5.1)

SREGAUCp) = sites regression model on unscuied date and constrained SV solution;

SREG{S/L) = sites regression model on scaled data and unconsirained solution;
SREGy,;(U) = Mandel's sites repression model an unscaled data and unconstroined solutiow;
SREGy,5(S) = Mandel's sites regression model on saaled dain and unconstraiged soludjon.

SR
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Table A2. Grain-yicld ranks of nine (G1-GY) maize caliivars at
each of 20 test sites (Frial 1) predicted by the shifted multiplica-
tive model (SHMM,) fitted to unsealed and scaled date, with
unconstrained, constrained SV (singular value decomyposi-
tion} and constrained LS (least squures) solutions.

G
o

Site
Cubivar 1 2 3 456 78910 11 12 13 14 15 16 17 18 19 20
— SHMM.(L/L)Y
Gi 2818849186 8 ¢ B 5 B 8 8 9 9 6
G2 37277T7TRH27T3 7T 7T 177 7T 7T 17T 8B 7
G3 563555874584 6 5 5 6 85 3 5 6 75
G4 91T7t112y931y8& 1 2 3 211 11 21
G5 BR343314629 3 1 2 1 32 2 3 62
G6 7282233537 2 3 3 3 2 3 32 33
o7 1556685852 5 8 6 B 6 6 6 5 5 §
G8 1969996391 9 % % 9 9 9 9 8§ 4 9
G9 6 d 4462745 4 4 4 4 4 4 4 41 4
SHMM(U/Cypy )
G1 18184858171 8 6 8 o B & KB B 9 6
G2 373yr777282 7717777117
G3 2525545453 6 5 5 4 353 5 5 6 6 8
G4 Bt815131919 %1 21 31111 13
G5 4343313626 31 31 32 2 3121
52522222737 2 3% 2 2 2 3 3 2 3% 12
I h666HA8E6E56 5 5 8B 6 B 6 6 6 5§ 5 K
[#4.] 797999939 4 9 ¢ 9 9 g 9 9 v g 0
GY Y4 94464848 4 44 5 4 4 4 4 44
SHMMySU)
Gl 1818868181 8 8§ B 6 B 8 8 B B 7
G2 2627776372 7T 6 7T 7T 7T 6 67T 76
Gl § 53555545 3 5 8 5§ 5 5 85 85 § 5 5§
Gd #18%1%¥+¥2191 8% 11 1 2 11 §F 1 11
G5 TATAIAIARSI T 2 03 2 3 2 3% 3 2 2 )
G 6252212625 3 2 3 1 3 2 2 3 32
G7 5766687566 67 6 8 6 7T 7 6 6 8
G8 3949999294 99 9 9 9 9 9 9 §g ¢
[ 2424444749 4 4 4 4 44 44 44
— EHMMAUIC,.,)
Gl 1518748171 B 6 7 6 B 8 78 9 6
QG2 2737677282 77 6 77T 7 6 7 7117
G} 3525455454 6 5 4 4 5 5 4 06 65
G4 sE1 81131919 121 3 &t 11 ¢ 1 2
G5 43433136026 31 2 5 3 2 2 3 41
G6 6252222737 2 3 32 2 3 3 2 313
G7 S56665R 6565 5 9% 5 8§ 6 6 5 5 5 K
GH 797989939 3 9 8 8 9 9 9 8 9 8 9
G9 9494964848 4 4 9 5 4 4 9 4 2 4

t SREG,;(L/U) = shifted multiplicative model nn unscaled duta and un-
constrained solution:

SREG,(UCyyp) = shifted muitiplicutive inodel on unascaled data and
. constrained SVYD solution;

SREGAHS/LY = shifted muliplicaiive model on scaled dais and uncon-

stroined solution;
SHMM,{U/C,;.,) = shifted multiplicttive model on unscaled data and
canstrained LS 4+ 1 solution.
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Interpreting Genotype X Environment Interaction in Wheat
by Partial Least Squares Regression

Mateo Vargas, José Crossa,* Ken Sayre, Matthew Reynolds, Martha E. Ramirez, and Mike Talbot

ABSTRACT

The partial Ieast squares (PLS) regression method relates geno-
type ¥ envirommwent interaction effeds (GED) as dependent varishles
{Y) to exiernal environmentat (or cultivar) variables as the explana-
iory varinbles (X} in ane single estimation procedure. We applied PLS
regression (o two wheat data sets with the objective of determining the
mos( relevant culivar und environmental variables that explained
grain yicld GEL Gre dalasethad two field experiments, onc including
seven durvm wheat (Tritiewm tergidum L. var, durum) coltivars and
the other, seven bread wheat (Triticum aestivum 1.} cultivars, both
{ested for 6 v1. In durum wheat cuttivars, sun hours per day in Decem-
ber, February, and March as well as maximuom temperature in March
were related to the factor (hat explained more than 39% of GEL
while in bread wheat cultivars, minimum (cinperature in December
and Januury as well as sun hours per day in January and February

were the environmental variables related to the Factor that explained
.(hc Jargest portion (>41%) of GEL The second data set had cight
bread wheal cultivars evaluated in 21 low relative humidity (RH)
environments and 12 high RH covironments. For both low and high
RH cavironments, resulls indicated that relutive performance of culti-
vars is influcnced by differential sensitivity (o minimum temperatures
during the spike growth period. The PLS methed was effective in
deteating environmental and cultivar explanatory variables assoviated
with fuctors that explained large poréions of GEL

‘ R JiieN AssEssina grain yicld of a set of cultivars in

a multi-environment trial, changes are commonly
observed in the relative vield performance of cultivars
with respect to cach ather across sites, This differential
vield response of cultivars from onc environment to
another is calicd genotype X cnvironment interaction
(GEI) and can be studied, described, and interpreted
by statistical models (Crossa, 1990).

A commonly used procedure for modeling statistical
interaction is a simple regression of the cultivar perfor-
mance on the site mean (Yates and Cochran, 1938; Fin-
.iay and Wilkinson, 1963; Eberhart and Russell, 1966).
This model can be depicted in a set of straight lines
with different slopes, onc for cach cultivar, and the
heterogeneity of slopes accounts for the interaction.
Since heterogeneity of slopes gencrally explains only a
small proportion of the complex interaction, a more
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claborate model would be necessary to describe the
GEI. A gencralization of the regression on the site mean
model is the multiplicative model also called Principal
Component Analysis of the GE! or Additive Main Ef-
fect and Multiplicative Interaction (AMMI) model
(Gollob, 1968; Mandel, 1971; Kempton, 1984; Gauch,
1988). Crossa ct al. (19904} investigated AMMI and
other procedures for grouping environments and wheat
cultivars into homogencous subsets and deterimining
yield stability.

The AMMI model provides more opportunity for
modchng and interpreting GEI than the simple regres-
sion on the site mean model hecause it allows modeling
the GEI in morce than one dimension; however, it ¢sti-
mates the environmental and cultivar interaction pa-
rameters by statistics derived from the observed pheno-
typic data themselves, When information on cxtcrnal
cnvironmental variables is available (i.c.. precipitation,
temperaturce, cte.), it can be correlated to or regressed
on the AMMI environmental scores so that some inter-
pretation of the causes of grain yield GEI can be at-
tempted. However, external environmental information
cannot be used dircctly in the AMMI model.

When additional information is available on cnviron-
ment, cultivars, or both, GEI can be modeled directly
by the factorial regression model {Denis, 1988, van Ecu-
wijk ct al., 1996). Since a large number of external cova-
riables may be modeling just noise, the most cxplanatory
covariables may bc synthesized in one covariate by the
reduced rank factorial regression {van Eeuwijk ct al.,
1996). Also, when environmental information is avail-
able, interpretation of GEI may be possible by the prin-
cipal component regression procedure that relates in-
dividual environmental variables to the principal
component scores of the GEI (Aastveit and Martens,
1986). However, this approach has several problems,
given that (1) it is sensitive to multicollinearity and noisc
and is nonparsimonious, (i) itis not casy to relate many
cnvironmentat variables to several principal component
factors simultancously, and (i) retaining the optimal
number of principal components for interpretation may
be difficult {Aastveit and Martens, 1986).

To overcome some of these problems, Aastvert and
Martens (1986) proposcd the partial least squares (PLS)
regression method as a more direct and parsimonious
tinecar model. This method consists of relating X and Y
matrices in one single estimation procedure. The Y ma-
trix contains site X cultivar grain yicld data as dependent
variables and the X matrix has the external environmen-
tal variables (or external cultivar vanables) as the ex-
planatory variables. [n contrast to the principal compo-
nent regression approach where cach component is a

Abbreviations: PLS. partial least squares; GEIL genotype X environ-
ment interaction; AMMI, additive nxin effect and multiplicative inter-
aclion.
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linear combination of the variables xy, xa,....x only, PLS
is based on the component scores using both Y and X
matrices. Aastveit and Martens (1986) applied the PLS
regression method to study diffcrences in straw length
of 13 barley (Hordewn vuigare L.y cultivars across cnvi-
ronments over 9 yr. Talbot and Wheelwright (1989)
applicd the PLS regression method for explaining the
GEI between nine potato (Sofanum adberosum L) culti-
vars and 12 sites using cultivar characteristics such as
disease scores and drought resistance.

The Brecad Wheat Program of the International Maize
and Wheat Improvement Center (CIMMYT) aims to
develop widely adapted, high-viclding, stable germ-
plasim with acceptable industrial quality and resistance
to combinations of environmental stresses including
drought, heat and discases. Several studics have been
donce to assess GEI and vield stability of CIMMYT
bread and durum wheats (Pfeiffer and Braun, 1989
Crossa ct al., 1990a,b; Dekbacy ct al., 1994; Osman ct
al., 1996, 1997). However, only a few attempts have
.)ccn made to cxplain GEF in wheat grain yicld by cnvi-
ronmental variables, genotypic variables, or buth (Os-
man et al., 1996, 1997). In this paper, we applicd PLS
regression to CIMMYT bread and durum wheats in
multicnvironment trials with the objective of determin-
ing the most important cultivar variables, the most rele-
vant envirommental conditions, or both that influence
genotype X environment interaction of grain vield.

MATERIALS AND METHODS
Partial Least Squares Regression Theory

The partial keast squares approach was originally devcloped
by Wold (1966, 1975) for systems analysis and for predicling
chemical variables from spectral data. In this 1ype of situation,
the number of variables (K} is much farger than the number
of observations (N), and there is high collincarity among vari-
ables. Details of the PLS theory and its simidarities with princi-
pal compongents regression and stepwise multiple linear regres-
sion are described in Aastveil and Martens (1986). A brief
explanation of PLS. where only one dependent variable (y
.'ariab]c} is related to many expianatory variables (X vari-

ables). is given below. Hs extension to more than ane depen-
dent variable is straightforward {Aastveit and Martens, 1986).

Assume that the data for K explanatory variables are given
hy the matrix X = (x, ... 5} and data for one dependent
variable is given by the vector y. Each of the x; ... Xk and ¥
vectors have N dimensions corresponding to the number of
ohservations. The y vector (¥ X 1) may represent. for example,
grain yicld vafues of N cultivars tested in a site or year (or a
combination of both) and the xs vectors may be measure-
ments of other cultivar variabies such as number of prains
per square meter, hiomass, ctc. Since the PLS method is not
invariant to the scale ol measurcment. it is assumed that vari-
ables Xy, X, ..., Xx. and y have been centered {#ero mean) and
scaled (unit variance).

To break up any possible dependence among the K explana-
tory variables, it is more convenient to write the X matrix in
the following bilinear form:

X = llp; + 13])5 + ...+ 1_\,-;[),;,1 -+ EM, [I]

where the t, (m = 1,2,..,M) are N-dimensional vectors called

scores {also known as latent variables), the p,, are K-dimen-

sional vectors called X-loadings and E,; is the residual matrix.
The y veclor can be writicn as

¥= ‘;q; + tzt?g + ...+ thM + fM, [2E

where t, (m = 12....M) are the same scores as in Eq. [1] and
the g, are scalars called Y-loadings. The scores can also be
called X.scares or Y-scores, depending on whether Eq. [1] or
[2} 1s considered.

The basic idca undcrlying the PLS mcthod is that the rcla-
tionship between X and ¥ is transmitted through the iatent
variabics 1.

Somc conditions [or Eq. [1] and [2] are that the t, scores
should be mutually orthogonal in the space R” or that the p,
loadings should also be mutually orthogonal in the space RX.
If both restrictions arc imposed and if in addition orthogonality
s assumed between rows/columns of Ey, then each t, is a
normalized cigenvector of XX and cach p,, is a normalized
eigenvector of X'X. In other wards. all the vectors are cssen-
tially determined by the data matrix X. Because of the difficul-
ties in imposing bhoth restrictions simultaneousty. onc orthogo-
nality condition should be relaxed. This is why there arc two
different (but equivalent) algorithms for estimating parame-
ters of the PLS regression. depending on whether t,, scores
or the p,, loadings are considered orthogonal to cach other.

In univariate PLS, the algorithm (Appendix) for represent-
ing X and y as in Cq. 1] and [2] for each m = 1,2, .., M.
consists of an ilcralive proccdure that [irst estimates a lincar
combination of the X variables; this gives the latent vectors
{also known as factors or components). The y variables can
be optimally predicted from that latent vector by ordinary
least squares regression. A second Jatent vector is derived from
the X residuals and hays the capacity of optimaily predicting the
y residuals from the first step. The procedure continues until
the contribution of the new latent vector is small, The number
of factors {(latent vectors) 10 be retained is determined by a
cross-validation procedure (Stone, 1974), and an F test pro-
posced by Osten {1988) is used to examine the significance of
each new factor (the first, sccond, ete.). In this study the PLS
algorithm. the cross-validation procedure, and the f tcst were
applicd by a procedure implemented in GENSTAT version
5 relcasc 3. GENSTAT (1993).

Resulis of the bilincar decomposition obtained from PLS
can be summarized in a graphical form similar to the bipiot
display of Gabricl (1971), where Y loadings of cultivars and
X scores of environments are represenied by vectors in a
space with starting points at the origin {0.0) and cnd points
determined by the valucs of the loadings and/or scores.

Data Set 1

This data set consisted of two experiments, one with scven
durun wheat cultivars and the other with seven bread wheat
cultivars, both tesied during 6 yr (1990-1995) in Ciudad
Obregon, Mexico. In cach year, the experiments were ar-
ranged in a randomized complete block design with threc
replicates. The durum and bread wheat varictics included were
a historieal set released from the early 19605 to the late 980s;
the order of Numbers 1 10 7 is the order of variety rcleases
over time (Sayrc ct al., 1997).

In each experiment, the grain yield GEI (kg ha™') depen-
dent variables when using cultivar explanatory variables, were
represcnted by the Y matrix of size seven X six (seven rows
representing cultivars and six columns representing years).
Measured at the cultivar level, the 15 explanatory variables,
represented by the X matrix of size seven X 15 (seven rows
corresponding to cultivars and 15 columns corresponding to
the expianatory variables) were: days to anthesis after emer-
gence {ANT), days to maturity after emergence (MAT). days
of prainfill (GFI = MAT — ANT), plant height (cm) (PLLD),
above ground biomass (kg ha™') (BIO), harvest index {HID),
straw yield (kg ha™") (STW). number of spikes per squarc
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meter (NSM), number of grains per square meter (NGM},
number of grains per spike (NGS), thousand kernel weight
() (TKW), weight per tiller (g) (WTI), spike grain weight (g)
{SGW). vegetative growth rate (kg ha™' d7") (VGR = STW/
ANT) and individual kernel growth ratc {mg kernel™ d%)
{KGR) during the grainfill peried. On the other hand, 16
environmental variables were considered: mean daily maxi-
mum temperature (°C) (MT), mean daily minimum tempera-
ture (°C) (mT), monthly tota! precipitation {(mm} (PR}, and
sun hours per day {311); thcy were measured during the devel-
opment stage of the crop, December (1), January (J). Febru-
ary (F), and March (M) in each of the 6 yr (1990-1995}).

In both experiments, the Y variablc corresponds to the
genolype X cnvironment interaction matrix (restdual matrix
after adjusting for the genotype and environment main ef-
fects). Since the PLS procedure is not invariant to scale. both
Y and X variables were centered (to mean zero) and scaled
{to variance onc).

Data Set 2

This data sct is from the first International Heat Stress
.’.}cnotype Experiments {iHSGE) (Reynolds et al., 1994) and

included eight bread wheat cultivars evaluated in 33 cnviron-
ments {combination of sites, sowing dales, and years}. The
lesting sites were Ciudad Obregon, Mexico, planted in Decem-
ber: Wad Medani, Sudan: Tlaltizapan, Mexico, planted in De-
cember: Tlaltizapan, Mexico. planted in Fcbruary; Lampang,
Thailand; Dharwar, india; Dinajpur. Bangladesh; Aleppo.
Syria: Londrina, Brazil; Kadawa, Nigeria; Brasilia, Braxil; and
Jinja, Uganda, during 1990-1994. The 33 environments were
divided into two subsets, 21 low relative humidity (RH) cnvi-
ronments and 12 high RH environments.

The grain yickd (kg ha™') dependent variable Y matrix was
of size 21 X eight (21 rows corresponding to environments
and eight columns corresponding Lo cultivars) for the low RH
environments, or size 12 X eight for the high RH environ-
meats. The 13 explanatory variables in the X matrix of sizc 21
¥ 13 {21 rows corresponding to cnvironments and 13 columns
corresponding to explanatory variables) for the low RH envi-
ronments, or size 12 X 13 for the high RI1 envivonments,
were: lenpth of the cntire growth cyele (days) (CYC), mcan
daily minimum temperature during the entire growth cyclc
(°C} (mTC), mean daily maximum temperature during the
entire growth cycle (°C) (MTC), sun hours per day during the
sntire growth cycle (SHC). mean daily minimum temperature
during the vegelative stage (mTV). mean daily maximum tem-
perature during the vegetative stage (MTV), sun hours per
day during the vegetative stage (SHY), mean daily minimum
temperature during the spike growth stage (mTS), mean daily
maximum temperature during the spike growth stage (MTS),
sun hours per day during the spike growth stage (SHS), mean
daily minimum temperature during the grainfill stage (mTG).
mean daily maximum {cmperature during the grainfill stage
(MTQG). and sun hours per day during the grainfill stage
{SHG).

As in the {irst data set, the variable Y corresponding to
the genotype X environmen! interaction matrix and the X
variables were normalized by columns in erder for the mean
to cqual zero and the variance to cqual one.

RESULTS AND DISCUSSION
Data Set 1

Explaining Genotype X Environment lateraction
By Cultivar Explanatory Variables

For both durum and bread wheat experiments, the
analysis of variance showed that the cultivar X ycar

interaction for grain vicld was highly significant (7 <
0.0001). The cross-validation procedure and the F test
for the number of significant factors indicated that only
the first factor (latent vector) was highly significant for
prediction. The predietive residual sum of squares
(PRESS) for the second PLS factor was only slightly
greater than for the first factor. For the durum wheat
experiment, the first and sceond PLS factors explained
56 and 13% of the GEL, respectively, explaining jointly
69% of the GEI For the bread wheat experiment, the
first and second PLS factors explained 36 and 24% of
the GEI, respectively, explaining jointly 60% of the
GEI For both crops, the relatively high percentage of
GEI cxplained by the first PLS factor was expected
since several explanatory variables were components of
total grain vield.

For durum wheat, the variance of the explanatory
variables number of grains per spike (NGS), harvest
index (HID), spike grain weight (SGW), number of
grains per square meter (NGM), individual kernel
growth rate (KGR}, and plant height (PLH) that was
explained by the first PLS factor is large (>70%) (Tablc
1). These variables were closely related to a factor that
made a large contribution to cultivar X ycar interaction
and, cxcept for kermel growth rate (KGR), they had the
highest positive X loadings, i.c., they had high corrcla-
tion with grain vield. In contrast, variahility of other
explanatory variables such as straw vield (STW), and
number of spikes per square meter (NSM) was not ex-
plained by the first PLS factor and had values close to
zero for the X loadings. The first PLS factor cxplained
1510 65% of the variability of the remaining cxplanatory
variables. From a biological point of view, the first PLS
factor can be interpreted as the contrast between grain
vield components (NGS, HID, SGW, NGM, and BI1O)
vs. kernel growth rate (KGR), days to anthesis after
emergenee (ANTY), thousand kerncl weight (TKW) and
days to maturity after emergence (MAT).

For bread wheat, the first two factors explained

Tabie 1. Proportion of total variance of X variables explained by
the first factor and loadings of X genetypic variables for durum
wheat and bread wheat experiments of Data Set 1.

Durwin wheai Bread wheat

Varisble % voriance X loadings  Variable % varjusce X loadings

NGSH 236 03590 ANT 764 03887
HI} .6 03401 GF1 753 —-03288
SGw 88.6 03502 BIO 718 03241
NGM 8717 D348 MAT 69.1 03231
KGR RiL6 ~03222 nNGS GTH 0.3816
PLY 744 03239 Wl 568 02646
BIO [ 0305 PLH 56.1 0.2166
VGH 150 02260 STwW 537 0.1987
ANT 3.6 02000 SGW 37 n2716
WwTl 314 0.2229 TKW 334 ~02813
TKW 7.1 —0.1847 NSM 250 —~0.1333
MAT 18.7 -6.1421 NGM 16.5 02740
GFl 146 0.1380 HID 150 —-0.0257
STW 1.1 —0.0203 YGR 92 .04
NSM 0.9 —0.0507 KGR A9 -0.13711

t NGS = numher of grains per spike, HID = harvest index, SGW = spike
grain weight, NGM = number of gruios per syuare meter, KGR =
individus! kernel growth rate, PLH = plant height, B1O = biomass
above ground, YGR = vegelntive growth rate, ANT = days to anthesis
after emergence, WTT = weight per tiller, TKW = thousand kernal
weight, MAT = days to maturity after emergence, GFI = days for
grainfill, STW = straw yietd, NSM = number of spikes per square meter.
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stightly less of the variance in the GEl matrix than
for durum wheat (60 vs. 69%). For five explanatory
variables, days to anthesis after emergenee (ANT), days
for grainfill (L-i- Biomass (BLO}, days to maturity
after the emergence (MAT), and number of grains per
spike (NGS) the first factor explained more than 67%
of their variability; these five variables (except for days
of grainfill) had the largest positive X loadings (Table
1). The first factor explained 15 to 56% of the variability
of weight per siller (WTT), plant height (PLH), straw
yicld (STW), spike grain weight (SGW), thousand ker-
nel weight {TKW], number of spikes per square meter
(NSM), number of grains per square meter (NGM3}, and
harvest index (HID). These variables had intermediate
positive X loadings except for thousand kernel weight,
number of spikes per square meter and harvest index
that had intermediate negative X loadings. The firs
PLS factor did not have a clear interpretation; however.,
il seemns to have been dominated for vanables related
10 the length of the cycle or earliness.

These resuits indicate that the first PLS factor ox-
plained some genoty pic variables that affect GEI differ-
ently in durum wheats than they did n bread wheats.
While harvest index (HID), aumber of grains per square
meter (NGM) and individual kernel growth rate (KGR}
were associated with a factor that explained a large
proportion of GEL in durum wheat cultivars (90, 87.7,
and 80.6%, respectively), they were not explained well
in bread wheat cultivars (15, 16.5, and 3.9%, respec-
tively). On the other hand, the variables days to anthesis
after emergence (ANT), days to matunty after emer-
gence (MAT), and days of grainfill (GFI1} were not well
explained by the first PLS fauor tor durum wheat culti-
vars (34.6, 187, and 14.6%, respectively), when com-
pared with the first PLS factor for bread wheat cultivars
(76.9,69.1, and 75.3%, respectively). The only variables
thut were cxplaincd in a relatively high proportion in
both crops, werc number of grains per spike (NGS) and
biomass (BiO) (>65%).

Explaining Grain Yield Variability By Environmental
Explanatory Variables

Cross-validation assessment and the F test indicated
that only one PLS factor was significant for explaining
the GEL The predictive residuals sum of squares
(PRESS} for the second PLS factor was only slightly
greater than for the first factor. The first factor ex-
plained 40 and 42% of the GEl in Y for durum wheat
and bread wheat, respectively, whereas the second fac-
tor cxplained 26 and 2(.25% of the GELlin Y for durum
wheat and bread wheat, respectively. The first two fac-
tors explained jointly 66 and 62 % of the GEI for durum
and hread wheat cultivars, respectively,

For durom wheat the first PLS factor cxplained more
than 60% of the total vardability of sun hours per day
in February (SHF), mean daily inaximum temperature
in Mareh (MTM), sun hours per day in December
(SHD) and sun hours per day in March (SHM} and had
the highest relative X loadings (Table 2). Variability in
mean dm]v maximum temperature in January (MT)),
minimum temperature in March (mTM), precipitation

Table 2. Proportion of total variance of X variables explained by
the first factor and leadings of X environmental variables for
durum wheat and bread wheat experiments of Data Set L. B

Dumm wlheatl Hread wheat

\uanahlc To \ﬂl'lllllft. X loadingsy  Yurisbk % variance X fvading

SHF® Bl =L 169 mT) 75.1 0447
MITM 69.1 04447 SHF 684 — A5
SHOD 025 —&3059 mTD 587 03285
SHAM a4 BA67R SHJ 516 =027
mTh de.1 .2313 SHIY 478 —(.3283
MTD 383 =040 mTE 417 244
mFF 283 .2089 PRY 359 0.7
PRM 198 —42152 MTI1}» M3 —{.1610
mlJ 142 (LIRSS FHI 238 {1610
T 2.2 4968 SHM 11.7 .1702
mTHM Rd 12 MTM 1L7 .1311
PRI bd =10 mi'M 1.9 LR RL}
PRD 1o 0.6978 NTS o4 ~{L54
MI¥ 1 - 00227 FRM 73 6.840
SHI L3 —OKT1 MTF az —(hLE18S
PRF 0.5 OIS PRI 0.z ~f.0845

t SHE = sun hours in February, MTM = maximum femperature in March,
SHI? = sum hours in December, SHM = sun bowrs in March, mTL =
minimum temperaiuee in December, MTI1) = maximum temperuiure in
December, mTF = minimum temperalure in February, PRM = precipi-
Lanion in ¥arch, ml) = minimem temperature ia Januwary, M1 =
maximum femperture in Jasuary, mTM = minimum temperatare in
Murch, PR1 = precipilasion in danuary, PRI = precipitation in Decemn-
ber, MTF = masimumn iemperature in February, SHI = sun houn in
Junuary, PRF = precipitaiion in Febroary.

in January (PRJ). precipitation in December (PRD).
maximum temperature in Febroary (MTF), sun hours
perday in January (SHT), and precipitation in February
(PRF) was not explained well by the first factor (<10%}.
Fifteen to 45% of the variation in mean daily minimum
temperature in December (mTD), maximum tempera-
wire in December {MTD), minimum temperature in
February {mTF). preaimtation in March (PRM). and
minimum temperature in January (mTJ} was explained
by the first PLS factor. The first PLS factor can be
mterpreted basically as the contrast between sun hours
in December, in February, and maximuam temperature
in December (SHD, SHF, and MTD)) vs. maximum tem-
perature and sun hours in March (MTM and SHM).

The biplot {Fig. 1a) of the first and second PLS factors
for the seven durum wheat cultivars and the 6 vr shows
that the first factor contrasted carly released Cultivars
1 and 2 (4437 and 5188 kg ha™', respectively) with later
released Cultivars 5 and 6 (7609 and 7597 kg ha™!, re-
spectively). This first factor was dominated by differ-
ences in grain yield between high yiclding years 1990,
1991 and 19494 (Fig. 1a and Tabie 3) vs. fower yielding
vears 1992, 1993, and 1995, By observing both Fig. la
and 1b simultancously, it can be scen that the first factor
also related the differences between Cultivars | and 2
vs. Cultivars 5 and 6 and high vs. low yielding vears
{Fig. La) with the contrast between precipitation in De-
cember, January, and March, sun hours in December,
January, and February, maximum temperature in De-
cember and February (PRD. PRI, PRM, SHD, §HI,
SHF, MTD, and MTF} (with ncgative X loadings) vs.
minimum temperatures in December, january. Febru-
ary, and March, maximum temperatures in Januvary, in
Murch, and sun hours in March (mTD, mTJ), mTF,
mTM, MTJ, MTM. and SHM) (with positive X loadings)
(Fig. 1b).
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In general, the highest yielding vears (1990, 1991,
and 1994) had morc sun hours and lower minimum
temperatures than the fowest yielding years (1992, 1993,
1995) (Table 3); these environmental conditions favored
Cultivars | and 2 more. Grain yield had high positive
correlations with sun hours in January (r = 0.70) and
February (r = 0.69) and maximum temperatures in De-
cember (r = 0.76) and February (r = 0.55), and it had
ncgative correlations with minimum temperatures.
Early released Cultivars 1 and 2 had a positive interac-
tion with vears 199, 1991, and 1994 because they arc
all focated in the same quadrant (lower left) of Fig. 1a.
This interaction scems to be associated with sun hours
in January and February (SHJ and SHF) and higher
maximum tempcratures in Deccember and February
(MTD and MTF) (Fig. 1b). The negative interaction
between carly released Cultivars 1 aud 2 with years 1992
and 1993 (they arc in oppositc quadrants) secems to
be due to lower minimum temperatures in December,
January, and February (mTD, mT), and mTF) as well as
more precipitation in February (PRF). However, these
environmental conditions during the 1992 and 1993
growth cycle favored intermediate relcased Cultivars
3 and 4 and later rcleased Cultivar 7. Later releascd
Cultivars 5 and 6 showed positive intcractions with year
1995 hecause of higher maximum temperatures in Janu-
ary and March (MT] and MTM).

For bread wheat, total variability in minimum temper-
ature in December and January (mTD and mTJ) and
sun hours per day in January and February (SHJ and
SHF) was explained well by the first PLS factor (>53%)
(Table 2); mTD and mTJ had high positive foadings,
whereas SHJ and SHF had high ncgative loadings. The
first factor explaincd 24 to 48% of the vanability of sun
hours per day in December (SHD), minimum tempera-
ture in February (mnTF), precipitation in February
(PRF), maximum temperature in December {MTD),
and preciptation in January (PRJ) (with intermediate
absolute loadings). For durum wheat and bread wheat,
variability of maximum temperature in January and
February (MTJ) and MTF}, minimum temperature in
March (mTM), and precipitation in December (PRD)
was not explained well by the first factor (<11%). For
bread wheat, the first factor did not explain as much
variability in maximum temperature in March (MTM)
and sun hours per day in March (SHM) as it did for
durum wheat.

The X scores and Y loadings for the first and second
PLS factors obtained for the bread wheat cultivars fol-
lowed patterns similar to those for the durum wheats;
that is, the first factor contrasted high vs. low vielding
years, and precipitation and minimum temperatures vs.
maximum temperatures and sun hours (not shown).
Grain yield of the earlicr Brecad Wheat Releases 2, 3,
4, and 5 was more favored by sun hours in December,
January and February and by maximum temperatures
in December, January and February 1990, 1991, and
1994, whereas vicld of later Bread Wheat Releases 6
and 7 was more positively associated with maximum
temperatures in March and sun hours per day in
March 1993,

Table 3. Mean grain yield (Yield), minimum temperature (mT),
maximum temperature {(MT), precipitation (PR) and sun hours
(SH) for each of the vears (Data Set 1} when seven durum
wheat cultivars were tested.

Year Yicld mT MT PR SH
kg ha™! —C mm hours
1990 750941 4.42 15,15 1375 133
1994 T481.2 720 2602 050 T.44
1991 6987.0 6.758 2527 27.25 B.09
1995 624318 .77 2597 21.50 7.80
1992 S9TH.S 7.97 24.20 T9.75 700
1993 57426 8.17 2525 2225 715

+ Groin yields in ycars 1999, 1991, and 1994 were significandy different
from grnin yiclds in years 14992, 1993, and 1995 (P < 0.05).

In summary, sun hours per day in February (SHF)
was associated with a factor that explained a large pro-
portion of GEI in both crops, and maximum tempera-
ture in January and in February (MTJ) and MTF}, mini-
mum temperature in March (mTM) and preeipitation
in December (PRO) were associated with a factor that
cxplaincd a small proportion of GEl in both crops. How-
cver, other environmental variables such as maximum
temperature in March (MTM) and sun hours per day
in March (SHM) were associated with a factor that
cxplaincd more GEI in durum wheats than in bread
wheats. On the other hand, minimum temperature in
January (mTJ) and sun hours per day in January (SHI)
were explained well by the first PLS factor in bread
wheats but not in durum wheats. [t is apparent that
yields of the carlier released durum and bread cultivars
were more favored than yiclds of later reicased cultivars
n 1990, 1991, and 1994 because of sunnier weather in
December, January and February and lower mini-
mum temperaturcs.

Data Set 2

Explaining Genotype X Environment Interaction
By Enviroumental Explanatory Variables

For the 21 low relative humidaty (RH) environments
and the 12 high RH cnvironments included in the
1HSGE, the cross-validation assessment and the F test
indicated that only one factor was highly significant for
explaining GEI. The second PLS factor had a predictive
residual sum of squares (PRESS) shghtly greater than
for the first factor. For the low RH cnvironments, the
first and second factors cxplained 27.4 and 8.2% of the
GEI, respeetively, and for the high RH environments,
the first and second factors explained 18.75 and 11.86%
of the GEI, respectively.

For the low RH environments, the first PLS factor
explained a large proportion of the total variability of
minimum temperature during the spike growth stage
(mTS) (84.4%), minimuin temperature during the entire
growth cvcle (mTC) (83.9%), and minimum tempera-
ture during the grainfill stage {mTG) (68.9%) (Table
4). Thesc variables had the highest positive X loadings.
Other environmental variables such as length of the
entire growth cycle (CYC) and sun hours per day during
the grainfill stage (SHG) (with high negative loadings)
and maximum temperaturc during the spike growth
stage (MTS) were also explained well by the first PLS
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Tabie 4. Proportion of total variance of X variables explained by
the first factor and loadings of X cnvironmental variables for
first International Heat Stress Genotype Experiments (Data-
set 2)

Low reloiive humidity environment  High relative humidity envirenment

Variable % variance X loadings Varable % variance X loadings

mTs+ B4.4 0.4274 m1Ss BS54 0.4962
nTC 839 0.3969 wiC 8LS 0.48006
mlG 68.9 03733 CYC 50.1 — 04369
CyC 513 —0.2921 SHG 44.4 —0.1812
SHG 511 —0.4311 ml'G 44.1 02704
MTS 452 02332 SHS 41.3 ~0.2343
ml'y 353 2283 MTY 40.5 0.1788
MTC 29.5 #1516 ml'yY A6 12942
MTG 14.5 11006 MTS 8.5 11227
SHC 2.9 —-0.2564 SHC 244 —-0.1742
MTV 89 0.0545 MTC 11.2 0,0092
SHS 7 —0.1841 SHY 33 —0.0839
SHY 0.0 —0.0840 MTCG 22 0.0037

+mlS = minimum temperature during the spike growth stage, mTC =
minisnum temperature during the entire growth cycle, in1'G = imininum
temperature during the grainfill stage, CYC = tength of the entire growth
cyde, SHG = sun hours per day during the groinfill stage, MTS =
maximum temperature during the spike growth stuge, mTY = minimum
. temperature during the vegetative stage, MTC = maximum temperature
during the entire growth cycle, MTG = inaxinum temperature during
the grainfil stage, SHC = sun hours per day during (he entire growth
evele, MTY = maximum temperalure during (he vegetative stage, SHS
= sun hours per day during the spike growth stage, SHY = sun hours
per day during the vepetative stage.

factor (>d5%}. On the other hand, for sun hours per
day during the vegetative stage, the spike growth stage
and the cntire growth cycle (SHV, SHS, and SHC),
and maximum temperature during the vegetative stage
(MTV) the first factor made a negligible contribution
in explaining their variabilitics (<10%) (Table 4).

The biplot of the first and second factors for the eight
wheat cultivars evaluated in 21 low RH cnvironments
showed that the first factor is primarily a contrast be-
tween the seven highest yielding low RH environments
vs. the intermediate and low yielding low RH cnviron-
ments (Fig. 2a, Table 5). This first factor clcarly sepa-
rates sun hours (SHS, SHV, SHC, and SHG) and length
of the entire growth cycle (CYC) from minimum and
maximumn temperatures measured during the different
.j,‘mwth stages (Fig. 2b). It can be observed that environ-

nents with high maximum and minimum temperatures
are contrasted with environments with high sun hours
and a long cycle (Figs. 2a and 2b and Table 5). There-
fore, the first PLS factor showed that high yielding envi-
ronments had more sun hours and longer growing cycle
than intermediate and low yiclding environments. On
the other hand, intermediate and low vielding environ-
ment had lower minimum and higher maximum temper-
atures than high yielding environments. Concerning the
cultivars, the first factor discriminated Group 1 Cultivars
2, 3, 5, and 8 from Group 2 Cultivars 1, 4, 6, and 7
(Fig. 2a).

Group | Cultivars 2, 5, and 8 are concentrated in the
upper left quadrant of the biplot and had positive yicld
interaction with environments such as December plant-
ing date in Tialtizapan, Years | and 3 (TLDI1 and
TLD3), Sudan, Years 2 and 3 (SUD2 and SUD3), and
India, Dharwar, Year 2 (IND2) (Fig. 2a). The environ-
mental variables that seemed to be positively affecting
the interaction of these cultivars in those environments

were sun hours during the entire growth cycle, vegeta-
tive stage, spike growth stage, and grainfill stage (SHC,
SHV, SHS, and SHG) (Fig. 2b). Grain vield had positive
correlations with sun hours (data not shown). Cultivar
3 had positive interactions with environments TLD2,
OBD1, and INI4 because of long eycles (CYC), 99 d,
125 d, and 93 d, respectively (Table S). On the other
hand, Group 2 Cultivars 1, 4, and 6 showed positive
vield interaction with environments N1G2, NIG3,NIG4,
TLE2,8YRI1, and SYR2 because, in general, these envi-
ronments had higher minimum temperatures than most
of the others (Table 3).

For the high RH environments, the results were sini-
lar to that for the low RH environments. The first factor
explained 85.4 and 81.5% of the vanability of minimum
temperature during the spike growth stage and entire
growth cycle (TS and ;nTC) and both had large posi-
tive loadings (Table 4). For length of the entire growth
cyele (CYC) (with high negative loading} the first PLS
factor explained 50.1% of its total variability. On the
other hand, variabitity of maximum temperature during
the grainfill stage (MTG) and sun hours per day during
the vegetative stage (SHV) were not explained well by
the first PLS factor (<4%). For the remaining variables
the first PLS factor explained a intermediate proportion
(11.2-44.4%) of their total variability.

The X scares and Y loadings for the first and second
PLS factors obtained for the cight bread wheat cultivars
and the 12 high RH environments followed patterns
similar to those for the low RH environments, the first
PLS factor contrasted seven high vs. five low yiclding
environments and minimum and maximum tempera-
tures vs, sun hours during the different growth stages
and total length of the entire growth cyele (biplots
not shown}.

In summary, for both low and high RH environunents,
the greatest proportion of total variability of minimum
temperatures was cxplained by the first factor. These
data indicated that relative performance of cultivars was
strongly influenced by differcntial sensitivity to mimi-
muin temperatures that varied from 10.5°C to over 16°C
during the spike growth period, depending on the envi-
ronment. Possible meehanisms are genctic differences
in temperature sensitivity to respiratory carbon loss,
as well as the effect of temperaturc on rate of spike
development. [n both eases, cooler temperatures would
be favorable to spike growth, which determines yield
potential. Similarly, genetic variability for this tempera-
ture dependant process would explain the effect of maxi-
mum temperatures on yield vartability, though the effect
is weaker. When comparing high and low RH environ-
ments, number of sun hours tended to be morc critical
in determining relative performance in the high RH
environments than the low RH ones. This was probably
because radiation levels were generally Tower and,
hence, more of a himiting factor in high RH cnvi-
ronments.

CONCLUSIONS

Rcsults for Data Set 1 showed that while number of
grains per spike and biomass were associated with a
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Fable 3. Mean pgrain yicld (Yicld), leagth of the cntire grawth
¢ycle (CYC), minimum temperature during the cotire prowth
cycle (mTC), maximum temperatuse daring the entire growth
cycle (MTC) and sun hours during the entire growth cycle
(S11C) for 21 low relative humidity environments included in
the fiest Intermational Heat Stress Genotype Experiments
{Data Set 2).

ary as well as sun hours in January and February were
associated with a PLS factor that explained a larger
proportion of the GEI in bread wheats. Results indi-
catcd that grain yields of earlier released wheat cultivars
{durum and bread) were more favored than the yields
of later released cultivars in 1990 and 1991 because of

Environment Yield CYC  wmIC MTC SHC sunnier weather during January and February. maxi-
kg ha~? days °C hours mum temperatures in December ‘and. February, and
oD 5740.5 125 10.30 25.4 8.40 lower minimum temperatures. Grain yields of later re-
IS;‘JII:Z i;—;;z gg :l‘ig gfyg 3503 lcased durum and bread wheat cultivars were more posi-
TLD3 45340 106 10.58 315 9.20 tively affected by maximum temperatures in January
TLDI 41720 % 10.50 2 10.00 and March and sun hours in March of 1993 and 1995.
ILo2 40844 fd L% 0.5 840 Results for Data Set 2 indicated that minimum tem-
IND2 4022.4 87 13.40 330 9.50 . . .
SUDY 371 ) 16.20 35.0 9.50 perature during the spike growth stage, entire growth
'['l:l): 35138 g 14.60 48 gﬁ cvcie, and the length of the entire growth cycle were
.'l'.:"l?:; g’igg:; Pt ::;"3 gi"g 9.0 correlated to a PLS factor that explained most of the
SUD3 3267.0 2 13.20 325 0.51) GE!l in low and high RH cnvironments. For both low
INIX 3190.7 k2 15.40 336 9.80 and high RH environments, results indicated that rela-
VLEL 2589.5 7% 15,40 36.1 10.00 ve por i cultivars was. s i d
NIGd 2511.5 81 15.40 322 B70 tive PL ()rn‘}ance 0- FU ttvars Wdh btrongly inf U(_:HCL
TLF2 24977 83 15.60 M 850 by differential sensitivity to minimum and maximum
.l‘i'('?“' v o e e baptd temperatures during the different growth stages. Sun-
NIG2 17188 89 15.20 29.6 6.60 nier weather and the longer cycle in high vielding envi-
SYR1 1590.0 86 17.50 29 9.00 ronments favored some cultivars; lower minimum and
SYR2 B64.7 88 19.00 30 9.00 ’

higher maximum temperatures in low yielding environ-
ments favored another group of cultivars.

Results of this study indicated that the PLS method
was cffective in reducing information existing in four
complex multivariate data scts. It effectively detected
cnvironmental and cultivar cxplanatory variables asso-
ciated with factors that explained large proportions of
GEL In these data sets, several genotypic variables such
as vicld components were highly correlated; however,
the PLS method deals appropriately with this problem.
Furthermore, the cross-validation procedure and the F
test are useful tools for determining the optimal number
of significant components (factors) that are required for
explaining GEL More rescarch is needed for comparing
the PLS method with other statistical models such as
the factorial regression model.

t OBD!: Ciudad Obregon, December, vear 15 SUD2: Sudan, Year 2; INI4:
India, Indore, Year 4; TLD3: Thaltizapan, December, Year 3 TLDI:
Thaitirupan, December, Year 13 TLD2: ‘Phuliizapan, December, Yeur 2;
IND2: India, Dharwar, Year 2; SUDT: Sudan, Year 13 TLD4: Tlaltizapon,
December, Year d; IND&: Lndia, Dharwar, Year 4; TLFY: Tiallizapan,
February, Year 3; SUD3: Sudan, Year 3; IND1: India, Dharwar, Ycar
§; TLE1: Tlaltizapan, February. Year 1; N1G4: Nigeria, Year 4; TLF2:
Thaltizapan, February, Year 2; SUDM: Sudan, Year 4 N1G3: Nigeria,
Year 3; NEFG2: Migeria, Year 2; SYIU: Syeia, Year 1; SYR2: Syria, Year 2.

factor that explained alarge proportion of the variability
on GEI in both crops (>65 and >67% for durum and
bread wheats, respectively), harvest index, number of
grains per square meter, and individual kernel growth
rate were explained well by that factor only in durum
wheats (>80%). Conversely, days 1o anthesis after
emergence, days of grainfill and days to maturity after
cmergence were associated with a factor that explained
GEIl in bread wheat (>69%) but not in durum wheats,
.n relation to environmental variables, sun hours per
day in February was associated with a factor that ex-
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Fig. 2. (a) Biplot of the first and second PLS factors representing the X scores of 21 low relative humidity environments and the Y loadings of
cight wheat cultivars (1-8) from Data Set 2. Environments are denoted as OBD1 = Ciudad Obregon, December, Year 1; SUD1 = Sudan,
Year 1; SUD2 = Sudgn, Year 2; SUD3 = Sudan, Year 3; SUD4 = Sudan, Year 4; NIG2 = Nigeria, Year 2: NFG3 = Nigeria, Year 3; NIG4
= Nigeria, Year 4: SYR1T = Syria, Year 1: SYR2 = Syria, Year 2; INM = India, Indore, Year J; INDI = India, Dhorwar, Year I; IND2 =
India, Dharwar, Year 2! IND4 = India, PPharwar, Year 4; TLDE = Tlaltizapan, December, Year k TLD2 = Tialtizapan, December, Year 2;
TL.DY = Tlaliizapan, December, Year 3; TLIM = Tlaltizapan, December, Year 4; TLFI = Tlaltizapan, February, Year 1; TLF2 = Tlaltizapan,
Fehruary, Year 2; TLF3 = Tlaltizapan, February, Year 3; (b} Piot of the first two PLS factors representing the X loadings of 13 enviromenial
varinbles measyred in 21 fow relative humidity environments where 8 wheat cultivars were evaluated (Daia Sct 2}, Environmental variables
are denoted as CYC = length of the enfire growth cyde, mTC = minimum temperature during the entire growth cycle, MTC = maximum
tempersiure during the entire growth cycle, SHC = sun bours per day during the catire growth cycle, mTV = minimum temperaiure during
the vegelative stage, MTY = maximum temperature duriag the vegetative stage, SHY = sun hours per day during ihe vegetative stage, mTS
= minimum temperature during the spike growth stage, MTS = maximwn tenperature during the spike growth stape, SHS = sun hours per

day during the spike growth stage, mTG = minimum temperafure during the grainfill stage, MTG = muximum temperature during the

grainfill siage and SHG = sun hours per day during the grainfill stape.
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APPENDIX

BRIEF DESCRIPTION OF THE UNIVARIATE
PARTIAL LEAST SQUARES REGRESSION
ALGORITHM

The nerative algorithm (Helland, 1988) for representing X
and y as in Eq. [1] and [2} (for each value of m1) consists of
the following steps.

Step 1. Write

E.;ZX

and

fi=1y¥ [3]

Step 2. Find t,, p... 2nd g, by induction.

The basic poinl now is that each 1., is determined as a linear
combinatinn of the X residuals obtained in the previous step.
In particular for s = 1 one wanls

t = Liox %W = Xw, (4}

where w, is a k&-dimensional weighting vector.

Because it is desived that t) should be highly correlated with
¥, it is reasonable o make cach wy) component proportional
t the covariance between x, and ¥. This s accomplished by
taking wy = my, that is:

w, = X'y 5]
Then by Eg. [3]. the Eq. [4] and [5] became
1. = Eyw,
and
w; = Ejf.
Therefore. for general »r we have:
w, = E;,_du_, [6}
and
1. = En W, [7]

Step A Find the p,, and g, values from the best possible fit
of Cy. [1} and [2].
For mi = 1 the best fit to

y=tq+l
is given by the repression coefficicnt
¢ = (Y )(t),
when F, = y.
g; = {(LH)/(EL).
In general for any value of m
Similarly. the best {it to

Ky = byry + o

is given by
pu = (xpt)ity), (K =12..K)
or
P = (X))
B)’ E:I = X.

p: = (Eft J(0t)

and n general for any value of m

P = (Epoit,)/(tht) 9]
Step 4. By Eq. [3] and for m = | Cq. [1] and {2] become
X=tp +E
and
y = g + f;, [16]

respectively, from where E; = X — gy and f, = ¥ — 1.
After substituting E; and f;. in Eq. [10]

E, = Eﬂ - Ep
and
f! =i fll 3 thl'
In general, for any value of »2
Em . E'n-i - ‘mp.!;r
and
= Gy — tolfm I.Hl

Step 5. Repeat Steps 2 to 4 until the contribution of the
new faclor is small.

PREDICTION

To obtain the prediction of new values consider that x, =
(g, Tige o Xy}, @ Tow vector in the X matrix, is a set of
X-measurements in a new unil and define v; = x; — ¥ with
X = {¥1...%)". Then the new scores and residuals are obtained
as

ana ’ 1]
iy = €p—1Wn
and

€y = €4 — tmhpm

Therefore, the corresponding value v is predicted in step m
by

-~

ymll - _"—F + \"‘m“!‘M l-mlq;u
= _? + Em'—l.l{ tr|1'll(‘:;'1"n'1)_1 t.r;.-}‘

MULTIVARIATE PARTIAL LEAST
SQUARES REGRESSION

The method can be used for muitivariate as well as univari-
ate regression, so there may be scveral dependent variables
given by the matrix Y = {y, ¥.. ., v1]. sav. To form a refation
between the Y variabics and cxplanatory variables X = [x;,
Nz %] similar to that of Eq. [1] and [2]. the X and ¥ matrices
can be writien as

X =tp +t,p; + ... + tupss + En
TP+ E
tg + ta + .+ tagy + Fy
TQ+F

Where the q, are now [.-dimensional vectors ealled
Y-loadings and Fy 1 the residual matrix.
Aastveit and Martens (1986) gives details of the two differ-

il

Y
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ent multivariate PLS algorithms. One algorithm vields non
orthogonal scores T and therefore requires a multiple linear
regression stage to estimate Q. The other algorithm contains
an extra step in order to orthogonalize the scores T and thereby
simplify the estimation of Q. The two algorithms vield the
same final prediction results. The orthogonalized algorithm
viclds a set ol orthonormal loading vectors W and a sct of
nonorthogonal loading veetors P. The advantage of this or-
thoponalized algorithm version is that the parameters can be
estimated [or each factor separately, since both W and T are
orthogonal. Henee, no matrix inversion is required. GENS-
TAT procedure uses the orthogonalized algorithm.
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Relationships among Bread Wheat International Yield Testing Locations in Dry Areas

Richard M. Trethowan,* Jose Crossa, Maarten van Ginkel, and Sanjava Rajaram

ABSTRACT

Understanding the relationship among yield testing locations is
important il plant hreeders are to target geemplasm better o different
production environments or regions. To cxamine the relationship
umong internntional drought prone fest sites, vield data from 122
loentions, sown during a 6-yr period in CIMMYT's Semi-Arid Whenl
Yicld Trial (SAWYT) were soadyzed, The shifted multiplicasive model
(SHMM)} was used to group locations within ench yoeur and patiern
unalysis wis cmployed to group thase siles across years. Sites were
grouped inlo regions cepresenting the major rones of adaplation lo
drought accordiag 1o CIMM YT's dassificagion of mega-environments.
Results spaneing 1992 (o 1997 were summarized on the basts of the
nunther of tinies u pardiculur sile or region dustered with the target
region, which was expressed as a fraction or perceninge of the totnl
number of possible groupings. Results indicated that the Centro de
Investigaciones Agricolas del Noroeste {(CIANO), CIMMYTs pri-
mary deought evaluation fecation, dustered with eations in South
Asin, specificlly Indis and Baoglsdesh. However, the number of
lusters between CIANO and other Mexican locations with West
Asia, Alrica, and South Amerien were Tewer. This resuit sugpests
that the residund moisture siress geacrated st CVANQ under limiled
iteigation conditions, while velevant 1o equivalent stles in the Indian
Suhcentinent, does aot predict performance at locutions wheee differ-
ent steess patterns predominnie, Associsdions among sites snd regions,
determined on the hasis of clustering, ranged from weak (7% of (otal
possihte groupings in the case of Mexico and ibe Southern Cone of
South America) to relntively steong {6, for Mexico and Bangla-
deshi. Clusters of siles repeated in more than one yeur indicated (wo
dowminant groups. one for South Asian locwtions (including CEANG,

Mexico) and another containing prismarily South American sites.
]D ETERMINING the relationship among diverse vield

testing envivonments and their degree of associa-
tion s valuable in helping plant breeders better target
germplasm to regions of broad or specific adaptation.
The wheat (Trivicion aestivim LY breeding program
of the International Maize and Wheat Improvement
Center (CIMMYT) has developed and deployed the
Scemi-And Wheat Yicld Trial (SAWYT) in many differ-
.:m cnvironments around the world sinee 1992, This
nursery is comprised of advanced bread wheat lines bred
for tolerance to moisture stress,

CIMMYT’s key drought evaluation site is located at
the Centro de Investipaciones Agricolas del Norvoeste
(CIANO) in northwestern Mexico (27°20'N and cleva-
tion 38 m above seo level), Understanding the relation-
ship between CIANO and key dry Jocations around
the world is critical if we arc to properly assess the
ctfectiveness of this type of selection and evajuation. Tt
is also important, particularly for CIMMYT's regional
cooperators, to hnk the performance of different dry
locations and regions fram around the world with their

own environments. Other authors have stated the im-
portance of targeting germplasm to specific environ-
ments (Peterson and Pfeiffer, 1989) and increasing the
cfficiency of yield evaluation through the identification
of key locations (Abdaita ¢t al.,, 1996). Regions with
similar dormianant moisture stress pattemns are the South-
emn Cone of South Ameriea, North Adrica-West Asia—
Southern Africa, and dry arcas in South Asia {Rajaram
ct al., 1994; Calhoun ct al., 1994).

Two types of multiplicative models have been used for
studying genotype X environment interaction (GEIQ) and
for developing methods for clustering sites or cultivars
into groups without crossover interaction (COT) (Cor-
nelius et al, 1992, 1993; Crossa et al.. [993, 1995, 1996;
Crossa and Cornelius, 1993, 1997; Osman ct al., 1997).
These are the shifted multiplicative model (SHMM)
in which ¥, = 8 + Yo M oy y4 + £ (Seyedsadr and
Cornelius, 1992} and the site regression model (SREG)
im which y; = w, -+ ={ | N oy v + g (Cornelius et al,,
1996). The variable ¥ is the mean of the 2 cultivar (i =
1.2,...,gyinthe ff environment {j = 1.2 ..., e) Bis the
shift parameter; p; is the sitemean; by (L, =2 2 00 =
A are singular values that aflow the imposition of ortho-
nonnatity constraints on the singular vectors for culti-
vars, oy = (oup, - .. o) and sites, vy = (Y oo Ya l
such that E,ix,-i = Xvi = | and B = Zypye = 0
for k # k'; g; is the residual error.

If SHMM and SREG models with one multiplicative
component (SHMM; and SREG;) arc adequate for fit-
ting the data and primary effects of the sites, §,, all of
like sign, then SHMM, and SREG, predict non-COL
Thus all cultivars should have consistent patterns of
response across all sites included in the analysis (Crossa
and Cornclius, 1997). On the contrary, if §;, are of differ-
ent signs, then SHMM,; and SREG, madels predict COI,
that is, cultivar ranking in the sites with negative
are the reverse of the cuitivar ranking in the sites with
pasitive ¥y,

This anadysis hus been vsed to determine environmen-
tal subgroups of large numbers of sites sown to the same
sct of cultivars (Fox et al., 1985, [99)), However, trials
conducted over many years frequently contain unbal-
anced scts of cuftivars as breeders constantly replace
lines with newer materials. In this instance pattern anal-
ysis, a combination of classification and ordination anai-
yses has been successfully employed (DeLacy and Law-
rence, [988: Peterson and Preiffer, 1989: Abdalla ¢t al.,
1996). These technigues have been used to examine the
association of locations to CIMMYT spring bread wheat
germplasm (DeLacy ct al, 1994). However, all these

Wheat Program, International Maize and Wheat Improvement Ceser
(CIMMYT) Apdo. Postal 6-641, 06600 Moexico DF. Mexico: 1. Crossa,
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Table L. Locations returning yiekl data for the 151 through 6th SAWYTs in each geographic region.

SAWYT
SAWYT reporting
aursery Srundard sipnificunt
Repgioa Site and country number Latitnde Ahityde Yield meant deviafioni dizeasef
m Mg ha ™
Southern Africa
] Smiall Grain Tust. (8. Africa) 156 bl 1687 2.42-5.02 0.52-0.66 1.5
2 Langgewens (5. Africa) 3 TS " 4.49 0.73
R Muoredon (5. Africa) 2 18’8 2 1K D68
4 Gwebi {Zimbabwe} 2 Irars 1448 LBS 0.59
MNorth Africa
5 Gezira (Sudan) 1 14°24' N 471 198 .66
b El Khrouh {Aloena) 1 TN L= 15 042
* Sidi-Bel- Abbes (Adgeria) 3 AT 43 $.29 081
8 Lakaria {Adperia) I - 33N 98N 060 n17
9 Khiemis-Miliana {Algeria) 2 3" 15N 189 Al .48
1 Ain ¥l Hadjar {Algeriay 2 1.3? [ )
1! Heni-Slinmne (Alperio) 3 MIEN 60 259 043
12 tsmaiiia (Egypt) 13 M 1% 109 372 0.T7-0LR 3
13 El Qasser {Egypl) 2 IR 2 121 .47
14 Boulifa (Tewiviz) 1 AR A5 €12 (]|
Fasi Africa
15 Kisozi (Burundi) 5 I3¥S 2000 1.M 37
16 EKPBRC-Njuro {Kenya) 5 0I5'8 2163 418 .61 s
17 Bembeke (Malawi) [ 14£°50°S 1560 048 0.16
8 Huoletta (Ethiopia} 6 F¥N 240 .94 0.85
19 Simnba (Tanzania) [ ¥I¥S 1750 278 [ {]]
pail Lyamungo (Taazania) 3 FI¥s 12440 204 B33
Wesl Asta
21 SPH Ceres? Hes. Insw (Iran) N ASSN 1121 L1 75
22 Zahak-zabol ($ean) 2 MPSAN 493 484 087
23 Ahwaz (Iran) 2 IITN b)) 547 059
pt Gonbad (lran) 2 7N 76 4.1% .71
5 Rawotha (Jordan) 1 AN 520 161 0.24
26 Rawdal Harma {Qatar) ] BN =0 413 [
27 ICARDA Tek-Hadya (Syria) 1.5 MWIN 282 2.26. 419 05T, 061 1
28 Shesham Nagd (Alphanisian) 2 ME2EN 552 458 [ ")
29 Al Khurj {Saudi A rabiae) 2 SN 40 R BT ] LX)
Central Asia
3l Akmolal (Kazaksian} 415 SI"10°'N LI 134, 104 (21,033
South Asis
2 Dinajpur ¥.R.C (Bangladesh) 15 A ] M 4.64, 3.29 {LBH, D47 ]
R k] Rajchahi (Bangladesh) 23 24N 18 342, 3% 0.28. 0.51
H Bhairahawa {Negal) 123545 ITG'IN 105 1.39-2.25 GuZ-135
as Istamabad (Pakistan) T4 IFIE'N o83 441, 362 047, Nal)
k1 Sariab (Pakistuan} 2z M2N A0 .94, 1.52 f6, .32
37 Pirsahak (Pakistar) 5 RE et i Lp .50
iR Wheat Res. Inst. (Pakistan) d IITIS'N 17 300 087
39 Barani {Pakisian b 4.5 3rsn' N 450 2.3 025
an Dera lsmail Khan {Pakistan) 234.58 TSN 2t L52-2.75 0.24-1.52
41 3urgapura (Fndia) 3 HESHIN 450 200 0.43
42 IYWR -Kazaal (indis) A P (T o Jih 565 [iXi]
43 Yijapur {India) 3 IFEN 126 259 0.52
34 PAU-=Ludhiana (ladia) 5 MPS6'N 247 168 0.6k
Faost Asin
45 Sap-Fa-Fong (Thailand) 34 13N 0 058, 0.97 0.14, 0.4
3 Suwan Farm (Thailand) 3 14040 N M) 38 &7
47 Samoceng {Thailand) 4 181N B2 3AS 0Rb
% Pang Ma Pha (Thaitard) 4 19728 S61) 458 04
North Asncrica
40 CIAND (Mexico) 13454 IT2'N M 260414 041023
50 El Butan {Mexico) 5 131N 1249 LbS .64
51 Mixteca Omxaca {Mexico) 3d ITAYIN 250 .7, 130 .51, 044
L Tecamae {Mexicn) [ 1P43'N 2260 204 082
53 Tiacague (Mexico) ] P45’ N 230 b 0.5
54 San Frane. Atizapaa (Rexico) 5 96N 26} kX3 [
55 Keroen Res. Farm (Canada) 1856 520N J7 424503 043063
L1 Switt Current {Czaneda) 2 SFLYIN A4Z5 M6 025
Southern Cone
57 Bela Vista {Brazil} 1 23S W18 207 0.38
Sh Londrina {Brazil} 1 IF2TS sS40 e | 04l
50 UNP-Saja {Brazil} g pLI b 620 4.06 .56
60 Pergamina (Argentina) 136 1356'S 65 2.m-5.01 052023 A
al Marcos Juarer (Argentina) 13456 32428 31} 1.19-2.7% 0.:-0.38
62 Tucuman-Obispo {Argentina) 16 26748°S 460 1.23, 2.47 2L, 0.42
63 Rordenave (Arpentina) i TS 21n 512 0.9
(1% Parana (Argenting} i 31°50°8 134] 2.0} 012 |
63 Cordoha {Arpentina) X M'S 425 0.38 015
66 La ‘Tijeress (Argestina) H 13’8 ) 226 056 ]

Continued vexi page.
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Table ¥. Contineed.

SAVWYTy
SAWYT reparting
R—UESErY Standard sigpthivant
Hegjon Site and country onumber Latitude Alitude Yield mesnt devialiong diseusel
Aundean Region
67 San Berito (Bolivia) L1345 17308 2730 (.88-3.58 {1.14-4).72 4
o Sta. Cataling (Feaadar) 1.5 0°22's 50 13519 rdd, .33 1
Cenrtral America
He Lamorano (Horduras) 4 149N B05 1.16 027
Soathern Harope
70 Gimenelks (Spain) 5 SRS 290 416 0.07
71 La Maojonera {(Spain) ] A0SR 220 518 0.49
72 Cent, de lnv. Agrario {Spain) 2 ATIUN b5 §.38 042
73 TorregrossafBelloc (Spuin) | 4135 N 200 .88, 341 .69, .75
74 Coartijo Torrevaelo (Spain) 3 ITIR'N 72 0.9 [N F]
75 Lat Orrcten {Spuaing 4 IS 24 M 0.0
16 L'ubiseul (Spain) 4 4.19 0.59
78 Keniziko 'Thermi ( Greeee) 4 40°28'N k] 182 1145
Eastern Lurope
74 Sreped (Hungary) 1 467N it 430 04N
80 Odlessa (Ukraine) 3 4627 4 A48 952
81 Kharkiv {Ukraine) 4 SNT0‘N i L33 831
82 Spring Whent Lab, (Rmssin) 34 53N 47 154, 2.7 037,043
122

Towal sites

* Whea more ihan iwo SAWYTs are sown ai the some site in different years a yicld range is prevented.
-YYhen nore than two SAWYT arc swown at the same site the stundard deviations uf the lowest and highest viclding sites are presented.

$ Diveases reported included stem, leal and stripe rusi and Seproria trificl.
1l Akinoia has reeently been renamed Astuna.

cultivars were developed for imgated conditions, and
site associations were determined across both imigated
and low rainfall conditions. There bas heen no such
attempt to classify giobal drought locations sown to
cultivars specifically developed for performance under
moisture limiting, conditions.

The aim of this paper is to (i) examine the relevance
of selection under terminal moisiure stress at CIANO,
Mexico compared 1o the pnimary drought affected tar-
get arcas around the world and (i) examine the associ-
ation among international testing locations where the
SAWYT nursery s planted,

MATERIALS AND METHODS
Locations and Cultivars

Yicld dala from a total of 136 locations were returned from
the SAWYT belween 1992 and 1997, A total of sis yield nurs-
eries (SAWYTs 1-6), cach compriscd of 3 10 30 cultivars,
were sawn. Although most cultivars varied from year (o vear.
d focal check cultivar representing the best locally adapted
germplasm was included at each site each year. The local
cheek cultivar waricd among locations and in some instances
chunged baetween vears at the same location, All (sials were
sown as two replicate alpha-latitce designs {Barrcio et al.,
19973, Yicld data [rom each trial were analyzed by SAS (SAS.
198K). Genotypes were considered fixed effects and replicates
and subblocks within replicates as random effects. Adjusted
means were calculated for subsequent SHMM and patiern
analyzes. Trals were sown under a range of different moisture
conditions. A site is defined as a location/vear oceurrence.
Fligh vielding irrigated locations (arbitrarily defined as those
with means above 6 Mg ha™") were removed o ensure that
the remaining sites were representative of the potential yield
range in mosi water limited locations. To ensure clusters among
locations were biologicaily based and not arlefactual, only
those sites indicing significant differences among penofypes.,
regardless of the size of the cocfficient of varalion, were
relained giving 1 total number of 122 sites (Table 1). Diseases
scored were stem. leaf, and stripe vusl {caused by Prceinia strii-
formis (. sp. hordeii) and Seproria tritici Roberpe 1in Desmaz.

The sites were grouped inlo $CveR Fegions representing
northern. southern and eastern Africa, West Asia.South Asia,
the Sauthern Cone of South America, and Mexiea. These group-
ings represent regions sullering somewhat difforent stress pat-
terns as determined on ithe basis of long-term weather records,
MNorth Africa, West Asia. and Southern Africa generally expe-
ricnce Mediterranean or postanthesis moisture stress; South
Asia expenences residual motswre siress; and the Sonthern
Cone predominantly preanthesis stress {Rajaram ef al 1994)
Rainfall records were incomplete for a majority of locations
during the years in which the SAWYT was grown_ for this
reason we relicd oo long term regional rainfall averages 1o
determine into which broad category @ particular sile fell. To
provide scparate comparisens of all other regions with the
Muoxican eviluation sites, the latter were classified as a distingt
region. Many locations. particularly in West Asia and Naorth
Africa, were sown to the SAWYT trial only onee during the
6-yr period. For this reason individual trials within these re-
gions were considered collectively in comparisons with other
regions and locations.

Germplasm entering the SAWYT was devetoped in Mexico
by shutiling segregating materials between two contrasting
moisture regimes {Ragaram et al., 1994}, A; CIANO severe
terminal moisture stross was generated during the winter erap
cycle by gravity irigating preformed beds 14 d priorio sowing.
Segregating and advanced lines were sown in November on
2 reecding moisture profite with no subsequent irrigation.
Twenty-year average annual rainfall for the cropping period
November to April is 48.2 mm. Materials were harvested in
April and sown in May at Toluca in the central Mexican
highlands {19°16°N and 2640 m above sea level) which reccive
approximately 800 mm of anoual precipilation. Under this
environment, materials arc sclecied for responsiveness o
moisture, nutricnt inputs, and resistance to discase.

Amnalysis and Grouping of Locations
Multiplicative Models for Clustering Sites
Without Crossover Interaction

fn various site-clusicring pracedures developed on the basis
of SFIMM ar SREG {Cornclius ot ai., 1992; Crossa et al.. 1993;
Crossa and Comelius, 1997). the measure of distance (1.e., dis-
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similarity) between a pair of sitcs is the residual sum of squares
(RSS) after fitting SHMM, or SREG,. RSS{SHMM,) or RSS
{SREG,}. respectively. The dichotemous splitting procedure
used on the dendrograrm obtained from $1HMM cluster analysis
{acilitates finding groups with negligiblc COl within clusters.
Computations arc facilitated becausc the site regression modei
with one multiplicative term can be reparameterized as a shifted
multiplicative model with one multiplicative component. In
this study, the SIIMM clustering procedure for grouping sites

CROYF SCTENCE, VOL. 41, SEPFTEMBER-OCTORER 2001

without COI (Crossa et al., 1993) was applied to cach of the six
SAWYTs, and clusters of sites with negligible COl were [ound.

Pattern Analysis

Pattern analysis is the ¢clustering and ordination of sites (or/
and cuitivars) in the two-way data table of cultivars X sites. In
this study. the data uscd were the threc-way iable of cultivar X
sitc X year. It was assumed that cultivars in any given year
were a representaiive sample of the germplasm under evalua-

Table 2. Summary of regional associations from dendrograms penerated for each SAWYT.

Number of groupings with the region/ Total number of possible proupings

Mexican Region

Sitesy CIANO Searillas Mixteea Atizapan El Batan Temacac Rancho Total
Bangladesh 46 w1 11 i1 1 - - 6/10
India 24 - U3 01 1 - - 50
South Asin 925 o3 411 7 7 071 1 M55
Brazil i W1 - - - /1 1 i
South Africa 1/3 0/ 1 (4} 1] - - 27
Negal 144 1 072 171 't - - U
Mexico 27 4] n 12 2 02 w2 414
N. Africa 18 23 0/3 - - - - Vid4
Bolivia o/5 11 02 w1 g | 071 11 412
Argentina y24 us 0/6 072 2 013 243 TS
Spain /e w2 13 /1 Wi - - U1}
Pakistan F7a R | 0/1 1/5 0/4 4 0/1 Wi 2y
West Asia 1/4 0/3 - 1 o1 - - 15
Totul 28/11 523 1137 522 422 oM 39

South Asian Hegion
Sites Banglad. Pakistan Nepal [ndia Total
Karakstan 072 12 13 072 819
South Alrica 02 59 /4 244 mny
Bangladesh - o9 3/4 24 N7
Mexico 46 L)X 178 5i8 1345
Wesd Asia 410 y28 4N w1 1¥50
Indin u4 177 4 Ua 52
Argentinn 1/10 925 i3 xR 1354
Canada 0/3 9 03 014 419
South Asiu N7 56 3 521 20/115
N. Alrica Y1 417 411 o9 RSB
Bolivia ' ¥4 05 14 427
Spain /s 424 19 w1 6139
Nepal V4 013 - 0/4 A2
Pukistun 9 627 013 17 1756
Total 2247 54273 18/107 20/83

West Asian Region
Sites iran Jordan Qatar Syria Alghani Soudi A. ‘Fotn)
Bangladesh w4 /i on 1z V1 11 4710
Nepal W4 1/1 01 112 1 0/t 210
South Asia Y20 43 03 N1D /5 /5 9146
West Asia 03 2 02 112 1/6 /e 421
N. Africa 1712 L] 1/5 15 173 173 6/33
Algeria 78 012 02 a2 12 12 318
Mexico - w2 122 0/4 - - 13
Pakistan J12 W1 0/1 /s w3 03 325
South Africa 14 W1 0/1 02 0/1 w1 1710
Argenting 0/4 w5 ') o7 m il plak]
Spain /12 072 072 w3 TR 173 5
Bruzil W8 '} m w1 02 02 1715
Total 7101 26 neG R/45 28 M8

Norih African Repion
Sites Sudan Algeria Egypt Tunisia Total
Negal w1 116 13 i/ R11
Spain 072 ¥io U5 042 519
Argentina 0/5 516 . W5 T
Banghadesh 1) 16 03 i An
Bolivia 1 A4t 03 01 21
Spain w2 210 8 w2 422
Bravit 1 o6 13 w1 211
West Asia 13 N 0T A3 6/43
South Asia 3 .} ns 23 7752
N. Africa w4 ¥i6 L1 4 44
Pukistan 1 Wi 2/9 w1 21
South Africn 0 bl 13 o1 1711
Mexico 112 08 04 w2 116
‘Total 27 22148 15194 27

Continued next page.
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tion. Sites {individual location/year accurrences) were judged
on the basis of their ability o discnminate among cultivars.
Only sites that oceurred in two of more SAWYTs were in-
cluded in the overall pattern analysis. Since some sites were
sown 1o more than fwo SAWYTs in different vears, their
comparisons had different levels of precision. The clustering
stratepy used is that recommended by {DeLacy and Cooper.
1990} and used by Abdalla et al. (1996). Dissimilaritics be-
tween sites in each year and averaged across years were mea-
sured by squared Euclidean distances (SEDY). Since different
years had different numbers of cultivars, the averages were
weighted by the number of cultivars in each year. The incre-
mental sum of squares criterion and the agglomerative hicrar-
chical sirategy procedure with SED as the dissimilarity mea-
sure were used for classification.

RESULTS AND DISCUSSION
Associations among all Locations and Regions

-1

Average site yiclds ranged from 0.38 to 8.48 Mg ha
during the 6-vr period. Significant discase incidence was
cported at 11 of the 122 sites included in the analysis
find no sites reported insect damage. Dendrograms de-
veloped from the SHMM cluster analysis were used to
examine the association of various sites with key regions

Table 2. Contipued.

that frequently experience drought and with sites within
those regions. A summary of dendrogramn results is pre-
sented in Tabic 2. The number of clusters among various
sites located within the seven Key regions is expressed
as a fraction of the total number of possible groupings
or clusters. Sitc clusters were determined at the third
fusion or third group Ievel of the SHMM cluster analysis.
A total value for the region is also calculated and ex-
pressed as a fraction. For example, comparisons of India
with the Mexican region had a total value of 5/9 (56%).
This was calculated by adding the fractions of the indi-
vidual gronps CIANO (2/4), Mixteca (2/3), Atizapan
(0/1y and El Batan (1/1). Simitarly, each iocation within
each of the seven key regions is totaled across Jocations
that clustered at least once with locations in cach key
region. For example, CIANO, which appears in the
Mexican region, clustered 28 times out of 111 possible
groupings with 13 different global locations or regions,

The South Asian Region

Rainfall, soil type, and farming practice in this region
arc diverse. Nepalese sites cluster 14% (three of 21
possible groupings) of the time with other sitcs across

Number of groupings with {he region/ Todal number of possible proupings

Southern African Region

Sites 8. Africa Zimbah. Total
Kazakstan 12 - an
Canada 34 - 3
Argentina W13 01 Wik
India 24 - pL]
Pakistar 510 3 513
South Asia B2 o5 827
Mexico 9 - b
Bangladesh /4 0/1 15
Balivia 0/5 11 1/6
Spaie 16 w3 14
West Asia m w7 118
‘Fotal RYZ 1/21
Lastern African Region
Sites Tanzania Burundi Kenya Malawi Ethiopia Total
West Asia - 1/1 11 - ~ n
N. Alrica 23 -~ - - - 213
. Aldca 2 1t )] w2 02 m
"akistan W2 14 1/4 1] Wi 412
Nepal 11 w1 0/1 - - 143
Brazil w1 - - 01 13 13
Argentina s 02 02 w3 o3 415
South Asia pit.) V7 177 W1 U3} 5124
Mexico 1/5 L[5 02 1/3 w3 M5
Bofivia 2 Wi L1741 "3} '3 16
Total 29 419 4119 1/12 012
Southern Cone of South America
Sites Bruzsi Arpentin Tatal
Kazaksian - bIA) 13
Canacda 13 8 411
Argenting yio /26 11136
Algeria 16 LTAE! 620
Bolivia w4 513 57
Pakistan (1. 9724 9/32
Spain U6 s w27
N. Africa in 729 H{"ATI}
South Africa 0/4 9 313
Brazil - 29 9
South Asia 218 10/53 1268
Bangladesh 11 179 2
West Asia ¥i7 720 5137
Mexico 175 1125 2130
tNepat 174 013 1117
‘Totai 18/9% 63270

1 Sites include countries und geopraphic regions,
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the South Asian Region. However, within this region,
Nepal and Bangladesh are closely associated, while no
relationship exists between Nepal and Pakistan. Kazaks-
tan, South Africa, Canada, and Argentina also associate
with Pakistan but less so with other couniries within the
South Astan region. West Asian locations cluster better
with Bangladesh and Nepal than with Pakistan. Mexican
locations, including CLANO, are the best predictors of
environments in India and Bangladesh: however, they
asseciate poorly with most sites in Pakistan and Nepal
(Table 2). Even though the variation in tatitude within
the region is not large (24-33"N), stress patterns across
the region arc very different. In Pakistan, dry areas are
fess influcnced by monsoonal rain than arc equivalent
areas in central India, while in Nepal and some parts
of India and Bangladesh stress patterns are influenced
by availability of ircigation. Stress patterns in Pakistan
are similar to those in higher latitude areas such as
Kazakstan and Canada (Table 2). This association re-
flects the lack of photoperiod response in the CIMMYT
materials incleded in the SAWYT nurseries. The group-
ing of South Africa and Pakistan, both dry rainfed areas
of equivalent latitude, indicates a significant degree of
association between these areas. Nepal and Bangladesh
cluster together because of similar imited irrigation pro-
duction svstems. Within the South Asian region, Bangla-
desh and I[ndia elustered best with 14 different global
sites and regions (Table 2).

The West Asian Region

Four Iranian sites rcturned vield daa for the 2nd
SAWYT, making it the best represented couniry in the
West Asian region. Unforfunately, the 2nd SAWYT
was not sown in Mexico, so comparisons between these
sites and Mexican locations cannot be made. lranian
locations cluster least with other sites in the West Asian
region and show very little association with other global
locations and regions (Table 2). The two locations in
Pakistan giving the closest, although still weak associa-
tion with [ran, Sariab, and Barani arc tocated in the dry,
northern areas. If Iran is climinated, then Bangladesh
becemes the best predictor of West Asian locations
(4/6), clustering with Jordan, Syria, Afghanistan. and
Saudi Arabia followed by the combined South Asian
region. Thosc sites clustering with Bangladesh arc rain-
fed locations, with the exception of Jordan and Saudi
Arabia, where the trial was sown under limited irriga-
rion. The limited irrigation regimes generated in Bangla-
desh, therefore, appear to mimie those in the terminal
moisture stress environments of West Asia. Lack of
reliable rainfall records from these West Asian locations
in the years the trials were sown make it difficult to
draw firm conclusions. With removal of the ranian sites,
the next best predictors of West Asia are West Asian
locations themselves (4/18) and North African sites
(5/211. all of which have, based on long-term rainfall
averages, similar Mediterrancan type siress patterns,
Mexican and South American locations chistered poorly
with West Asia, ranging from 145 in Brazil to U8 in
Mexico. Afghanistan and Saudi Arabian locations within

the West Asian region clustered best across global loca-
tions (Table 2).

The North African Region

Clusters of North African sites with global sites and
regions indicated that Nepal gave the best association,
followed by Spain and the South American sitesin Argen-
tina, Bolivia, and Brazil (Table 2). Mexican sites did
not predict this region well (1/16). The Sudanese site
expressed little if any association with any of the SAWYT
sites. This may be due severe heat siress late in the
growing cycle, which is often cxpericnced in Sudan and
other North African locations. The best associations
within the region are between Algeria and Argentina
and Algeria and Bolivia (Table 2). These sites experi-
ence carly scason, preanthesis drought stress. Within the
North African region Tunisia clustered best with other
globul sites and regions.

The Southern African Region

This region is comprised of the two countnies South
Africa and Zimbabwe. The assoctation of sites 1n this
region may be inflated because only six locations were
uscd. Zimbabwe showed a different pattem of associa-
tion compared with the South African sites (Table 2},
This reflects the different latitude of the Zimbabwean
site (17°8) compared with the South African locations
(28-33°8). The grouping of high latitude locations in
Kazakstan and Canada with South Africa reflects simi-
lar stress parterns. The gronping of Pakistan, [ndia and
Argentina suggested that stress patterns were similar
among these regions. It is expected that West Asian
and North African sites, which experience Mediterra-
nean type drought stress. would group with South Af-
rica. However, only one out of 22 possible groupings
occurred between southern Africa and regions with sim-
ilar stress patterns. However, the strong association of
sites in South Africa with LI different locations (31/90)
from around the world suggests that South Africa could
be utilized in global wheat breeding cfforts.

The Eastern African Region

In this region, four locations returned dats from one
year only and a fifth, Tanzania, reported data from two
ycars. Stress patterns in Eastern Africa tend to be simi-
lar to those in West Asia and North Africa (4/3), indicat-
ing the presence of terminal or late season drought
stress. Tanzania was the only eastern African location
to cluster with CIANO (1/6, not shown in Table 2}.
South Asian locations where farmers plant on residual
neisture following the monsoon or use limited irmgation
and Southern Cone locations, typified by preanthesis
stress did not associate well with eastern Africa. Ethie-
pia {0/12) and Malawi (1/12) did nat associate well with
other global locations and regions. Rainfall records are
not available for the Eastern African sites in the vears
the trials were sown making it Jifficult {o assess whether
the growing conditions were different from the long-
term average. Among the castern African locations.




TRETHOWAN ET AL.: RELATIGNSHIPS AMONG WIHEAT YIELD TESTING LOCATIONS 1467

Southem Africa Zaf Small Grains

]

Four-group level Two-group level

]

North Africa, Egypt, Ismailia

Pakistan Isfamabad

Argentina, Tucuman

Argentina, Pergaming

Ecuador, Santa Catarna

Argentina, Marcos Juarez

Syria, ICARDA

.Bolivia, San Benito

Bangladesh, Dinajpur

Nepal, Bhairahawa

Pakistan, Dera ismail

]
]
)
]
]
]
1
!
1
1
1
]
]
1
i
L}
1
1
1
1
]
1
1
]
1
1
'
1
t
]
1
L]
1
[}
'
]
1
1
1
]
[}
]
1

Mexico, CIANO

Fig. 1. Dendrogram of the relationships among sites sown to the SAWYT in more than 1 yr.

Tanzania was most closely associated with other global
locations followed by Burundi and Kenva (Table 2).

The Southern Cone of South America

This region 1s represented by locations i Argentina
and Brazil. Their association with high latitude sites in

azakstan and Canada would indicate similar patterns
f adaptation (Tablc 2). The grouping of Pakistan, Bo-
livia, Algeria, and Spain with Argentina indicates that
patterns of adaptation it Argentina are similar to many
parts of the world, where sites cxperience preanthesis
drought stress. Limited rainfall records were available
for some sites in Argentina during the years covening this
study. Whilc these records indicate preanthesis drought
stress predominated, significant rainfall variation was
observed at many sites; this is reflected in the relatively
weak grouping of locations in Argentina with ecach other
(8/26). Other South Asian sites Nepal, India, and Bangla-
desh most of which arc sown on residual moisture or
under limited irrigation, did not associate with Argentina
{1/29). Mexico, where development of the genotypes and
most of the yicld trials were sown using a single preseed-
ing irrigation showed very little association with this re-
gion (2/30). The clustering of Argentincan locations with
many different global sites and regions (63/276) highlights
the strategic value of these locations in differentiating
germplasm in a global breeding program.

Association of Locations Repeated
in More than One Year

Pattern analysis was used to examine the association
among sites repeated in more than one year (Fig. 1).
At the first fusion level two groupings resulted. Group |
contained three locations from Argentina and one from
Santa Catalina in Ecuador. South Africa, Egypt, and
onc focation in Pakistan madc up the remaining sites.
Group 2 contained three South Asian locations, Bangla-
desh, Nepal, and Pakistan. In addition, Syvia, Bolivia,
and CIANQ (Mexico) also clustered in this group.

Pattern analvsis confirmed the conclusions of individ-
ual SHMM analyscs by indicating an association be-
tween CIANO and South Asia (Nepal, Pakistan, and
Bangladesh). As no Indian site was sown to SAWYT
for more than one year, we could nof include India in
the comparison. Most South American locations, with
the exception of Bolivia, clustered together in a separate
group, also supporting SHMM conclusions. Interest-
ingly, Syria, the only West Asian location reporting data
for more than one year, also grouped with CIANO,
indicating a degrec of similarity between stress patterns
at these two sites.

Association of Global Locations with CIANO

Locations grouping with CIANQ on the basis of yickd
at the third fusion level of the SHMM cluster analysis
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Table 3, Sites grouping at the third fudon level in the SHMM
cluster analysis with CIANO, Mexico, for yield from the Lst,
3rd, 4, Sth, and 6th SAWY TS,

N of liines gruupmg

Sides clusicring with CIANG wilh CLAN
Isl SAWYTY

Sudan: Gerirs Res. Stalion 1

Brazik; Bela Yista Do Faraho 171

(utor; Rowdat Harma i
Ard SAWYT

Indiz; Purpapura 1”1

India; Yijapur n

Mexico; Mixteca Oaxaca

Bangladesh: Rajstahi Ut
dih SAWYT

Poriugal: #BS Alentcjo 111

Ukraine: Odessa 11

Pukistaa: NARC Islamabad 2
Sth SAWYT

Mexico; San Franc. Atizapon 3

Banpladesh: Dinajpur 112

Nepal; NWHRE, Bhairahaws 114
6th SAWYT

Famzania: Simba ”n

Pakistan: Dera bynail Khan 174

Argenting; Tucumun-Obivpo 112

were determined. Many of these locations were sown
only once o the SAWYT and are indicated in Table 3.
Sites i Sudan, Brazil, Qatar, india, Banghadesh, Portugal,
Ukraine, Mexico (Atizapan), and Tanzania reported
SAWYT data only once and clustered with CIANO.
Other sites in Mexico (Qaxaca), Pakistan (NARC),
Bangladesh { Dinajpur), and Argentina appeared twiee,
clustering once with CIANO, while two locations in
Nt.pd] and Pakistan (Dera Ismail Khan} occurred four
times, chustering only once with the CIANO site.
Because many locations clustering with CIANQ from

the SHMM analyses were sown only once to the SAWYT
during the 6-yr peried, we can only conclude that an
assaciation exwsts in the year in which the head-to-head
comparison occurred. The repeatabiiity of these associa-
tions in many cases cannot be determined. The grouping

of Indian and Bangladesh sites with CIANO could be
explained hv similaritics in latitude {Table 1} and mois-
ture Strass patterns. The drought stress generated at
CIANO under limited irrigation is similar to that experi-
enced in many parts of South Asia.

At CIANGQ, late scason severe terminal drought stress

is generated by the application of a single pr(.su.dmg
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trrigation. This screening method is designed to mimic
the terminal moisture stress experienced in the South
Asian region following the monsoon. In these regions
farmers plant after the monsoonal rains on a receding
moisture profile: veey little if any rain falls after sowing.
The slightly higher latitude and altitude of most Paki-
stan: sites {between 4 and 7° farther north and hetween
70 and 1562 m higher] may explain the reduced level
of association betwaen these areas and CIANOQO. The
sitc most similar in latitude and altitude, Nepal, clus-
tered only 25% of the time with CIANQ, however.
pattcrn analysis based on repeated sites cutlined m the
previous section does confirm a relationghip between
CIANQO and Nepal.

Not surpnsingly, only two other Mexican locations
clustered with CIANG out of a total of seven possible
comparisons. Aparl from CIANO, all these sites are
located at 2249 1o 2640 m above sea level, compared
with CIANO's altitude of 38 m. and are at least §
latitnde closer to the equator. Two higher latitude sites,
Portugal (38°N} and Ukraine (46°N) also clustered with
CLANQ.

The tow level of grouping between CIANO and South-
ermn Cone locations in Brazil and Argentina (Table 2)
can be explained by different prevailing moisture condi-
tions. These sites experienced preanthesis drought stress
throughout the duration of the study. Therefore it is not
surprising that SAWYT genotypes, developed under
moderate to severe terminal moisture stress, diffcrenti-
ated differently for yield in the Southern Cone. This 15
borne out by the much stronger association between
CIANO and India and Bangladesh (Table 2). Sites in
India and Bangladesh under limited irrigation generally
apply all the available water prior to anthesis. However,
the stress generated at CIANO did not associate well
with West Asian and North African sites. A possible
explanation is that many of the sites in these regions
are penerally cooler than CLANO and genotype ranking
may be influenced by the fonger growing scason,

Association Between the Same Location Sown
to the Same Genotypes in Different Years

A small number of genotypes, rangmg from 5 to 10,
were in common between years in comparisons between
specifie SAWY'T trials (Table 4). Dendrograins (not

Table 4. The anmber of times CIANO and other Incations sowa fo different SAWYTs in different yeuars duster with themselves at the
third fusion level in the SHMM analysis hased on genotypes commeon to each comparison

Number of groupings/ Totat ber of passible groupings

SAWYT Mexico Nepal Bokvia Canada Argenting Arpeniina Pakisizn
compariont CIANO Blairshwa Sau Benito Kernea M. Jusrez Pevgaming Dera 1smail
1+2 - 81 i1 - - - -
2¥3 - 81 03 11 - - 1
vy £} (| 01 - 0/l - 01
4vs o/t 11 111 - ”n - /i
S+t 171 - (4] 111 i - 1
1v3 11 1) an - (L} ] 1] -
A+K 111 h 1 11 (1% - Wi
v U} - 071 /1 11 on W
iv 6 n - 071 = iyl - W1
Total s Ng 18 N 7 7] wm

1 Genotypes in common for each comparison ranged from S to B
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shown) developed from SHMM cluster analysis indi-
cated that CIANQ, CIMMYT's primary drought testing
location, clustered with itself on 5 of 7 occasions at the
third fusion level. Sites in Nepal (3/6) and Canada (3/4)
also indicated a relatively high degree of association
between years. However, Bolivian, Argentinean, and
Pakistani focations did not cluster to a significant degree
with themselves in the paired comparisons among differ-
ent SAWYTs.

The high degree of association between years of
CIANQ indicates this location has high repeatability in
discriminating germplasm. However, the weak associa-
tion between the Bolivian, Argentincan, and Pakistani
locations reflects the inherent variability characternistic
of most rainfed, drought prone environments. Disease
was not a major factor influencing genotypic ranking
and subsequent location clustering as only [ sites out of
122 included in the analysis reported significant discase
incidence (Table 1). The high degree of association ob-

scrved between vears for CIANO reflects the controlled
.rrigation conditions under which materials are grown.

CONCLUSIONS

As suggested by Osman et al. (1997), the SHMM
analysis can be applicd routinely to identify subsets of
locations without CO!l and thus find key locations. Fur-
thermore, results obtained by yearly SHMM analvses
can alwayvs be confirmed by pattern analysis on long-
term multilocation trial data. The primary aim of our
study was to examine the relevance of sclecting germ-
plasm under controlled irrigation at CIANO, Mexico,
compared with performance under global drought stressed
environments, The relatively low degree of repeatability
of these locations, heavily influenced by rainfall and
other scasonal factors, make it difficult to find high
levels of association between CIANO and many global
locations vear to year. Howcver, the application of
SHMM and pattern analyzes indicated that CIANO is
simiiar to sites in India and Bangladesh. These are not
.ypiczdly rainfed arcas and crops are frequently drought
stressed through lack of irrigation water.

The gravity-fed residual moisture stress generated at
CIANO may need to be moditied to improve the rele-
vance of materials selected in Mexico to locations in
the Southern Conce, West Asia, and Africa. Generation
of a combination of both tcrminal and preanthesis stress
scenarios may mcrease the frequency of clite materials
adapted to these regions. The secondary aim of our study
was Lo examine relationships among international test-
ing locations with a vicw to identifying key locations for
drought screening. Selection using a combination of en-
vironments such as CIANQ, South Africa, and Argen-
tina, all of which corrclated well across many different
cnvironments, may provide the platform for greater rates
of progress in breeding for dry environments globally.
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Two Types of GGE Biplots for Analyzing Multi-Environment Trial [Pata

Weikai Yan,* Paul L. Cornelius, Jose Crossa. and L. A. Hunt

ABSTRACT

SA genotype main effect plus genolype X environment inferaction
(G GE) biplot grupbically displays the genofypic main effect {G) and
the genotype X envitonment inferaction (GE) of the multienvyiron-
wtent iriat (MET) data and Facilitales visual evaluation of hogh the
genotypes and the environmenls. This paper compares the merits of
two types of GGE biplots in MET data analysis. The first type is
constructed by the lenst squares solation of the sites regression medel
(SREG), with the first two principal componcals as the primary snd
secondary cffects, respectively. The second type is constructed by Man-
del's solution for siles regression as the primary effect and the first
principal component extracled fmm the regression residual as the
secondary cffect (SREGy, ). Results indicate that both the SREG,
biptot and the SREGy,, biplot are cqually effective in displaying the
“which-won-where” patiern of the MET data, although the SRECG,
biplot explains stightly more GGE variation. The SREGy;, biplot is
more desirable, however, in that it always explicitly indicaies the

verage vicld and stability of the genofypes and the discriminuting
ahility and representativencss of the test environments.

MUI.TIENVIRONMENT TRiALS are conducted for all ma-
jor crops throughout the world. The main pur-
pose of MET is to identify superior cultivars for recom-
mendation to farmers and to identify sites that best
represent the target environment. Usually, a large num-
ber of genotypes arc tested over a number of sites and
years, and it 1s often difficult to detcrmine the pattern
of genotypic responses across environments without the
help of graphical display of the data.

Yan et al. (2000} developed a “GGE biplot™ method-
ology for graphical analysis of MET data. “GGE” refers
to the genotype main cffect (G) plus the genotype X
environment interaction (GE). which are the two
sources of vanation that are relevant to cultivar evalua-
tion. A biplot (Gabricl, 1971) is a plot that simultanc-
ously displays both the genotypes and the environments

or in more general terms, both the row and the column
‘aclors}. The GGE biplot is a biplot that displays the
GGE of MET data. It s constructed by plotting the
first two principal components (PC1 and PC2, also re-
ferred to as primary and sccondary effects, respectively)
derived from singular value decomposition (SVD) of
the environment-centered data. Modcls that decompose
the environment-centered data arc commonly referred
to as sites regression models or SREG, and SREG with
two PCs is referred to as SREG.. SREG can be used
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on scaled or non-scaled data. When replicated data are
available, SREG on scaled data (Crossa and Cornchus,
1997} is more desirable because it deals with any hetero-
geneity of within-site error variance.

Orc unigue merit of a GGE biplot is that it can graph-
ically show the which-won-where patterns of the data,
as first described in Yan et al. (2000). Briefly, markers
of the cultivars furthest from the plot origin ((L0} arc
connected with straight lines to form a polygon such
that markers of all other cultivars are contained in the
polvgon. To each side of the polygon, a perpendicular
hme, starting from the orgin of the biplot, is drawn
and extended beyond the polygon so that the biplot is
divided into several sectors and the markers of the test
sites arc scparated into different scctors. The cultivar
at the vertex for each sector is the best performer at
sites included in that sector, provided that the GGE is
sufficiently approximated by PC1 and PC2. Thus, groups
of sites that sharc the same best performers arc graphi-
cally identified.

If the which-won-where patterns identified by a biplot
are repeatable over years, different mega-environments
(subregions) can be defined. By seleeting superior culti-
vars for cach mega-cnvironment, both G and GE can
be effectively exploited. The GGE biplot is still uscful
even in cases where the which-won-where patterns are
not repeatable over years, which suggests that the tested
environments belong to a single mega-environment. {t
can be used to identify superior cultivars and test envi-
ronments that facilitate identification of such cuitivars,
provided that the target mega-cnvironment is suffi-
ciently sumpled and that the genotype PCL scores have
near-perfect correlation (say, » > 0.95) with the geno-
type main cffects. Ideal cultivars should have large PCl
scores (higher average yield) and near zero PC2 scores
(morc stable). Similarly, ideal test environments should
have large PC1 scores (more diseriminating of the culti-
vars) and near zero PC2 scores (more representative of
an average environment). (Note that a “test environ-
ment” refers to a year-site combination; it does not
necessarily coreespond to a “test site”.) Thus, the GGE
hiplot allows many important questions to be addressed
cffectively and graphicaily.

However, the requirement for a near-perfect correla-
tion between genotype PCL scores and genotvpe main
effects is not always met, which restricts to the utility
of the SREG; based GGE biplot. Analysis of the yearly
MET data of the Ontario winter wheat performance
trials during 1989-1999, and of winter wheat perfor-

Abhreviationss G._ genotypic main effect; GE, genotype X caviron-
menl interaction; GGE. Genotype main effcets plus genotype X envi-
ronment inieraction; E. environmeni maia effect; SREGy, ;. Mandel’s
sites regression model with one additional multiplicative term; PC,
principle component: SREG,. Sites regression maodel with two multi-
plicative terms: SVD, singular value decomposition.
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mance teials from several states of the USA (Yan, un-
published) indicates that the genotype PCH scores are
usually highly correlated with the genotype main effect.
Poor correlations between genotype PCL scores and pe-
nutype main cffects, however, do occur for some years.
Moreover, when multiple years of data are analyzed
together, this becomes a norm rather than an exception
hecause of large and complex GE interaction (discussed
later). In such cases, the genotype PCI scores cannot
be interpreted as representing the same information as
the genotype main effects. Consequently, the vielding
ability and stability of the genotypes, and the discrimi-
nating ahility and the representativeness of the test envi-
ronments cannot be readily visualized.

To avoid these possible exceptions, in this paper we
report an alternative GGE biplot, which is constructed
by Mandel's sites regression on genotype main effects
us the primary effect and the first principal component
derived from subjectmg that residual to SVI) as the
secondary effcet. Such a GGE biplot is referred to as
a SREG,-, hiplot, with the subscript "M” referring to
Mandel's solution. In 2 SREGy., biplot, the primary
ctfects arc the penotype main effects per sc; it is. there-
fore, free from the problem discussed above for the
SREG, biplot. However, it is not clear if a SREGy,,
biplot is as effective as the SREG, biplot in explaining
the GGE and in displaying the which-won-where pat-
terns of the data. This study was initiated to answer
these questions by comparing the SREG; biplot and the
SREGy, -, hiplot applicd to several datasets that showed
differcot relations between genotvpe PCl scores of
SREG; and the genotype main cffects.

MATERIALS AND METHODS

The SREG,; Biplot
The SREG: based GGE biplot is derived from Eq. [1]

Y:] - ﬁ- = Ekngmnw + El[ = z’t:ﬂn:n + Ei,' [IJ
a=i r=1]

where ¥y is the average yield of Genotype i in Environment
j. B;is the average yield of all genotypes in Environment J.
)k, is the singular value for principal compenent PCn, &, and
Ty are scores for Genotype f and Environment j on PCn,
respectively, and g, is the residuai associated with Genotype
i in Environment /. The values of &, &, and m;, are simuliane-
pusly obtained by subjecting the cavironmeni-cenicred yield
(1.e.. ¥,—B,) to SV, This can be achieved by principal compo-
nent analysis of the environment-centered yield using the SAS
procedure PRINCOMP. The PRINCOMP generates £, as
the genotype scores and (A, L,) as the environment scores,
Alternativelv, A, &, and m;, can be obtaincd by the SVID
function within the SAS procedure IML, which Is a basic
function in many SAS procedures related to principal compo-
nent anabvsis. A SAS program for principal component analy-
sis of MET data is available from the sentor author of this
paper.

To display results of fitting Eq. (1] in a biplot, the singular
valuc A, has 1o be absorbed by the singular vector for cul-
tivars Ay, and that [or environntents &, That is, £, = x)€, and
M = Ai#n, . A, is chosen such that the range of the environ-
ment markers is equal to the range of the cyltivar markers:
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max(g,) — min{£,} = max({m;) — min{n,,),

ic.,
Adr(max(€y) — min(€a) = A~(max(m,) — (m))
Thus,
m{qu(n } — min nml]'
Ay = 05]1 + —T2xE) = min tmj_}[ 12|
1nA,

The SR!‘:G\'H 1 Biplﬂt

Mandel (1961} prescnted the following model for anabysis
of non-additivity of lwo-way data:

Y, = B, + ba, + g 13|

where ¥ and B, are the samc as in Eq. [1], a; is the nuain
effect of Genotvpe £, and b, i the regression coclficient of the
environment ccatered yields (te. Yy — ;) within Environ-
ment { on the penotype main effces (a;). Equation {3} is similar
10 the well-known model of Finlay and Wilkinson (1963). bui
the roles of cultivars and sites are exchanged.

If the firs1 principal companent (A Eimp) from SVYD of the
residual from Eq. [3]. i.e.. (¥; = B; = ha,). is added, then

Yi=B; + boi + hbama + €7 0r
Y, = B = ba + Alamp + g 4]
where nll ferms are the same as defined in Eq. {1] or [3]). To
construct a SREG,,., biplot. Eq. [4] is wntwen as
Yi— B = hiai + &mp T g (3]
with & = MEmy = M "mpd) = Bb. and o] = B 'a,, where
A, is defined by Eq. [2]. and

& ;Im:'ixfm) — (minfw;)
V max(h;) — min(h;) !

6]

Ajand B are chosen such that the piot space used by genolypes
are the same as that by environmenis. Anzlogous ta PC1 and
PC2in the SREG: model, hjoi and £;m; are referred to as the
primary and secondary effects. respectively. All analyses were
conducted using SAS (SAS Institute, 1996).

The Daia

The data used in this study were frem the 1989 to 1992
Ontario winter wheat performance trials (Yan, 1999). LZach
vear, 10 to 33 winter wheat (Triticusr gestivem 1.) cultivary
are iested with four (o six replicates in seven o 14 sites repre-
senting the Ontario winter wheat growing arcas. Previous anal-
ysis indicated that the vearly variance components due 10
environment (L} dominated the total vicld varation. ranging
[rom 35 to 91% and avernging 80% of the toial vardance.
The varinnce component due to G ranged from 1.8 to 28.5%,
whereas that due to G ranged from 7.3 to 15.1% (Yan, 199v).
G ranged from 13 to 65% of the total GGE. Analysis with
the SREG; bipiot revealed that in all yeurs except 19935 the
environmental PCI scores were of the same sign: and in all
years except 1995 and 1996 the genotype PCI scores showed
high correlation with the mean yield of the genotypes (r >
(1U2). Thus. in this study the 1995, 1996, and 1998 datasets.
representing different types of relations belween genotype
PC1 versus genotype main cffects, were chpsen to compare
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Table 1. Praportions of GGE S8 explained by SREG; and SREG,., for 12 datascts from the 1989-1999 Ontario winter wheat perfor-

mance trials.

% of GGE explained

) SREG, SREGy.,
No. of No. of Degrees of
Year cultivars silen frecdom FrC1 rc2 Total Primary Secondary Total
1989 1L 9 n 42.5 213 63.4 40.7 219 62.6
1930 10 7 28 59.7 212 B9 5)5 25.1 TH.6
1991 16 9 2 53.3 .7 4.0 49.1 22,1 712
1942 16 10 M 57.0 1949 76.9 56.4 20.1 %5
1993 18 9 48 56.8 20.0 76.8 554 212 6.6
1994 14 il 4 45.6 162 61.8 41.6 16.8 584
1995 14 1 50 542 134 67.6 40.8 252 6.0
1996 23 9 56 29.6 245 54.1 20,7 253 5.8
1997 28 L] (1] 55.4 159 7.9 54.0 159 4.9
1998 33 8 i) 715 14.7 86.2 1.0 152 862
1999 3t 9 74 515 174 68.9 50.7 17.7 684
1996-99 11 M 84 4.5 n7 472 2340 239 46.9
Average - - - 50.1 19.0 9.1 46.9 20.9 (35

the GOGE biplot based on SREG,., with one based on SREG,.
In addition, a compleic subset of 11 cultivars by 34 environ-
ments {year-site combinations} cxtracted [rom the 1996 to
..999 trials was also used in the comparison.

RESULTS

For all datascts, both SREG, and SREG,.; use the
same number of degrees of freedom [{g+e—2)+ (g+e—
4} or 2(g+e)—6, where g is the number of genotypes
and e the number of the environments] {Table 1). With
the same number of degrees of freedom, SREG; is theo-
retically the most effective model for explaining the
varttion due to GGE, because the first two principal
components are computed to cxplain the maximum
amount of variation. Ncvertheless, SREGy-, explained
only slightly smalicr amounts of GGE. When averaged
over 12 datasets, SREG, expiained 69.1%, whercas
SREGy., explained 67.8% of the total GGE (Table
1}, Thus, SREGy+: is nearly as effective as SREG; in
explaining the variation of GGE. So the discussion will
be focused on whether the SREGy.; biplot displays
sunilar which-won-where pattern as the SREG; biplot.

. 1998 Data

The PCI scores of the SREG: model had near-perfect
correlation {r = 0.99) with the genotypic main effects
for this dataset. Consequently, the SREG; biplot and
the SREGy.; biplot look almost exactly alike. They
were, therefore, equally cffective in displaying the GGE
information (Fig. 1A and IB).

The GGE biplot is constructed by plotting the pri-
mary cffect scores of cach genotype (as x-axis) and cach
site against their respective secondary cffect scores (as
y-axis) such that cach genotvpe and cach test site is
represented by a “marker.” For visualizing the which-
won-where pattern, the genotype markers located away
from the plot origin were first visually identified and
connccted with straight lines to form a poelygon, within
which the markers of all other genotypes are contained.
These away-from-origin genotypes, namely 6, 9, 29, 33,
27, 28, 20, and 2 in Fig. 1A, arc called “corner™ or
“vertex™ genotypes because they arc at the corners of
the polygon. Next, starting from the origin, lines perpen-

dicular to the sides of the polygon are drawn to, and
extended beyond, cach side of the polygon dividing the
plot into several sectors; cach site will fall into one of
the sectors (note that only perpendiculars relevant to
discussion were drawn). Assuming that the biplot suffi-
ciently approximates the variation of GGE, 1t can be
mathematically proven that all sites in the same scctor
sharc the same winning genotype, which is the vertex
genotyvpe for that sector (Yan et al, 2000).

In Fig. LA, the sites fell into three sectors: the winuing
genotype for sites RN, WE, D, and NN was Genotype
6; the winning genotype for sites WK, HN, and EA was
Genotype 9; and the winning genotype for sitc OA was
Genotype 29, Note that Genotype 9 was the best perfor-
mer for WK, HN, and EA because markers of these
sitcs were on Genotype 9's side of the perpendicular to
the line that connects Genotypes %'s marker and that
of genotype 6. Vertex genotypes without any site in
their sectors were not the highest yiclding genotypes at
any sitc; morcover, they were the poorest genotypes at
all or some sites. Genotypes within the polygon, particu-
larly those located near the plot origin, were less respon-
sive than the vertex genotvpes, 1t can be appreciated
that the supplementary lines on the biplot are critical
for visual analysis of the MET data.

In addition, a ncar-perfect correlation between genao-
type primary cffect scores and the genotype main effects
allows both biplots, Fig. 1A, as well as Fig. LB, to be
used to evaluate cuitivars for their yielding ability and
stability and to evaluate environments for their discrimi-
nating ability and representivencss. Genotypes 6 and 9
gave the highest average vields (largest primary scores)
and werc relatively stable over the sites (small absolute
secondary scores). In contrast, three non-adapted Geno-
types 27, 28, and 31 yiclded poorly at all sites, as indi-
cated by their smaill primary scores (low yiclding} and
rclatively small secondary scores (relatively stable). The
average yield of Cultivars 1 and 20 were below average
(primary scores <) and highly unstable {large absolute
sccondary values). The biplots show not only the aver-
age yicld of a genotype (the primary effect), but also
how it was achieved. That is, the biplots also show the
yield of a genotype at individual sites. For example,
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Fig. L SREG; and SREGy,, biplots for the 1998 Ontario winter whest
peclosnance Iria) data. The numbers are different cultivars; the
sites are EA = Elora HN = Harciston, 1D = Inwood, NN = Naim,
0OA = (dtavn, RN = Ridgetown, WE = Wondslee, WK =
Woodsiock.

Cultivar 6 had the highest average vicld because it
viclded the highest at sites RN, WE, 1D, and NN, and
viclded above average at all other sites. On the other
hand, the average vield of Cultivar 20 was below aver-
age, becaunse it yielded below average at sites OA, EA,
HN, WK, and NN, even though it was quite good at
RN. A below-average vield is indicated if the virtual
line from the onigin to the marker of a genotype has an
obtuse angle with the virtwal line from the origin to the
marker of a test site. Likewise, an above-average vield
is indicated by an acute angle. Supplementary lines.
not presented in the biplots, are required to explicitly
determine these velationships.

With respect to the test sites, RN was most diserimi-
nating as indicated by the longest distance between its
marker and the origin. However, due to its large second-
ary score, cultivar differences obscrved at RN mav not
exuctly reflect the cultivar differences in average vield
over all sites. Site NN was not the most discriminating,
but cultivar differences at NN should be highly consis-
tent with those averaged over sites becavse it had a
near-zero secondary effect score, At a site with a near-
zero secondary effect score, the genotypes arc essen-
tially ranked according to their primary cffect scores

(i.c., genotype main effects since they were perfectly
correlated in this datasct) and the differences among
genotypes are in properiion to the primary cffect scores
of the siies, Thus, a genotype that vielded well at such
a site has a farge average yicld. On the contrary, site
OA was ncither discriminating (small primary effeet
score) nor representative {large secondary effect score);
and therefore, cultivars had high yield at OA did not
necessarily give high average yvield over sites. Analysis
of multiple year data indicated that OA represented a
different mega-environment (castern Ontario) from the
major winter wheat growing regions in Ontario (Yan ot
al., 2000; Yan, [999),

1996 Data

Az with most datasets, the SREG; biplot (Fig. 2A)
for 1996 indicates that all PCI scores of the sites were
of the same sign, which was arbitrarily assigned positive
so that the genotype PCI scores correlated positively
with the genotype main effect. However, as mentioned
carlier, the correlation between the genotype PCi scores
and the genotype main effects for this dataset was only
0.85. The rclatively poor correlation is associated with
the fact that the GGE explained by PCI is only slightly
greater than that by PC2 (29.6 vs. 24.5%). The poor
correlativn provents the genotype PCI scores of the
SREG: solution being interpreted as representing the
genotype main effect; in fact, it alone is not interpretable
in known biological and agricultural terms. In such
cascs, the utility of a SREG, biplot is limited ro investi-
gation of the which-won-where patterns. Based on Fig.
2A, Cultivar | was the best performer at sites RN, LN,
D, and WE; and Cultivar 2 was the best performer at
sites EA, WK, CA, and OA, and nearly the best at HW,

The SREGy = biplot (Fig. 2B) explained shightly less
GGE, but revealed the same which-won-where patterns
as the SREG; biplot. It indicates that Cultivar | won at
sites RN, LN, WE, and 1D, and Cultivar 2 won at sites
EA, WK, CA, HW, and OA. In addition, the SREG,_;
biplot is more interpretable. By definition, the primary
effects of the SREGy., hiplot are the cultivar main
cffects, and its sccondary cffects are deviations from the
main effects of the cultivars. Thus, the SREG,, ., biplot
explicitly showed that Cultivars | and 2 were the highest
vielding cultivars on average, but neither was very sta-
ble, as evidenced by their relatvely large secondary
cffects. With respect to the sites, the SREGy., biplot
indicated that site EA was highly discriminating, but
not representative of the average environment, whereas
WK and RN were both discriminating and represen-
tative.

1995 Data

The 1995 datasct was the only dataset found during
the 1989 to 1999 Ontario winter wheat performance
trials in which the site PCl scores of the SREG, differ
in sign (Fig. 3A). Among the 14 1est sites, four (Sites
4, 6, 7, and 10} had negative PC!L scores, though their
absolute values were smaltl, This led to poor a correla-
tion between the cultivar PC scores and the cultivar
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.-‘i}__:, 2. SREG, and SREG,,, hiplots for the 199 Ontario winter wheat performance friad data. The numbers are different caltivars: the siles

are CA = Lentralin, EA = Elora, HN = Hurristen, HW = Harrow, |
WK = Woadstock.

main effcets (r = 0.83). The SREG,; biplot indicates that
cultivar (36 was the best for nearly ali sites except Sites
4, 6, and 7, at which Cuitivar G4 (and also G10) was
hetter than Gé, Cultivar G7 was as good as GG6 for Sites
5 and 12. These patterns are similar in the SREGy,+.
biplot (Fig. 3B). It indicates that Cultivar G6 was on
average the best and Cultivar G12 the second best, and
that Sites § and 12 were highly discriminating but neither
was representative. Intercstingly, all sites had positive
primary effects in the SREGy., biplot, as compared
with the site PCl scores of different signs in the
SREG; biplot.

A. SREG,

15
|
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Secondary efleet (13.4%)
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1.5 +1.0 0.5 a0 05 1.0 1.5 2.0
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B = lnwood, OA = Ottawa, RN = Ridgetowa, WE = Woudslee,

1996-1999 Data

Although the environmental PCH scorcsin the SREG,
mode] tend to be of the same sign for yearly MET,
they often take different signs when multi-year data are
jointly analvzed. For this dataset, among all 34 year-site
combinations, 9 had negative PC1 scores and the rest
had positive PC1 scores (Fig, 4A). Like the (996 data,
the GGE cxplained by PCL was only slightly greater
than that by PC2 (24.5 vs. 22.7%}. As a result, the
corrclation between cultivar PCL scores and cultivar
main cffects wits only 0.38. This low correlation prevents

B. SREG,,.,

Secondary effect {(25.2%)

1.5 : \\

-1.0 0.5 0.8 0.5 1.0 1.5 20
Primary effect {(40.8%)

Fig. 3. SREG,; and SREGy,, biplots for (he 1995 (niacio winler wheal porfarmance frinl dutu. Each site is represenied by a number, nnd each

cultivar is represcnied by 8 number preceded by the fztter G.
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Fig. & SREG; and SREG,,, hipfots for the 1996--1999 Oatario winler wheat performance (rial data. Sites in different years are represented by

different symihols. The full colGvar names are: 2533 = Pioncer 25W33, Ari = QAL Ariss, Fre =

Freednn, Fun = Fundulex, Han = Hanover.

Hur = Harus, Kar = Karena, Var= Muarilee. Men = Mendon, Mor = AC Maordey, Ron = AC Ron.

visual identification of cultivars with high average yield
based on the SREG; biplot. Nevertheless, as with all
previous datasets, both biplots displayed very simi-
lar which-won-where patterns (Fig. 4A and 4B). The
SREG, biplot ‘er,dlLtL(J that cultivar *2533" was the
best performer in about half of the 34 cenvironments
while cultivar “Men™ was the best in the other half,
Thercfore, it can be inferred thal cultivars “25337 and
“Men” must be the two best performers on average.
This, however, is explicilly indicated only in the SREG .,
biplot. As for the 1995 dataset. while the primary effects
of the environments were of different signs in the SREG:
biplot, they were all positive in the SREG,,-, biplot.

DISCUSSION
Merits of the Two Types of GGE Biplots

This study indicates that both the SREG; hiplot and
the SREG,.., biplot explained similar amounts of varia-
tion due to GGE, although the former tends to explain
slightly more in most cases. Both biplots displayed the
same which-won-where pattern and indicated the same
winning cultivars in individual e nvironments. Therefore,
the two biplots can be considered as equally cffective
in these regards.

The SREG,,, biplot was designed to be more inter-
pretable than the SREG, biplot. First. since the geno-
typic scores for the primary effect of SREGy..; are desig-
nated to indicate the average yield {peneral adaptation)
of the cultivars, the genotypic scores of the secondary
effect must indicate GE interaction associated the culti-
vars, which is an indicator of selective or specific adapta-
tion. Thus, the SREGy,«, biplot simuliancously displays
both gencral adaptation and specific adaptation (stabil-
ity) of the cultivars. The ideal cultivars arc those with

large primary effect scores but near-zero sccondary
scores. Second. because the genotypic primary effects
indicate general adaptation of the cultivars, the environ-
mental primary effects must indicate the ability of the
cnvironments to discriminate among the culfivars in
terms of general adaptation. Environments with larger
primary cffects would thus faalitate identification of
cultivars with better gencral adaptation. Third, analo-
gous {o the genotypic sccondary effects, the environ-
mental secondary effects must indicate the tendency of
cach environment to cause GE interaction. Environ-
ments with large (absalute) secondary effects should
favor the performance of seme cultivars, but disfavor
others at the same time. Thus, cultivars selected under
cnvironments with farge secondary effects may be highly
specific to these environments but lack general adapta-
tion or stability. Thercfore, from the perspective of se-
lection for high yielding and stable cultivars, the ideal
test environments should have large primary offects, but
near-zera secondary effects.

Why Correlation between Genotype Scores
of PC1 in SREG, and Genotype Main
Effects Varies with Datasets

{t was concluded that the SREG,.; biplot s more
desirable than the SREG, biplot for MET data analysis
because the interpretability of the latter is impacted by
the uncertain relations between its primary effects and
the genotype main effects. On the basis of the trals
investigated in this study, Fig, 5 indicates that this corre-
lation is strougly determined by the relative importance
of G in GGE. Near-perfect correlation occurs when G
is 40% or more of GGE (the 1992, 1993, 1997-1999
datasets), and poor correlation occurs when G is 20%
or less of GGE (the 1995, 1996 and 19961999 datasets).
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Fig. 5. Genotype main cfect (G) ay percentape of GGE and the
correltion voeflicient {r) between the genotype PCI scores of the
SREG; model and the penofype main ¢Mects for 12 datasets from
the 1Y8%-199 Outarie winter wheal performance irials.

The essence of prncipal component analvsis is to pick
up the most important pattern in the data using the
smallest number of degrees of freedom. PC1 picks up
the largest pattern, PC2 picks up the sccond largest
pattern, and so on. A close correlation between PCl
scores and genotype main effects occurs only when the
genotype main effect is large enough to be the most
important component of GGE. A poor correlation oc-
curs otherwise, which suggests strong and complex GE
interaction in the data. Therefore, it is not surprising
that the correlation between PCI scores of SREG, and
genotype main effect is typically poor when mult-year
data arc analyzed in a genotype X environment (year-
site) fashion, because greater and more complex GE
intcractions are sampled in a multi-year MET than in

single year MET, Complex GE interaction is usually
accompanied by similar amounts of GGE explained by
PCl and PC2 (as for the 1996 and 1996-1999 datasets,
Tabie 1), as opposcd to much more GGE cxplained by
PCI than by PC2Z (e.g., the 1998 datasct).

The Uselulness of the GGE Biplot Based
on 2 Single Year MET

As a graphie approach to MET data analysis, GGE
biplot can be useful in two major aspects. The first is
to display the which-won-where pattern of the data,
which may Jead ta identification of different mega-envi-
romments. The sccond is to identifv high-vielding and
stable cuftivars and diseriminating and representative
test environments. However, both promises arc based
on the assumption that the data is sufficiently represen-
tative of the target environment; a conclusion can ngver
go beyond what the data allow. While multi-year MET
data are required for any decisive cultivar and site evalu-
ation, they are normally unbalanced. and therefore the

biplot technique can not readily applied; single year
data are nsually balanced but they may not be represen-
tative of future years. Thus, a question arises whether
biplot analysis of single year MET data is really uscful
if the which-won-where pattern is not repeatable over
YCars.

A single year data may indeed have limited vahe
because of the year-to-vear variation. Nevertheless, we
belicve biplot analysis of single year MET data is worth-
while for the following reasons. First, the GGE biplot
is a graphic dispiay of the G and GE of the data, which
are relevan( to cultivar cvaluation and mega-environ-
ntentidentification. Therefore, if the researcher believes
that a single year MET is worthy of analysis, and we
believe most rescarchers do, the GGE biplot technique
should be the first choice. Although the biplot does
not add new information to the data, it does help the
researcher quickly view the patterns that are in the data.
The biplot gives the researcher the power to “see” what
was going on 1 a particular year. Some may question
the uscfulness of the single vear patterns if they arc not
repeatable over years, But without knowing the patterns
from mdividual years, how could one know if they are
repeatable or not? Second, the biplot can be vsed to
identify research problems. For example. if two cultivars
were found to perform the best in two different groups
of locations in a particular year, one might want to know
what were the underlying reasons, and answers fo this
qucstion may lead to valuable findings. By rclating
biplot scores to cxplanatory variables collected in the
trials, Yan and Hunt (2001} was able to reveal that in
Ontario, Canada, tall and late winter wheat cultivars
tended 1o be favered in seasons with cold winters and
cool summers, whereas early and short cultivars tended
1o be favored in seasons with warm winters and hot
summers. Third, the biplot patterns based on a single
year MET can serve as hypotheses, which can be tested
using extended data and more critical statistics. For ex-
ample, biplots based on yearly data from the Ontario
winter wheat performance trials led to the hypothesis
that two eastern Ontario sites { Ottawa and Kemptville)
constituted a mega-cnvironment different from the rest
of the Ontario winter wheat growing region, which was
subsequently tested and supported by vanance compo-
nent analysis based on pooled data from 11 vr of perfor-
mance trials (Yan, 1999). Thus, although conclusions
from a single vear MET may not be decisive, they are
valuable suggestions. Fourth, even if the which-won-
where pattern is proven to be unvepeatable over years,
the researcher would still want to know the average
yicld and the stability of the cuitivars based on each
year's MET. These two aspects of cultivar performance
are graphically depicted by the abscissa and ordinate of
the hiplot, respectively. Finally, although a biplot from
a single vear may not be very informative, biplots con-
structed from several years can be highly valuable.

Maoreover, the biplot technigue is not limited to single
year MET data analysis. it can also be applied to bal-
anced subsets extracted from muktiple vears of trials. In
Ontanio, for example, over 20 winter wheat caltivars
arc common to three to four vears of performance trials,
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and a balanced subsect from such database should con-
tain valuable information. Furthcrmore, the bipiot tech-
nique s not even linited to genotype X environment
data analysis. It can also be used in displaying and ana-
lyzing other types of two-way data such as genotype X
trait data and diallel cross data (Yan, unpublished re-
search). In conclusion, the GGE biplot is a useful toot
for, but not imited to, MET data analysis.
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Interpretation of Genotype X Environment Interactions for
Early Maize Hybrids over 12 Years

C. Epinat-Le Signor, S. Dousse, J. Lorgeou, J.-B. Denis, R. Bonhommie, P. Carola, and A. Charcosset®

ABSTRACT

Genotype % environment inferaction was investipated for grin
yield of early maize (Zea mays L.) hybrids. Data were obtaioed from
the French Association Générale des Producteurs de Mais trial net-
work and included 132 hybrids and 22% environments over 12 yr,
following an unbalanced design. Analysis of genntype X environment
interaclion was done for the 1-yr daia sets, for the two successive years
data sets, a2nd for the 12-yr data set. The magnitude of genotype X
environnent inleraction variance was equal to, or greaier than the
genoty piv variance. Interaction elfect was modeled by factorial regres-
sion analysis using additional genotypic and environmental informa-
tion. Genolypic covariates considered were {he sum of growing day
degrees (GDD) necessary from sowing fo flowering and the GD)
necessary [rom Dowering fo maturity. Environmental covariates were
the mean iemperature [rom sowing (o the 12 leaf stage, the mean
temperature from the 12 leaf stage to the end of the linear grain-
filling siage, the water balance around flowering, and the sum of solar
radiation around flowering,. These six covariates explained ahout 40%
of the interaction ¢fect in ajl analyses, with equal contribution of
genolypic variales (20%) and environmental variates (204}, Flow-
cring eariness of hyhrids, waler balance around flowering, and inean
temperature [rom the 12 leal stage to the end of the grain Glling phase
were deferminanis of genolype X envirenntent interaction for grain
vield in the considered arca. A tiological interpretation of the interac-
tion was attemnpted through examination of the regression parameters,

NEWI.Y REGISTERED CULTIVARS generally need to be
tested at many locations and for several years be-
fore being recommended for a given zone. To achieve
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this goal, multi-environment trials form the core of vari-
etal testing programs in many countries. These programs
have to face the recurring problem of genotype X cnvi-
ronment (GE) interactions. Indeed, differential geno-
typic responses to variable environmental conditions,
especially when associated with changes in genotypic
ranking, limit the identification of superior, stable hy-
brids. The GE interactions are as much a function of the
environmental variables as a function of the genotypic,
morphological, phenological, and physiological traits of
the varictics (Nachit et al., 1992). [dentification of causal
factors of the GE effect and quantification of unex-
plained variation are of prime importance for sclecting
for stability or to recommend environmentally specific
varicties. During recent decades, new developments
have been achieved in crop physiology, agronomy, and
statistics and somc integrated approaches appearced for
GE interactions ¢valuation (Brancourt-Hulmel, 1999).
Many fixed or mixed modcls have been used for de-
tecting and characterizing GE interaction (van Ecuj-
wick, 1995a.b; Yan and Hunt, 1998; Vargas ct al., 1999).

Until now, therc have been few attempts to analvze
this interaction for the newly registered varictics of
maize over an important series of vears. Only van Ecuj-
wick et al. {(1995b) reported results concerning maize
multi-environment trials over a series of 11 yr but they
studied forage percent dry-matter content and not yield.
Little is known about the most relevant environmental

Abbreviations: AGPM. Association Générale des Producteurs de
Mafs, France: AMMI, Additive Main effects and Multiplicative Inter-
aciion anabysis; GDID, sum of Growing Day Degrees: GDDs_[, GDD
from sowing to llowering, GDDI_m. GDD (rom Mowering to maturity;
GE. genotype X environment: Mg ha™', ton per hectare; RSD, Resid-
ual Standard Deviation: SRE. sum of radiation around flowering {{rom
06—20 to 08-20); S8. Sum of Squares; TMs_12], mean temperature
from sowing to 500 GDIJ (12 leaves stage). TM 121 e, mean tempera-
ture {from 300 GDD to 1425 GDD {end of linear grain-(illing phasc}:
WATT, waler balance around {lowering (rainfall + irrigation — evapo-
transpiration from 06-20 10 08-20).
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Using Partial Least Squares Regression, Factorial Regression, and AMMI Models
for Interpreting Genotype X Environment Interaction

Mateo Vargas, Jos¢ Crossa,® Fred A. van Eeuwijk, Martha E. Ramircz, and Ken Sayre

ABSTRACT

Partial least sguares (PLS} and factorial regression (FR) are statis-
tical models that incorporate external eavironmental andfor cultivar
variabies for studying and inferpreding genotype X environment inder-
action {GEl). The Additive Main ellect and Multiplicative Inleraciion
{AMMI) meodet uses only the phenolypic response variable of inderest;
however, il inforination on external cnpvironmental (or genotypic)
variables is svailable, this can be regressed on the environmental (or
genotypic) scores estimated from AMMLE and superimpesed on the
AMMI biplot. The shjectives of this study wilh two wheat [ Triticum
turgidum (L.} var. durum] field triuls were (i} 10 compare the results
.nl' PLS, FR, and AMMI on the basis of external environmental (and

cultivar) voriubles, (ii) to examine whether procedures bused on PLS,
FR, and AMM] identify the same or a different subset of cultivar
and/or environmental covariables that influenee GEX for grain yicld,
and (iii} to find multiple FR modcls that include environmeatal and
cultivar covariables and their cross products that explain a large pro-
portion of GEI with rclatively few degrees of {reedom. Results for
the first trial showed that AMMI, PLS, and FR identified similar
cultivar and environmenial variables that explained a large proportion
of the cultivar X yvear interacfion. Results for the second wheat trial
showed good correspondence hetween PLS and FR for 23 environ-
mental covariables. For both trials, PLS and FR compicement cach
other and the AMMI and PLS biplots offered similar interpretations
of the GEL The FR analysis can be used to confirm these results and
o obiain even more parsimonious descriptions of the GEL

MUI.TI-ENVIRONMENT TRIALS play an important role
insclecting the best cultivars (or agronomic prac-
tices ) to be used in future years at different iocations and
in asscssing a cultivar’s stability across environments
before its commercial release. When the performance
b cultivars is compared across sites, several cultivar
attributes are considered. of which grain yield is one of
the most important. Cultivars grown in multi-environ-
ment trials react differently to environmental changes.
This differential response of cultivars from one environ-
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ment to another is called genotype X environment inter-
action (GEI).

Genotype X environment interaction has been stud-
icd, deseribed, and interpreted by means of several sta-
tistical models (Crossa, 1990). Some models, such as
analysis of variance, regression on the environmental
mean modcls (Yates and Cochran, 1938; Finlay and
Wilkinson, 1963; Eberhart and Russel], 1966), and the
Additive Main cffects and Multiplicative Interaction
(AMMI) models (Gollob, 1968; Mandel, 1971; Kemp-
ton, 1984; Gauch, 1988} use only the phenotypic re-
sponse variable of interest. The AMMI moedel is more
parsimontous than the conventional analysis of variance
model in describing GEl and provides greater scope for
modeling and interpreting GEI than the simple regres-
sion on the sitc mecan becanse GEI can be modceled in
more than one dimension.

When information on external environmental (or ge-
notypic) variables such as meteorological data or soil
information is available, these variables ean be corre-
lated to or regressed on the environmental (genotypic)
scores estimated by AMMIL Information from these re-
pressions can be supernimposed on the AMMI biplot
along with cultivar and environmental scores (van Ecu-
wijk, 1995}, so that interpretation of the grain vield GEI
1s possible. External ecnvironmental information eannot
be used direetly in the AMMI model, however. When
additional information on cxtcrnal cultivar variables is
available (physiology, maturity, discase rcaction, ge-
netic markers, ctc.), other statistical models, including
factorial regression models (FR) (Denis, 1988; van Ecu-
wijk et al., 1996) and partial least squares (PLS) regres-
sion (Aastveit and Martens, 1986; Talbot and Wheel-
wright, 1989; Vargas et al., 1998) can bc used to
determine which of these external environmental or
cultivar variables influence GEL of grain yield.

Factorial regression models are ordinary linear mod-
els that explain GEI by differential cultivar sensitivity
to explicit external environmental vanables (environ-
mental charaeterization) and have the advantage that
hypotheses about the influence of those external vari-
ables on GEI of grain yield can be statistically tested.
As with all lincar regression models, factonal regression
madels become difficult to deal with when there arc
manv cxplanatory variables that are highly correlated—
the multi-collinearity problem. PLS regression models
are appropriate for these situations. As in factorial re-
gression, PLS regression describes GEI in terms of dif-

Abbreviations: AMMI, Addilive Main effect and Multiplicative Inter-
action; GEI, genotype X environment interaction; FR, factoriai re-
gression; PLS, partial least squares.
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ferential sensitivity of cultivars to environmental vari-
ables. The difference is that the cxplanatory variables
arc hypothetical, synthetic vanables (linear combina-
tions of the complete set of mcasured environmental
and/or cultivar variables) and there s no limit to the
number of explanatory covariables that can be used.
The PLS regression models are not linear models, so
standard lincar regression theory for testing cannot be
used; however, good alternatives are available.

The advantages and/or disadvantages of the above
mentioned statistical models for studying and interpre-
ting GEI with a large number of external environmental
and/or cultivar variables have not been compared.
Thercfore, the objectives of this study were to: (i} com-
parc the results from AMMI, PLS, and FR in two wheat
trials when a large set of external envircnmental (and
cultivar) covariables are available, {11} exitmine whether
procedures based on AMMI, FR, and PLS identify the
same or different subsets of cultivar and/or envirominen-
tal covariables that explain GEl for grain vield, and
(1i#) find more parsimonious multiple FR models that
include environmental and cultivar covariables and their
cross praoducts that explain large proportion of GET with
relativelv few degrees of freedom.

MATERIALS AND METHODS

Theory

van Eeuwijk (1996) gave a comprehensive description of
the AMMI and FR models and how to apply them io assess,
study, and interpret GEL Vargas et al. (1998) described the
theory of PLS in the context of GEI and detaited 1ts algorith.
The AMMI. T'R, and PLS models are briefly described here.

AMMI Model and the Biplot. A basicmodel for the analysis
of 1he two-way table of cultivar vield by environment dala is
the analvsis of variance model:

E(y) = » + 7+ B + (5B, [1]
where E stands {or expectation, g is the grand mean. 7; is the
main effect of the ith cultivar, §; is the main effeci of the jih
site. and (@), is the GEI ¢ffect of the ith cultivar in the
JEh cnviraprment.

Madet [1] can be wrilten in matrix notation as:

E(Y)=pll; + 71 + L' + 1B 2]

where Y = (1) is the data matrix of sire [X] of grain yield
of I culiivars in J environments, p. is a scalar representing the
grand mean, ¢ = (1) isa [ %1 veetarof main effeets of cultivars.
B = (B} is a IX1 vector of main cffeets of siies, and B =
(), is the IXJ interaction matrix {not a vector product) where
cach element of thc matrix specifies the mteraction effcct for
the ith cultivar in the jih site. 1) and 1, are unil vectors of size
X1 and Jx1. respectively. The commeon constraints are
Lr=LR=0and H7p L = 0.

As mentioned previoushy, a commonly used procedure for
modeling GEI is the simple regression of cultivar performance
on the environment mean such that {zB); = B, = d,. where
{, measures the sensitivity of the ith cultivar to prevailing
environmental conditions in the multiplicative {bilincar) term
&Py and dy is the residual term (Yates and Cochran, 1938;
Finlay and Wilkinson, 1963: Ebcrhart and Russell, 1966). This
model can be depicted as a set of straight lines with different
slopes. one for cach cultivar, where the heterogeneity of slopes
accounts for the GEL Since heterogeneity of slopes in this
model generally explains only a small propertion of the usually
complex GEL a more elaborate model is efien necessary for
an adeqguate deseription of GEL

A generalization of the regression on the site mean model
is the multiplieative (bilinear) model

By =pt o+t Yiaehklava 3]
alse called Principal Component Anatysis (PCA} of the GEl
or Additive Main cffeet and Multiplicative Inieraction
{AMMI) model (Gollob, 1968 Mandel, 1971; Kempion, 1984;
Gauch, 1988) or biadditive model {Denis and Gower. 1994).
The parameters p, 7, and B, are the same as in the analysis
of variance model. K being the number of muliiplicative (bilin-
ear) terms in the modek. The A, are scaling constants obtained
[rom the singular value decomposition of the residual mairix
consisting of the twa-way tabie of means corrected tor cultivar
and stic main effects (resideal from additivity), wy = i —
V. — ¥; = 7. (Gabricl. 1978) and arc ordered such thai A, =
At The €, are cultivar interaction parametlers {(or scores)
that measurc cultivar sensitivity to hypothetical environmental
tactors denoled by environmental interaction parameiers yu
{or scorcs). Orthonormality consiraints for the cultivar and
environmental scarcs are ¥, B8k = X, vk = 1 and K0, B, =
Ej Yix "f.,';\' = for & #= K.

For determining the number of muliiplicative terms to be
retained in g multiplicative model, various tests can be used.
The Ftest of Gollob {1968) uses the ratio between the mean
square for axis k against an estimate of the error term. The
mean squares of axis k is calculated by taking the square of
X, and the corespanding degrees of freedom, computed by
=1+ {J—- 1) — {2k — 1) Using simulaton studies,
Cornclius {1993) showed that the Gollob’s F-test is very fib-
eral. Thus. in this study we have used the approximale F-tests

“onie Fr. and Iy {Cornelius et al., 1993, 1996: Cornelius, 1993},

Model [3] wriiten in matrix notation is

EY)=plll+2] + 1B +OAT [4]

where the first three terms on the right side are the same as
in Eq. [2]. The fourth term represents the GEI, where @ =
{0,) 15 a IxK matrix . A = (x,) s a KxK diugonal matrix
and I" = (v, ) 1s a /XK matrix. The normalization and orthogo-
nality constraintsarc s = 3 B = 0. 1|8 = 1; I' = 0, wherc
& 1s a matrix of zeros of size I XK, and @'@ =T = 1. The
kih bilinear term, k = 1, ..., K, is formed by a score 8, specific
to Cultivar /, a scale constant factor A, and a score +y, specific
to Siie [

The resulis of AMMI analysis can be presenicd graphically
in the form of biplots (Gabriel, 1971) in which the cultivar
and cnvironment scores of the first two or three bilinear
{multplicative) terms are represented by vectors in a space.
with starting points at the origin and end peints determined
by the scores. Usually the environmenial and cultivar scores
of the first and second bilinear terms are plotied. The distance
between two cullivar vectors (their end poinis) is indicative
of the amount of interaction between the cultivars, The cosine
of the angle between two cultivar (or environment) vectors
approximates the correlation between the cultivars {or envi-
ronments) with respect to their interaction. Acute angles indi-
cate positive correlation. with parallel vectors (in cxactly the
same direclions) representing a correiation of 1. Qbiuse angles
represent negative correlations, with opposite dircctions indi-
cating a correlation of —1. Perpendiculariiy of directions indi-
cates a correlation of 0. The relative amounts of interaction
for a particular cultivar over environments can be obtained
from orthoponal projections of the environmental vectors on
the Fine determined by the direction of the corresponding
cultivar vector. Environmental vectors having the same direc-
tion as the cultivar vectors have positive interactions (that is.
these environments favored these cultivars), whereas vectors
in the apposite direclion have ncgative inleractions.

The biplotl obtained from AMMI can be cnriched by a
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procedure deseribed by van Eeuwijk (1995). Information on
externat environmental {or cultivar) variables can be corre-
lated to or regressed on the cnvironmental or culiivar interac-
tion parameters {0, or y;. ) cstimated from AMMIandincorpo-
rated into the biplot so that a beiter interpretation of the GEI

" of grain vield can be attempted. Once it has been decided
that the AMM!I solution has, for example, two axcs forintcrac-
tion, the squared correlation coellicients from the regressions
of the covariables on the scores of both axes simultancously
(regression through the origin) are computed. When this
squared correlation is sufficiently high, information for the
covariables can be drawn in the biplot by giving them a direc-
tion that is determined by the repression cocfficients (van
Ecuwijk, 1995}, For example, if one environmental covariable
is repressed on the AMMI environmental scorcs of Axes |
and 2, then coefficients b, and b, serve as coordinates
for that covariable in the biplot. When the environments are
projected in the direction determined by the regression cocffi-
cients (P, e, it gives the rank-order of the environments
on this environmenital covariable. The same can also be donc
for cultivar covariables.

Factorial Regression Models. Factorial Regression models
.dso have multiplicative structure for the interaction. like the
AMMI modci. The main difference between [FR models and
muliiplicative models such as AMMI model is thatin FR the
GEI (residual matrix consisting of the two-way table of means
corrected for culiivar and site main cffects, ¥ — ¥ — ¥, +
¥} is modeled directly as a function of the cultivar and envi-
ronmental variables, A factorial regression model for the mean
of the ith cultivar in the jth environment, for which the interac-
tion includes the cuiltivar covariables x; 10 xy;, is

E(yy) =p + 7+ B+ oy o i & |5}
The paramcicrs p. 7. and B; arc the same as in Eq. [1] and
[3]. The GEI consists of the products of the cnvironmental
factors & to £; with respect to cultivar covariables v to x;
(G = [ — 1) The cultivar covariables arc known. but the
environnicntal potentialitics have to be estimated. In matrix
notation, Model [3] can be writlen as:

E(Y) = pLl} + 71} + 1§’ + XE' 16]

where the first three terms on the right side are the same as
before, X = {x, ) is a IX (7 matrix of known cultivar covariables
and E = {&,), a ./ matrix of unknown environmenial con-
itants. and ¢ is the number of cultivar covariables.

An FR model in which the intcraction part contains the
environmentaji covariables z; t0 7 can be wrillen as:

Eygy=p + 1+ B+ Xper s Tn 2o 7]
The GEI term in this model allows the cultivars 1o have differ-
ent sensitivities, ¢y 1o ¢y (= 4 — 1) 1o the cnvironmental
covariables. The values of the cnvironmental variables are
known, but the cultivar sensitivitics nced to be estimated.
Simijar to Mode! {3}, Modcl [7] can be writien as:

E(Y)=pll] +71) + 1, ' + L Z (8]

where Z = (_.zf,i) is the 7x!H{ matrix of environmental covan-
ables and £ = () is a IXI] matrix of cultivar sensitivitics,
and 1 is the number of environmental covariables.

The structure of the FR madel including both cultivar and
cnvironmental covariables simultaneously is similar to that of
Models [5] and [7] (Denis. 1988; van Ceuwijk et al., 1996). In
malrix notation it can be written as:

E(Y)=pll] + 11 + L' + XvZ' + X E' + {Z',
[9]

where in the new term X»Z', » is a X [ matrix of regression
cocflicients to ¢ross-products of cultivar and environmental

covariables. General identification constraints for faciorial re-
gressions with already centered covariables are L'X = Z'E =
0, where 0 is now a matrix of zeros of order #/x GG. Covariables
may be quantitative and qualitative, and more complicated
FR modcls are possible by combining quaniitative and qualita-
tive covariables.

In this study the FR procedure was implemented in GEN-
STAT version 5. release 3.2 (GENSTAT. 1993). The stepwise
procedure implemented in Genstat for the muitiple lincar
regression. selects a term to be included or cxcluded from the
model based on an F-test. For example, lor X;, X5 X;. and
X, explanatory variables, the procedure starts by fitting a
made] containing variable X;. Then it attempis 1o drep .Y,
and to add, one at the time, X5, X, and X,. The pracedure
permanently maodifies the current mode! according to the
change that was most successful; if dropping X, improves the
model, then X is permanently remaved; or, when no removals
are worlhwhile, if adding X7 gives the biggest improvement,
then X; is permanently included. The stepwise procedure
allows for forward selection or backward climination.

Partial Least Squares Regression. [n many situations, when
the number of variables (§) is much larger than the number
of obscrvations (¥}, and there is high collinearity among vari-
ables, the usual methods for fitting regressions based on ordi-
nary least squares are not adcquate. fn this situation, partial
least squares regression seems to be o more appropriate alter-
native. Details of PLS theory {Helland. 1988) and its similarit-
ics 1o principal components regression and stepwise multiple
lincar regression are described in Aastveit and Martens (1986).
A description of univariate and multivariate PLS and their
algorithms was given in Vargas ct al. {1998). In this paper.
the multivariate PLS algorithm, the cross validation proce-
dure, and the F-test werc applied by a procedure implemented
in GENSTAT version 5, releasc 3.2 (GENSTAT. 1995).

For the standard situation where multivariate PLS is used
ta model cultivar responses (Y ) over environments on cnvi-
ronmental covariables (Z ). the corresponding bilincar forms
arc Z = TP + E and Y = TQ' + F, respectively, where
matrix T contains the Z-scorcs. matrix P contains the Z-load-
ings, matrix Q contains the Y-loadings, and E and F arc the
residual matrices. It is easiest to work with the transpose of
Y: Y'such that the columns of Y' (i.c.. the rows of Y} contain
cultivar responses over environments. Then E(Y') = (TQ') =
QW'Z’ = £, where T contains the Z-scores {indexed by
environments), W the Z-loadings (or weighis, indexed by envi-
ronmental variables), and Q the Y-loadings (indexed by geno-
types). [ contains the PLS approximation to the rcgression
coefficients of the responses in Y’ (genotypic responscs) Lo
the explanatory variables in Z (environmental variables). Note
that £Z' is the same as the last term of Eq. [8] From this
formulation, it can be deduced which biplots can be con-
structed to summarize PLS analyses. The set T. W and Q can
be depicted in the same biplot: the rows of matrix T contain
the coordinates for environments, the rows of W contain the
coordinates for environmenial covariables and the rows of @
conlain the coordinates for cultivars. Projection of the jth row
of T on the ith row of Q (or vice versa) approximaies the
interaction of the jth genotypc on the jth environment: Y'=
{TQ’Y. Projection of the Ath row of W on the ith row of Q
{or vice versa) approximaley the regression coefficient of the
ith genotype on the Ath environmental covartable: QW' = L.
Thus. the PLS biplot including representations of cultivars,
environments and covariables allows the same types of inter-
pretalion o be made as the cnriched AMMI biplot intro-
duced earlier.

When environmental responses aver cultivars are modeled
on cultivar covariables, £(Y) = TQ' = XWQ' = XE' (the
same as the lasi term of Eq. [6]) the rows of T will contain
epordinates for the cultivars, the rows of Wwill contain coordi-
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nates for the cultivar covariates, and the rows of Q will contain
coordinates for the environments. =’ contains the PLS approx-
imation to the regression coefficients of the responses i Y
to the explanatory variables in X. Biplot relations follow from
Y = TQ and WQ' = =".

Experimental Data

Durum Wheat Variety Trial (Tdata Set 1). This data set,
used by Varpas ¢t al. (1998}, consisted of one experiment with
seven durum wheat cultivars tested for 6 yr (1990-1993) in
Ciudad Obregon, Mexico. The cultivars included werc a histor-
ical set released from the carly 1960s to the late 1980s; the
order of Numbers 1 1o 7 is the order of cullivar releases over
time {Sayre el al., 1997).

The cultivar variables, X, were days 1o anthesis after emer-
gence (ANT), days to maturity alter emergence {(MAT), days
of grainlill (GFI}, plant height {(cm) (PLH), above-ground
biomass (kg ha™!) (BIO), harvest index (HID), straw yield
(kg ha™") (STW), number of spikes per square meter (NSM),
number of grains per square meter (NGM), number of grains
per spikc {(NGS), thousand-kcrael weight {g) (TKW), weight
per tiller (g) (WTI), spike grain weight (g) {SGW), vegetative
growth rate (kg ha™'d ) (VGR). and individuai kernel growth
rate (mg kernel™! d77) (KGR} during the grainfill period.
The cavironmental variables, Z, measured from Deeember to
March of cach ycar were mean daily maximum tcmperature
(°C) (MT). mean daily minimum temperature (°C) (mT),
monthly total precipitation (mm) (PR}, and sun hours per
day (SH).

Wheat Agronomic Trial (Data Set 2). Thisdatasciconsisted
of one wheat experiment including several treatments for cul-
tural practices. conducted over 10 yr {1988-1997) in Ciudad
Obregon, Mexico. Each ycar the experiment was arranged in
a randomized complete biock design with three replicates.
Treatments were obtained by combining four factors at the
following levels: tillage at 2 levels (1 = with decp knife. 2 =
without decp knilc), summer crop at 2 levels [1 = sesbania,
{Sesbania spp.) 2 = soybean (Glveine max (L.) Merr.)], ma-
nure at 2 levels (i = with chicken manure, 2 = without chicken
manure), and nitrogen fertilization rate at 3 levels (1 = O kg
Nha™,2=100kg N ha™' and 3 = 200 kg N ha™"}, resulting
in2 X2 X2X3=24trcatments. Therefore. Treatment ! is
[1-1=1=1]. Treatment 2 s {2-1-1-1], Treatment 3 is {1-2-1-1],
and so on up Treatment 24 [2-2-2-3}.

Dhata matrix Y had 24 rows (treatments) and 10 columns
(vcars). Matrix Y had grain yicld intcraction residuals (v, —
Vi — ¥ + ¥). The 27 cxplanatory variables in the Z matrix
of size 10} X 27 (years X environmenial variables) were mean
minimum temperature sheltered (°C) (mT), mean minimum
temperature unsheltered (°C) {mTU). mean maximum tem-
perature sheltered (°C) (MT), total monthly precipitation
{mm) (PR}. mean sun hours per day (§H), and total monthly
evaporation (mm) (EV). Environmental vaniables were mea-
sured from December through April of each vear. All covari-
ables were centered and standardized prior to analysis. For
reasons of consistcney with earlier analyses {Vargas et al.
1998). the columns of the Y matrix were standardized.

RESULTS
Data Set 1
AMMI Analysis, Biplot and Correlations

The combined analysis of variance across years
showed that 66% of variation among the 42 cuitivar X
year combinations was ¢xplained by differences among
cultivar means, 22% by differences between year means,
and 5% by cultivar X year interaction (Table 1). AMMI

analysis of variance indicatcd that the first multiplivative
term was significant (P < 0.05) by the Fg,,, test (Corne-
Hus et al., 1993, 1996, Cornelius, 1993) and the first two
multiplicative terms were significant (7 < 0.03) by the
F; and Fy tests (Cornelius et al., 1993, 1996; Cornelius,
1993). The first bilincar interaction term of the AMMI
analysis of vaniance accounted for 65% of the cultivar X
vear interaction sum of squares with 10 degrees of free-
dom and the sccond for 15% with 8 degrees of freedom.
The first two bilincar terms accounted for 80% of the
interaction, indicating that with only 18 degrees of free-
dom, from the 30 degrees of freedom contained in the
analysis of variance cultivar X year imteraction, a consid-
erable amount of the GE1 was explained (Table 1).
To investigate relationships between additive and
multiplicative parameters in the AMMI model and the
values of the cultivar and environmental covariables,
correlations coefficients were calculated between the
cultivar mean grain yiclds and cach of the cultivars cova-
riables. Similarly, the environment means for grain yield
werce corrclated with cach of the environmental covari-
able. The coefficients of determination (&%) for the re-
gression of the standardized cultivar and environmentai
covariables on the cultivar and environmental scores of
the first two bilinear terms (scores of Axes | and 2)
were also computed. The cultivar main effect was highty
positively correlated with number of grains per square
meter (NGM), number of grains per spike (NGS), har-
vestindex (HID), spike grain weight (S3GW), and above-
ground biomass (BIO), and was highly negatively corre-
lated with individual kernel growth rate (KGR) (Table
2). The R? values of the regressions of these cultivar
variables on the scores of AMMI Axes 1 and 2 were
also high. The environmental main cffect was negatively
correlated with the environmental variables, minimum
temperature in December (mTD), January (mTJ) and
February (mTF) and precipitation in February (PRF),
and positively corrclated with maximum temperature

Table 1. AMMI analysis of variance for Data Sets 1 and 2. Data
Sect 1 consisted of one experiment with seven durum wheat
cultivars tested for 6 ye (19940-1995) at Ciudad Obregon, Mex-
ico. The cultivars included were a historical set released from
the carly 196{ks to the late 1980s. Data Set 2 consisted of one
wheat experiment including several treatments for cultural
practices, conducted over 10 yr (1988-1997) at Ciudad
Obregan, Mexico.

Sum of sgoures  Mean sgoares

Source dr {(x 109t (X 1Py Prob
Data set 1
CuHivar 6 183.740 306.233 0.0001
Year 5 62624 125248 0.0001
Culiivar X year 3 14.547 4.849 0.0001
Bilinear term 1 10 9549 9.549 0.0001
Bilincor ferm 2 8 2238 2797 0.0679
Deviation 12 2760 2.300 0.1169
Error 72 10410 1446
Data set 2 ——Mm ———
Treatmeni 23 773.970 336.508 00001
Year 9 373.260 414.733 0.0001
Year X treatment 207 279.524 13.503 0.0001
Bilincar term 1 k1] 151.130 48.751 0.0001
Bilincar term 2 20 30112 13.486 .0003
Bilinear term 3 27 36.781 13.622 0.0043
Deyiations 120 52497 4374 0.0001
Error 460 110.870 2410

+ Actual values mulliplicd hy this {uctor to obiain reported valucs.
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in December (MTD) and January (MTJ} and sun hours
in January (SHI) and February (SHF).

The AMMI biplot (Fig. 1a) separates the high viclding
years, 1990, 1991, and 1994, from the low yiclding years,
1993 and 1995, along the fist axis from lcft to right. With
respect to cultivars, along the horizontal first axis, carlicr
released cultivars, 1 and 2, are separated from intcrme-
diate and later released eultivars, 3, 4, 5, 6, and 7. Culti-
vars | and 2 were positively influenced by environmental
conditions in [990, 1991, and 1994 and negatively influ-
cnced by environmental conditions in 1993 and 1995,
Cultivars 5 and 6 were favored in 1995 and, to some
cxtent, in 1993, while they were negatively influcnced
by cnvironmental conditions prevailing in 1990, 1991,
1992, and 1994,

Table 2. Correlations cocflicients (r) between cultivar covariables
versus cultivar mean grain yield and environmental covargahles
versus environmental mean grain yield, and the proportion of
variation explained in cach enltivar 2nd environmental variable

. hy the regression of the cultivar and eavironmental covariables

on the scores of the first two AMMI bilincar terms (12%) for

Daty Seis & and 2.

Data sel 1
Cultivart Environmentali

Covariable  Carrelation R Covariable  Correlation R
HID 0.94++ 0n.H PRF — 66 095
NGS 0.26** 0. MTM —0.28 0.87
NGM 0.99+= 088 mTl -051*> .85
SGwW 0.90=+ 085 SHM —043 0.8
KGR —-082* 084 SHF 0.68 .75
PLH 0.71 074  SHI 0.76 0.75
BLO NRPes n.66 MTJ n.55 072
ANT —0.48 0.61 PRJ —0.54 067
wTI 047 0.58 PRM -n36 0.4
MAT -045 0.58 SHD 0.45 0.46
TKW =067 0.41 MTD 076 0.42
VGR .63 .41 MTF niz n.i2
INSM {10 030 miF —.75 (1% 1]
STW [IX]] 18 ¢ mTh —0.60 0.29
GFl 014 .10 PRI —-0.34 (X1} ]

mM —-0.31 0.4

Data set 2
Environmeninly Environmentald
.’Zmariuhh: Correlation R Covariable  Correlation I &

EVA 017 0.68 MTA -0.15 0.32
mtM ~{.33 0.67 mTD -0.30 028
mTUM ~024 062 SHID 02} .25
EYD 0.54 0.58 mT] =0.20 .25
MTF ~0L.B1 0.53 mTUD —020 .25
EV) 042 052 MID (.59* 0.24
SHJ 028 051 MTJ 0.3 0.24
mTUF -034 049 PRM -029 0.22
mF ~-041 0.48 mTUA 0.27 014
EVF 47 (LdS PRD ~6.50 .14
EVM 19 3 mTA 943 0.08
PRY -037 0.35  SHF -030 0.20
PRI -025 033 MTM -013 .04
mit) -0.02 032

® *¢ Signilicantly diffcrent from rero ai the 0.05 and 0.01 fevels of probabil-
ity, respectively,

T HI) = harvest index. NGS = number of grains per spike, NGM =
numher of grains per square meter, SGW = spike grain weight, KGR =
individual kermel growth rate. PLH = plant height, B = above-ground
biomass, ANT = days to anthests after emergence, W'l = weight per
tilier, MAT = days o maturity after emergence, TRW = thowand
kernel weighl, VGR = vegetative growth rzie, NSM = oumber of spikes
per square meter, STW = straw yield, GFl = days [ur grain [lling.

i PR = tota) monthiy precipitation. M1T' = mean maximum temperature
sheliered, mT = mean minimum temperatore, SH = sun hours per days
EV = total monthly evaporation; mTU = mean minimum twmperature
uasheltered; 1) = December, J = January, F = February, M = March,
A = April.

To help interpret the AMMI biplot patterns, the di-
rections of greatest changes for six cultivar covariables
(R* > 0.73, Table 2), as obtained from regressions of
the standardized covariables on the first and second
AMMI axes, were added to the biplot, These were, in
decereasing order with respect to R, HID, NGS, NGM,
SGW, KGR, and PLH. Cultivars 1 and 2 had above
average values for KGR (i.c., they were positively asso-
ciated with covariable KGR) and had below average
values for PLH, SGW, NGS,NGM, and HID. The inter-
mediate-released cultivars, 3 and 4, and later released
cultivar, 7, had above average values for HID and NGM,
and below average values for KGR, Cultivars 5 and 6
had above average values for SGW, PLH, and NGS.
Cultivars 1 and 2 had the largest values for KGR; Culti-
vars 3, 4, and 7 showed the largest values for HID and
NGM; and Cuiltivars 5 and 6 had the Targest values for
NGS, PLH, and SGW.

The dircction of the greatest changes for six environ-
mentai covariables (R? > (.75) was also added to the
AMMI hiplot (Fig. 1a). These were in deereasing order
with respect to R? PREF, maxiinum temperature in March
(MTM), mTJ, sun hours per day in march (SHM), SHF,
and SHI. Minimum temperature in December (R* =
0.286) was included in the AMMI biplot for rcasons
that will be explained later. Years 1993 and 1995 had
above average values for MTM and SHM but below
average values for SHF. Years 1990, 1991, 1992, and
1994 had high SHF, but low SHM.

Apparently SHM and MTM i 1993 and 1995 causcd
Cultivars 5 and 6 to develop relatively more NGS and
to have heavier SGW than the other cultivars. Years
1990, 1991, 1992, and 1994 had fower values of SHM
and MTM and, Cultivars 5 and 6 had correspondingly
lower NGS and SGW in those years. Sun hours in Janu-
ary and February (SH} and SHF) in 1990, 1991, 1992,
and 1994 helped Cultivars | and 2 develop high individ-
ual KGR; however, low SHJ and SHF values in 1993
and 1995 were not conducive for Cultivars 1 and 2 to
develop this trait.

Explaining Genotype X Environment Interaction Using
Partial Least Squares and Individual Factorial Regression
with Cultivar Explanatory Variables

Results from the PLS procedure showed that the
first and second factors explained 56 and 13% of the
cultivar X year interaction, respectively. Table 3 shows
the X-loadings (weights) for each cultivar covariable
sorted by the first PLS factor, as well as the complete
set of individual factorial regressions on each cultivar
covariable, ranked by their contribution to the total
cultivar X year sum of sgnares.

With respect to the FR analysis, there were 15 cultivar
covariables available, but only 2 maximum of G =< [ —
i of them ean he used simultancously, where G is the
number of cultivar covariables and 7 is the number of
cultivars (7). All the cultivar covariables were included
in the individual FR models and those that explained
most of the cultivar X year interaction sum of squares
were the same as those that had the highest R* values
with AMMI scores (Table 2), namely, NGS, NGM,
SGW, HID, PLH, and KGR. The rank order of the
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Fig. 1 {A}. Biplot of the Gt and second AMMI axes representing
the environmental and culfivar seores of 6 yr (1990-1993) und
seven derum wheal eultivars (1=7) enriched with the direclion of
greatest change of selected coltivar and environmenial covariables
frome Data Set 1. Scaltng constant ¢ = (LS. Cultivar covariables are
PLH - plant height, KGR = individual kernel growth rale, HID
= harvest indes, NGS = nomber of grains per spike, NGM =
aumber af grains per square meter, SGW = spike grain weighl.
Environmenial covariables are SH = sun hours per day, MT =
medn maximum temperatere: ) = December, } = January, F =
Fehrunry, M = March,
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cultivar covariables in refation to how much they con-
tributed to explaining the cultivar X vear infcraction
was practically identical for the PLS approach and the
FR model.
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Fig. 1 {B). Biplot of the first and second PLS faciors representing
the X-scores of seven dierum wheat cultivaes (1-7), the Y-loadings
of 6 yr (1990-1995) enriched with the X-loadings of 15 cullivar
covariables fram Dafa Set L Scaling constant ¢ = (.5 Cullivar
variables are NGS = number of grains per spike. HID = harvesi
index, SGW = spike grain weight. NGM = number of grains per
square ineter, KGR = individual kersel growth raie, PLH = plani
height, B10 = sbove-ground biomass, YGR = vegeiative growih
rote, ANT = duys 1o anthesis after emorgence, WTI = weight per
tillee, TKW = (housand kernel weight, MAT = days to maturity
after emergence, GFI = days for grain Glling, STW = straw vicld,
NSM = muwmber of spikes per square mgter.

The PLS biplot of environmental responses over culti-
vars versus cultivar covariables is depicted in Fig. 1b.
Similarities to the AMMI biplot (Fig. 1a) are evident.
The PLS bipiot shows that subsets of correlated cultivar
covariables can be distinguished (the angle between the
variables is important): (HID, NGM), (B1O, NGS,
VGR, SGW, PLH), (GFI, WTT), (STW, MAT, TKW,
ANT, KGR}, and NSM. In contrast to the AMMI biplot,
the PLS biplot separated Cultivar 7 from Cultivars 3
and 4, and grouped it with the Cultivars 5 and 6. Cultivar
1 had high KGR and ANT and low HID, NGM, BiO.
NGS, VGR, SGW, and PLH. It yvielded relatively well
in 1990, 1991, 1992, and 1994 and vielded poorly in 1993
and 1995. Cultivars 5, 6, and 7 behaved exactly the
opposite. Cultivar 2 had high KGR, ANT, MAT, TKW,
and STW, while being low for NSM, HID, and NGM.
it yielded refatively well in 1991, 1994, and 1995 and
yielded poorly in 1990, 1992, and 1993, Perfarmance of
Cuitivars 3 and 4 was the reverse of Cultivar 2 with
respect to vears.

Explaining Genotype X Eavironment Interaction Using
Panial Least Squares and Individusl Factorial Repgression
with Environmentol Explanatory Varinbles

The first PLS factor explained 40% of the cultivar X
year interaction sumn of squares, while the second PLS
factor explained 26%. Table 3 shows the Z-loadings
(weights) of the cnvironmental cxplanatory variables
sorted by the first PLS factor, and the individual facto-
rial regression for cach of the environmental variables,
ranked bv their contribution to the analysis of variance
GEI sum of squares. The maximum number of covari-
ables that can be used simultaneously in factorial regres-
sions with centered environmental variablesis < J -
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Fip. 1 {C). Biplot of the Grst und second PLS factoes representing
the Z-scores al 6 yr (1990195} and the Y-loadings of seven durum
wheut culfivars (1-7) enriched with the Z-loadings af 16 environ-
menial covariables from Daia Set 1. Scaling constant ¢ = 0.5
Environmenitsl varishles sre mT = mean minimum iempoersture,
MT = mean maximum lemperaiure, PR = toial monthly precipita-
tior. SH = sun hours per day: D = December, J = January, F =
February, M = March.
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I (scc Eg. {7]). As J = 6 yr in this data sct, // = 5.
The environmental variables that explained most of the
cultjvar X vear interaction sum of squares werc SHM,
SHF, MTM, MTD, and SHD (Table 3}. SHM, SHF,
and MTM had valucs for R? > 0.75 (Table 2).

The PLS method determined that environmental co-
variables SHM, SHF, SHD, MTM, and MTD were asso-
ciated with Factor |, which explained a large proportion
of the cultivar X vear interaction (i.c., they had the
highest absolute loadings) (Table 3). The FR method
also considered these covariables individually to be the
five most important environmental covariables in cx-
plaining cultivar X year interaction. All other environ-
mental covariables were ranked similarly by both incth-
ods. Both procedurcs considered precipitation to be less
important for explaining cultivar X year interaction.

The PLS biplot depicted in Fig. ¢ is similar to the
AMMI biplot (Fig. 1a) ennched with the directions of
greatest change for the cnvironmental covariables with
R* > 0.75. Unlike the AMMI biplot, the PLS biplot
'cparutcd the low-yielding year 1992 from the other two
low vielding years 1994 and 1995, Years 1990 and 199t

had high SHF and MTD and low mTJ and mTF. In
contrast to 1990 and 1991, 1993 had high mTJ and mTF,
and low MTD and SHF. The ycar {992 had high precipi-
tation in general (PRI, PRI, PRF, PRM} and high mT],
while 1992 had low MTT, SHJ, and MTIJ. In contrast
to 1992, 1994 had high MTF, SHJ and MTJ, and low
precipitation, low mTJ and mTF. Precipitation during
the months of the growing cycle (PRD, PRI, PRF, and
PRM) formed a subset of correlated covariables located
in the upper left guadrant of the PLS biplot, whereas
a subset of minimum tcmperatures during the growing
cycle (mTD, mTJ, and mTF) is located in the upper
right quadrant (mTM is at the center of the PLS biplot).
Variables SHM and MTM were positively correlated
and formed a subset of cnvironmental variables with
high loadings for the first PLS factor.

Cultivars 1 and 2 were favared by SHJ, SHF, MTD,
and MTF. This led to higher vields in 1890, 1991, and
1994, Lower mTD, mTJ, and mTF and greater PRF did
not favor Cultivars 1 and 2, most notably in 1992 and
1993; however, these cnvirenmental conditions during
the 1992 and 1993 growing cvcles favored Cultivars 3,

Table 3. X-loadings and Z-loadings of the cultivar and environmental covariables, respectively, of the first two PLS factors (sorted by
the first PLS factor), and mean squares of all individuad factorial regressions for Data Ser 1.

Partial least squares

Factorial repression

Covariable Factor 1t Factor 2 Source df Mean square (X 1F) Prob > F
Cubltivar covariablest

X-loadings Ycar X Cultivar 30 4.849 0.0001
NGS 0L.36 .04 NGS 5 17.208 <. 5
SOw .35 nid NGM = 16349 < 0T
NGM .34 -4 SGW 5 16339 < 0.0001
HIiD 0.34 -0.14 HiD 5 16.058 < 00001
PLH 132 0.18 PLH 5 14469 <{LHH1
KGR -032 0.13 KGR 5 1429 <0001
BIO ([ 0.01 BIO 5 12.825 <001
VGR h23 0.¥1 YGR 3 8.574 060017
WTE 22 D41 WTI 5 8.150 (LMD ]
ANT —0.28 N1y TKW 5 7.291 00005
TKW —LI8 041 ANT 5 7.108 000G
MAT —0.14 036 MAT 5 5.466 0.0042
G¥Fl1 0.14 0.20 GFl 5 3972 0.0251
NSM —{1.05 -0.50 NSM 5 3367 no512
STwW -0z 0.20 5Tw 5 1.563 D3THS

. Error 72 1446
Environmental cavariabics

Z-loadings Year % Culiivar 3 4.849 0.004H
SHM 047 001 SHM 6 12.594 <0,0001
MM 44 -0.1] SHF 3 12112 <0.0001
SHIF —042 —0.08 MTM 6 11.540 <0,0001
SHD -3} 0.0 MTD 6 7145 00001
MTD ~030 —0.14 SHD 6 7.086 n.O003
m'TE} 023 .05 mlJ 6 5815 0.016
PRM —.22 0.3 mTF 1 5786 N7
mF 0.21 311 min ] 5.484 0.0024
mT) 0.19 .35 PRIV 6 4.582 0.[HI82
PRI —0.13 0.38 SHI 6 1850 00218
PRD —0.10 015 PRFE 6 3,748 0.024%
MT1 oan —-039 PR] 6 3440 0.0373
SHI .9 -039 MT1 6 3.156 00547
MTF -0z -022 MTF 6 2616 [[ARBY
mTM 0. - 003 m'Th [ 2.302 01512
PRY .01 042 PREY [ 1.808 2962

Error T2 L6

1 PLS results exteacied from Tables 1 and 2 of Vargas et al. (1998).

# NGS = number of grains per spike, SGW = spike prain weight, NGM = number of grains per square meter, HID = harvest index, PLH = plant heighd,
KGR = individual kernel growth rate, BIO = above-ground biomass, ¥ GR = vegetative growih rate, W1 = weight per liller, ANT = days 10 anthesis
oficr emergence. TKW = thousand kersed weight, MAT = days (o maturity after emergence, GFI = days (or grain fitling, NSM = number of spikes

per square metes, STW = straw yield.

1 SH = sun hours per day, MT = mean maximum iemperature, m1 = mean minimum temperature, PR = total monihly precipitation; D = )ecember,

= Janyary, F = Februsry, M = March.
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‘Tablte 4. Analysis of variance tables for stepwise multiple factorial regression models with environmental and cultivar covariables, for
Diata Sets | and 2. Terms in factorial regression models appear in the order of inclusion.

Sum of squores

Mean squares

Source dr (x 1Py (x 1H F Prob > F
Data set 1
MFR1%
Cultivar X SHM3i 6 7.8587 12595 871 < (L0001
CuMNivar X m¥D f 2.655 3.425 3.06 0.0100
Cultivar X PRF b 2.350 3916 270 0.0:198
Deviations 12 1.986 1.A55 1.14 0.2428
MFR2
Year X NGS 5 8.649 17.298 11.96 <0.0001
Year X NGM 5 1782 354 2.46 0.0409
Deviations b))} 4.115 2.057 1.42 01489
MEFR3
NGS X SHM | 6.484 64.84) 4484 <0.0001
NGS X m'D 1 1.947 £9.470 1346 00004
NGS X PRF 1 0.748 7.480 5.17 00259
Deviations 27 5.364 1.986 1.37 0. 1464
Data se1 2
Treat X i 23 7853 34143 416 0.00601
Treat X EYF 23 54.75 23804 9.87 0.000)1
Trewi X m7T1 23 40.50 17608 7.3 06.0001
Treat X mTUM 23 27.62 12.008 4.98 0.0001
eviations 115 .2 6,793 2.81 0.0001

t MFR1 = Multiple Factorial Repression model with environmental covariables; MFR2 = Multiple Factorial Repression model with cultivar covariables;
MFR3 = Multiple [actorial regression model with cross products of eultivar and environmental covariables [rom MFR] and MFR2.
1 SHM = sun hour per day in March; mTD = minimum temperature in December; PRF = precipitution in February; NGS = number of grains per

spike; NGM = number of grains per square meter.

11 mTF = minimam temperature sheltered in Fehruary; EVF = evaporation in February; mTJ = minimum femperature sheltered in Janaary; mTUM =

minimum temperature unsheltered in March,

4, and 7. Cultivars 5 and 6 had high yields in vear 1995,
probably because of higher MTJ, MTM, and SHM. Co-
variables SHM, MTM and SHF had high loading values
for the first PLS factor, whercas covariables PRF, MTJ,
SHJ, and PRJ had high loading values for the second
PLS factor. These seven covariables had the highest R?
valucs (Table 2).

Explaining Genotype X Environment Interaction Using
Multiple Factorial Regression with Cultivar and
Environmental Explanatory Varigbles Simultaneously

Multiple factorial regression coupled with a stepwise
procedure for variable sciection was used to scarch for
informative sets of environmental and/or cultivar cova-
riables. When the set of independent variables from
which a sclection had to be made consisted of all envi-
roninental covariables, a model for the interaction was
found that included the terms cultivar X SHM,
cultivar X mTD, and cultivar X PRF {Tabic 4). This
model explained 86% of the GEI with 18 df. This model,
called multiple factorial regression [ {(MFR1), appeared
be slightlv better than the AMME (with two bilinear
terms) model, which explained 81% of the GEI with
the same 18 df (Table 1).

When the sct of candidate variabies consisted of all
cultivar variables, a model was found that included the
terms Year X NGS and Year X NGM (Table 4). This
model, MFR2, explained 72% of the GEI with 10 df
and appeared to be superior to AMMI, (with only one
bilinear term), which accounted for 66% of the GEI
with 10 df (Table 1). Thus, AMMI models with one or
two bilinecar terms were possibly less effective than the
MFR1 and MFR2 models. It should be pointed out that

although MFR1 and MFR?2 represent the best sets of
cnvironmental and cultivar covariables that were found
by stepwise regression, & number of other sets were
cquaily good.

Relating significant cultivar and environmental cova-
riables obtained in the stepwisc muitiple factorial re-
gression (Table 4) to the clusters of environmental and
cultivar covariables previously described in the PLS
biplots (Fig. 1band le) can be informative. For example,
in Fig. 1c, environmental covariables, SHM and MTM,
formed a cluster, and the stepwise procedure sclected
SHM as the more important. Covariables, mTD, mTJ,
mTF, and mTM, formed another cluster, and the step-
wise procedure selected mTD as a representative candi-
date for deseribing GEIL. All precipitation covariables
formed another cluster, and stepwise regression found
PRF to be the best candidate among them. Although
mTD and PRF were not among the best covariables for
explaining GE! when performing individual FR, they
were important when considered together with other
environmental covariables. The stepwise variable selec-
tion procedure with factorial regression sclected, in or-
der, SHM. mTD, and finally PRF. In the PLS biplot
(Fig. 1b), roughly four clusters of cultivar covariables
may be distinguished, one for cach quadrant. The step-
wise procedure sclected, as significant contributors to
cxplaming GEI first NGS and then NGM.

After having found *best’ multiple factorial regression
{MFR} models for cultivar and environmental variables,
we investigated whether further parsimony could be
achieved by fitting a multiple FR model that included
compound covariables consisting of the products of cul-
tivar and environmental covariables (i.e., we fit a multi-




VARGAS ET AL: STATISTICAL MODLELS FOR STUDYING GENOTYPE X ENVIRORNMENT INTERACTION 963

ple FR model in which only the term XvZ’ from Eq.
[9]3s maintained). A multiple FR model (MFR3) inctud-
ing the cross products of the cultivar covariable NGS
with the environmental covariables SHM, mTD, and
PRF gave a very good fit and, on the basis of the differ-
cnces in sums of squares and df, was not significantly
different from MFR1. This gave a very cfficient descrip-
tion explaining 63% of the interaction with only 3 df.
1t is worthwhile to take a look at the interpretation of
these cross products. The most important term, NGS
% SHM, explained 45% of the total cultivar X year
interaction with 1 df. The sign of the estimated cocffi-
cient for this term was positive. Thus, cultivars with
above average NGS (covariables were all centered, so
that positive valucs after centering mean above average
values, and negative values mean below average values)
did relatively well in years with above average SHM
[(+ NGS in X) X (+ coefficient in v ) X (+ SHM in
Z') = +], as did cultivars with below averagc NGS in

years with below average SHM | (— NGS in X) X (+
.'oefficicnt inv )X (—SHM in Z’) = +). High NGS
in years with low SHM and low NGS in years with high
SHM are associated with relatively poor performance
[(+ NGS in X) X (+ coefficient in v ) X (— SHM
in Z') = —|.

The interactions due to NGS X mTD ( positive coeffi-
cient) and NGS X PRF (negative coefficient} can be
intcrpreted in the same way, afthough it should be noted
that these terms were far less important than the NGS
X SHM term.

Data Set 2
AMM]I Analysis, Biplot and Correlations

The main cffect of treatments (cultural practices) ex-
plained 50% of the total sum of squares, whereas differ-
cnces among year means contributed 24 % and the inter-
action term, 18% (Table 1). The Fp and Fgu, tests
{Cornclius ct al., 1993, 1996; Cornclius, 1993) indicated
that the first 3 multiplicative terms were significant (P <<

05) (the first six multiplicative terms were significant
vy the F, test). The first bidinear interaction tenm of the
AMMI model accounted for 54% of the GEI sum of
squares, the second 14%, and the third 13%, using 31,
29, and 27 df, vespectively. The first two bilmear terms
used &) df of the total of 207 available in the interaction.

Year main effect was not highly correlated with any
environmental variable, except maximum temperature
sheltered in December (MTD, r = 0.59) (Table 2). Total
monthly evaporation and mean precipitation in Decemn-
ber (EVD and PRD, respectively) showed relatively
high correlations with environmental main effects (r =
0.54 and — 0.50, respectively), indicating the influence
of the prevailing climatic conditions on grain yicld. In
general, values of R? obtained from the regression of
the standardized environmental variables on the first
two bilinear factor scores were relatively low. Only
seven variables out of 27 had R? >0.50.

The AMMI biplot (Fig. 2a) shows that the axis for
the first bilincar term separated the four of the highest
vielding years (1994, {988, 1997, and 1993) from the

four lowest yielding vears (1995, 1992, 1989, and 1996),
althougth 1991, the second highest vielding vear, was
located with the lowest yielding years; and 19%), the
eighth highest yiclding ycar, was grouped with the high-
est yielding years. Regarding cultural practices, the first
axis scparated the ninc highest yielding treatments (9
[1-1-1-2}, 9 {1-2-1-3], 21 [1-1-2-3], 17 [1-1-1-3], 11
[1-2-1-2|, 12 [2-2-1-2}, 10 [2-1-1--2], 23 [1-2-2-3], and
18 [2-1-1-3]) (five treatments had 200 kg N ha™* and
four had 100 kg N ha™) from the nine treatments with
the lowest grain yield (1 [1-1-1-1], 2 [2-1-1-1], 3 [1-2-
1-1}, 4 [2-2-1-11, 5 {1-1-2-1], 6 [2-1-2-1], 7 {1-2-2-1]},
8 [2-2-2-1], and 16 [2-2-2-2] ). All had 0 kg N ha™,
except Treatment 16 which had 100 kg N ha™. The
remaining treatments did not show any apparent pat-
tern. The highest vielding treatments werc positively
related to the highest yiclding years, while the lowest
vielding treatments were associated with the lowest
yiekding years.

The AMMI biplot was cnriched with the directions
of greatest changes for the seven environmental covari-
ables with R* > 0.50. These covariables were total
monihly evaporation in December, January, and April
(EVD, EVJ], and EVA, respecetively), mean minimum
temperature sheltercd and unsheltered in March (mTM
and mTUM, respectively), mean maximum temperature
in February (MTF), and sun hours per day in January
(SHJ) (Table 2). Years, 1988, 1990, 1991, and 1996, had
above average values (i.c., were positively assoctated
with the covariables EVD, EVJ, EVA, SHI, and MTF)
and had betow average values for mTM and mTUM.
Years, 1989, 1992, 1994, and 1995, had above average
values for covariables, mTM and mTUM, and becilow
average values for the other environmental covariablcs
(Fig. 2a).

Explaining Genotype X Environment Enteraction Using
Partial Least Squures and Individual Factorial Regression
with Environmentsl Explanatory Variables

The eross validation assessment and Osten's (1988)
F-test for the number of significant PLS factors indi-
cated that the first factor was significant for prediction,
explaining 19% of the year X treatment interaction
(data not shown). The sccond factor explained 28% of
the interaction and was found not significant. However,
the cross validation gave a PRESS (Predicted Residual
Sum of Squares) that was lower than that obtained for
the first factor indicating that the sccond PLS factor
improved the prediction accuracy of the model. The
first PLS factor had relatively high negative Z-loadings
for environmental varables EVD, EVI], EVF, EVM,
and MTD (Table 5} and relatively high positive Z-load-
ings for mTUF, mTF, mTD, mTM, MTA and PRF. The
sccond PLS factor had high negative loadings for the
covariables MTF, mTF and MTA and positive loadings
for mTUJ and mTJ.

The maximum number of covaniables that could have
been used simultaneously in the FR analysis was /f =
J — 1 (sec eq. |7]), wheve J = 10 (years) so that /f =
9. Although all individual factorial regressions for the



Factor 2

CROP SCIENCE, YOI 39 JULY-AUGUST (4t

109 A
0.8
08
0.4

G2

80+ —————————— - — =

—-0.2-

-0.4 4

=-0.6 -

~0.8 1

—1.0 4

‘.—Il___...-_.______
-

I
|
1
1
I
1
I
|
i
|
!
1
By
1
|
|
|
1
|
]
1

T T

Fig. 2. {A) Riplot of the Girst and second AMMI axes representing the environmental and treataresis scomes for 10 yr (1988-1997) ued 24 culiural
practice treatments (1-24) enriched with the direclion of preaicst changes of sclected cnvirommental covaniables from Data Set 2. Scaling
consiant ¢ = (.5 Enviroomental covzrinhles are mT = mcun minimum temperuture shellered, m TU = mean minimum fempersture nosheltered,
EY = ol monthly evaporation, MT = mear maximum temperatures I = December, ) = January, F = Febroary, M = March, A = Apail.

Factor 2

I
1w- B :
i
]
d I
o8 r a
|
: "
08 s . "
- PR nﬂ':.l.l m 12
0.4 b PR : ™
aa | rmTUA °
! -
0.2 |
|
gy
' no
g —-————g - === e — o
| [T
w |
-2 : .
e |
I
YR I
i
I, : 5N
—Q8- 2 w1 |
!
f
] . 8 ’1
—P 1
f
|
I
—140 - _ :
T T T —T T [ T T T T T
-9 -0 -0&6 ~D4 -D2 D0 0.2 0.4 0.6 0.8 1.0
Factor 1

Fig. 2. (B} Biplot of the first and seeond PLS Facters representing the Z-scores of the 10 yr (1988-1997), and the Y-loadings of the I culiura)
practice treaiments (1-24) enriched with the Z-losdingy of 27 environmental vuriabies from [Data Set 2. Enviconmental variables are mT =
mean minimun tempecature sheltered, mTU = mean minimum tempersiure unsheliered, MT = mean maximum temperoture shellered, 5H =
sun hours per day, EV = tolal monthly evaporation, PR = total monthly precipitslion; 1) = Deceinber, J = Junoury, F = February, M =

March, A = Agpril.




VARGAS ET AL: STATISTICAL MODELS FOR STUDYING GENOTYPE X ENVIRONMENT INTERACTION 965

centercd cnvironmental covariables were significant
{each with 23 df), the most intcresting were those with
the Targest sum of squares. The FR model showed that
environmental variables, mTF, mTUF, EVD, MTA,
MTF, EVI, mTUM, mTM, and EVF, were important in
explaining vear X treatment interaction; these variables
also had the highest R* values for the addition to the
AMMI biplot (Table 2). Evaporation in April (EVA)
had the largest R* value but ranked 14th in FR and 21th
in PLS. The rank order of the environmental variables
with respect to their contribution to explaining the
year X treatment interaction showed good correspon-
dence hetween PLS and FR for 23 of the covariables
(Table 5) (they are ranked at distances lower than four
places apart). The most divergent ranking was for MTF,
which ranked fifth by FR and 26th by PLS; however,
MTF had the highest Z-loading for thc second PLS
factor (—0.4452). Other variables that differed markedly
in ranking were mTUM, EVA, and SHD.

The PLS biplot (Fig. 2b) showed that, for trcatments,
he results were similar to those obtained with the
AMMI biplot (Fig. 2a). The first two PLS factors clearly
separatcd eight of the ninc highest vielding treatments
(9.19, 21, 17, 11, 12, 23, and 18 } from thc nine lowest
vielding treatments (1, 2,3, 4, 5, 6, 7, 8, and 16) (Fig.
2b); however, the separation of years was not as distinct
as it was in the AMMI hiplot. The low-yiclding treat-
ments, 1,2, 3,4,5,6,7, 8, and 16, had positive interaction
in ycars with high mTF and mTUF and with high MTF
and MTA. This positive interaction was most noticeable
in 1995, The vear 1995 can bhe further characterized as
being low in mTJ, mTUA, mTA, EVD, MTD, EVF,
and EVJ. Negative interactions occurred for the low-
yielding treatments in 1988, 1990, and 1997. These vears

scored just the opposite on the variables enumerated
for 1995. In contrast, the eight highest-yiclding treat-
ments did relatively well in 1988, 1990, and 1997 and
relatively poorly in 1995,

Explaining Genotype » Environment Interaction Using
Multiple Factorial Regression with Environmental
Explanatory Variables

At least eight covariables were found to be significant
by the stepwisc sclection procedure. The FR model in-
cluding mTF, EVF, and mTJ had 69 df and explained
62% of the GEI {Table 4), whercas the AMMI (with
two bilincar terms) accounted for 68% of the GEI with
60 df (Table 1). The factorial regression mode! with
mTF, EVF, mT], and mTUM had 92 df and explained
72% the GEI, whereas AMMI; accounted for 81 % of
the interaction using 87 df. For this data set, AMMI with
two or three bilinear terms was slightly more cfficient in
deseribing GEI than FR with three or four of the most
signiticant cnvironmental covariabics; however, PLS
analysis and stepwise FR are still useful for investigating
the influence of different environmental covariabics.

The PLS biplot (Fig. 2b) contains roughly four clus-
ters of cnvironmental covariables (one for cach quad-
rant). For example, the first cluster is in the lower left
guadrant of Fig. 2b and includes correlated variables
mTF, mTUF, MTA, and MTF (in decreasing order ac-
cording to the sum of squares in the individual FR}).
The second cluster is in the Jower right quadrant and
comprises correlated variables EVD, EV], EVF, MTD,
EVA, SHJ, EVM, SHD, MTJ, and MTM. The third
cluster involves mTUA, mTUJ, mTI, and mTA and
the fourth cluster is composed of mTUM, mTM, mTD,

Table 5. Z-loadings of environmental variahles sorted by the first PLS factor and mean squares of all individual factorial regressions

for Data Set 2.

Pariial feast squares

Factorial regression

Environmental
covariuble Factor ] Factor 2 Source dar Mean square (X 0%} Proh >F
Z-loadings Year X Treat mm 1.350 095001
V¥ -0.33 0.05 mTF 23 3414 <001
.;.VJ —028 —0.07 mTUF 23 3 <0.0001
mTUF 0.27 —028 EVD 2) 634 <0001
EVF -027 —0.07 MTaA 2) 2522 <001
mTF 0.26 —0.35 MTF 23 2.182 <0001
MTA 0.24 —-0.31 EVI 23 1.813 <0.0001
m'b 0.24 0.0 mTUM 23 1729 <00
miM 0.23 .04 ml'M 23 L6KS <4H.MWH
MTD —0.23 0.01 EVF 13 1633 <000
PRF 0.22 0.04 mTD 23 L4 <0001
EVAM —021 -0.15 PRD 23 L3x2 <0001
SHJ -0.24 -0.19 MTD 23 1342 <{(.0001
PRD 0.20 —0.02 PRF 23 1.293 <0001
mTUM 019 002 EVA 23 1272 <0000%
mTuUD 0.19 0.05 SHJ 23 L.248 <0.0001
SHD ~0.18 =010 EVM 23 1.235 <0.0001
PR 0.6 0.19 mTUA 23 1.2M <0.0001
PRM 0.14 920 ml'Ub 23 1.091 <0.0001
mTUA —-0.12 0.1 miUJ 2} 1054 <0001
mTA -1 0.10 m't) 23 1.049 <0000 L
EVA —0.10 —028 PRJ 23 1.0M <0040
MTJ —0.09 -0.19 PRM 23 L1031 <0001
mTUuJ 0.08 0n29 SHD 23 1.003 <0001
MTM -0.07 —0.07 mTA 23 0.887 <0.6001
mlJ 0.07 029 MTS 23 0.770 <0001
MTF 0.03 —0.45 SHI 23 0.610 06401
SHF — 043 -0.m MTM 23 0.456 0.0079
Error 460 0241

f EY = totat nonthiy evaporation; mTU = mean mirimum tcmperature unshelteeed: mT = meas minimam temperaturc sheltered; MT = mean maximum
tempeniture sheliered; PR = total mouthly precipitation; SH = sun houn per day; D = December; J = January; F = February; M = March; A = April.
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PRD, PRF, mTUD, PRJ, PRM, and SHF. It is interest-
ing to note that the stepwise FR sclected one covariable
from each cluster in the following order: mTF, EVF,
mTJ), and mTUM, from the first to the fourth clusters,
respectively. The next four covariables sclected by the
stepwise procedure were from the first (MTA), fourth
(PRF and PRJ), and third (mTUA) clusters, respec-
tively. These results indicate that PLS was effective in
grouping correlated covariables and that stepwise FR
was sensitive cnough to deteet these groups of corre-
lated covariables and to select the most representative
from cach cluster,

DISCUSSION

Results of this study indicated that FR and PLS were
effective in detecting the environmental and cultivar
covariables that explained a sizeable proportion of the
total GEI variability in two complex data sets. The
AMMI biplot cnriched with the covariables that showed
high R? values was also useful for interpreting GEI of
grain yield; however, FR and PLS directly incorporate
the external variables into their models, whercas AMMI
docs not. For Data Set 1, the three procedures identified
similar cultivar and environmental covariables that ex-
plained most of the GEI. For Data Set 2, results were
not as clear as those for Data Set 1, but there was a
relatively good correspondence between PLS and FR
for 23 of 27 environmental covariables.

In gencral, the AMMI biplot and the PLS biplot of-
fered similar interpretations of the results for both data
sets. The AMMI biplot was very similar to the PLS
biplot. Interpretation of these biplots is useful for re-
scarchers because it helps toidentify major environmen-
tal (or cuitivar) variables that cause positive or negative
interactions bhetween subsets of cultivars with subsets
of ¢nvironments. One advantage of the PLS approach
is that a large number of environmental (or cultivar)
covanables can be used. Furthermore, PLS is inscnsitive
to multicollincarity; for example, for Data Set 2, mini-
mum and maximum temperatures (sheltered and un-
sheltered), sun hours per day, and total monthly cvapo-
ration are corrclated. In the AMMI-cnriched biplots,
multicollinearity is not a problem but when a large num-
ber of genotypic orfand environmental covariables are
included, none of them may have sufficiently high R?
to be drawn in the AMMI biplot. In PLS, the cross
validation assessment and Osten’s (1988) F-test can he
used to test for the significance of the number of com-
ponents that must be retained. Although the X- or
Z-loadings for each covariable for a given PLS factor
are not statistical tests of significance, they do provide a
measure of their relative importance for explaining GEL

The main advantage of the FR is that parameters are
estimated and hypotheses are tested in relation to the
available external covariables. When environmental and
cultivar covariables are considered simultaneously, mul-
tiplc FR with a stepwise variable selection procedure
provides a uscful tool for selecting the most relevant
covariables, and their cross products, for cxplaining
GEI. For both data sets, selected covariables obtained
from stepwise FR represented each of the covanable
clusters observed in the PLS biplots. While the PLS

analysis is done scparately on the st of environmental
variables and the set of genotypic eovariables, FR and
the enriched AMMI-biplot perform a simultancous
analysis on both sets of covariables.

When a iarge number of correlated environmental
{and/or cultivar) covariables is available, an important
guestion that researchers face is how to select a sct
of reievant environmental and cultivar covariables that
effectively explain most of the GEI variability. On the
basis of the results obtained in this study, a possible
strategy for selecting the most important covariabics
affecting GET would be to use, first, the PLS analysis
with the PLS biplot. It would also be useful to cnrich
the AMMI biplots with the relevant environmental and
cultivar covariables to comparc and confirm results ob-
tained by the PLS approach. Results concerning the
relevant covariables affecting GEl obtained by PLS and
AMMI can always be confirmed by computing factoria
regressions. It is therefore advisable to include in the
selected subset covariables that arc only slightly corre-
lated. An option would be to select the covariables with
the largest explained sum of squares in cach of the PLS
ciusters. After arriving at a satisfactory FR model, onc
could try to reduce further the model by studying just
the cross products of the selected cnvironmental and
cultivar covariables.

This study indicated that AMMI, PLS, and FR are
useful tools for interpreting GEI in the context of mutti-
environment trials when a large number of cxternal
environmental and cultivar covanables are included.
The PLS and FR analyses complement each other and
offer an aid to rescarchers not only for determining
the importance of individual environmental and cultivar
covariables in explaining GEI, but also for finding sub-
sets of covariables that adequately describe GEI in
terms of understandable covanables.
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Minimum Sample Size and Optimal Positioning of Flanking Markers

in Marker-Assisted Backcrossing for Transfer of a Target Gene

Matthias Frisch, Mariin Bohn, and Albrecht E. Melchinger*

ABSTRACT

In recurremt buckerossing designed for introgression of a target
allele from a donor into the genelic backgreund of 4 recurrend parent
{HP). molecular markers can accelerate recovery of the recurrent
pareni genonite (RPG). The objectives of this stedy were 1o determine
in macker-assisted backerossing (MARY (i) (ke optimum distances
{ch, d;} between ihe Nanking markers and ihe farpet locus and (i)
the minimum rumber of individuals (n) required for ebiaining with
a certain probahility @ given number of individuals that carry the
donor allele at the turget locys and have o minimem proporGen of
donor genome on the carrier chrompsome. Analytical solutions and
tubulated resuits are given for releyvani parameters (d,, &4, a) required
in ohiain, with a specified probability of success. at least oae desired
individual. They depend on the leagth of the eartier chromosome, the
ehromasomal position of (he target locus, its distance fa the flankiog
marker loci, and the number of individuals evaluaied. Our appreach
-un increase the eificiency of MAB by redudng the number of individ-
unls and marker daln points required.

]:Rr:c URKENT BACKCROSSING i3 a breeding method com-
monly cmploved 1o transfer alleles at one or more
loci from a donaor to a recurrent parent (Allard, 1960).
Examples include the trunsfer of resistance alleles from
a wild or unimproved form into elite hreeding materials
and cultivars or the transfer of a target allcle introduced
bv genetic transformation into a line that is easy to
handle in fissue cuiture but otherwise of no agronomic
vilue (Ragot ct al.,, 1995). Besides transfer of the target
allele(s), the main goal 15 to recover the RPG as com-
pletely and as quickly as possible.

Molecular markers arc used in recurrent backerossing
for two purposes: (i} as a diagnostie tool for tracing the

Instituite of Plant Breeding, Seed Science, and Population Genetics,
Univ. of Hohealeim, 73593 Stuttgart, Germany. Received 31 March
1998, *Corresponding author (melchinger@uni hohenheim.de).

Published in Crop Sci. 39967975 (1949),

presence of a target allcle, for which dircet selection is
ditficult or impossible (c.g., recessive alleles expressed
at a late stage m plant development or quantitative trait
loci) andfor (ii) for identifving individuals with a low
propartion of the undesirable genome from the donor
parent. Adopting the terminology of Hospital and Char-
cosset {(1997), we refer ta the first approach as fore-
ground selection (for review see Melchinger, 1990) and
to the second approach as background selection (for
review see Visscher et al, 1996). As demonstrated by
Tanksley et al. (1989) with computer simulations, use
of molecular markers for background selection can ac-
celerate recovery of the RPG by twoe or three gener-
ations,

Background selection has two goals: (i) reduction of
the proportion of the donor genome on the carrier chro-
mosome of the target allele and (i) reduetion of the
donor genoime on the non-carricr chromosomes. The
length of the chromasome segment from the donor that
is linked to the target sllele (hinkage drag) 1s reduced
by seiecting individuals that carry the target allele and
are homozypous for the RI alleles at tightly linked
marker loci. In practical implementations of MAD, two
crucial guestions arc How should the Hanking mark-
crs by positioned? and How many individuals must be
generated and genotyped with molecular markers to
reduce the undesirable donor genome below a certain
threshold?

Haospital et al. (1992) determined optimum distances
d, and d, between the target Jocus and the flanking
marker loci to recover a maximum amount of the RPG
on the carricr chromosome by applying cquation

Abbreviations B, backeroas; Bz r-Lh backeross generation: oM.
centimorgan: MAR, marker-assisted backerossing: NRP. nea-récur-
rent parent: QTL. quantitative trait loci; RP, recurrent parent; RPG,
recurrent paremt gename: RFLP, restriction fragment iength poly-
morphism,
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GENOTYPE x ENVIRONMENT INTERACTION
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Introduction

The presence of genotype x cnvironment interaction
(GxE) in agriculture is expressed cither as inconsistent
responses of some genotypes relative to others due to
genotypic rank change or as changes tn the absolute
differcnces between genotypes without rank change.
For the description of the mean response of genotypes
over environments and for studying and interpreting
GxE in agricultural experiments, three classes of
models are commonly used: (1) linear models; (2)
bilincar models, and (3) linear-bilincar models. One
class of tincar models, namely factonial rcgression (FR)
modecls, and onc class of bilincar models, namely
partial least square (PLS) regression, allow
incorporation of cxternal environmental and genotypic
covariables directly into the model.

Early approaches for analyses of GxE included the
conventional fixed effects two-way (FE2W) model
with sum to zero constraints running over indiees. The

empirical mean response, ?ij’ of the i" genotypc

(i=1,2,....0) in the j environment (=1,2,...,J) with
replications in cach of the /xJ eells i1s expressed as

y.. = . . 8). +€. Eq. |
yij u+tl+6J+(t )’J+EU q

where pis the grand mean over all genotypes and
environments, t1.is the additive cffect of the it
i

genotype, 6.is the additive cffect of the j"
J

environment, (18) _is the non-additivity interaction
1

(GxE) of the i genotypc in the j cnvironment and €.,
1

is the average emor assumed to be NID

(0,02#1) {whcre 02 is the within-environment error

variance, assumed to be constant). Yates and Cochran
(1938) introduced the model in which the GxE term is
lingarly related to the environmental main effect.

The purpose of this paper is to present parsimonious
approaches other than the FE2W model to the analysis
of GxE. Examples illustrating the use of various
statistical models for analyzing GxE in the context of
plant breeding, genctics, and agronomy are given.

Linear-bilinear models
Williams (1952) was the first author to link the
FE2W model with principal components (PC} analysis
by considering the model :
V. =p+T, +hay. +€_ where Ais the largest
] i i)
singular vatuc of ZZ'and Z'Z (for Z:?ij - ?i ) and

U.i and "{jarc the corresponding eigenvectors.

Gollob (1968) and Mandel (1969, 1971} extcnded
Williams™ (1952) work by considering the bilinear GxE

term as(t B)ij =EI[< - 1lkuik7jk' Thus, the general

formulation of the lincar-bilincar model is

V.=p+1. +3 +Z! _ 1k a y. +E. Eq.2
ylj W I1 J+Zk=l kulkyjk Elj a

where the constant lk is the singular value of the k™

multiplicative component that is ordered

ll > 12 >z lt : the o arc clements of the k™ left
i

singular vector of the true interaction and represents
the genotypic sensitivity to hypothetical environmental
factors represented by the k™ right singular vector with
elements y_ . Thea, andy, satisfy the ortho-

Y Jk ik 1Y ik fy

normalization constraints Z; aikaik‘ = ijjkyjk' =

for k=k' and Zia? = '72_ =1. When Eq. 2 is
ik ik
saturated the number of bilinear terms is f=min(/-1,/-

1). Gabriel {(1978) described the least squares fit of Eq.
2 and explained how the residual matrix of the GxE

term, Z:yij - ?i - Vj +V ,is subjected to a singular

value decomposition (SVD) after adjusting for the



additive (linear) terms. Gauch (1988) called the Eq. 2
Additive Main Effccts and Multiplicative Intcraction
(AMMI) model.

Other classcs of lincar-bilinear models, described by
Cornelius ct al. (1996), arc Genotypes Regression

ModeI(GREG)Yij=pi+th(___ll a, y. +E_,

k ik jk 1
the Sites (environments) Regression Model (SREG)
_— t -
=un. + L +£ t :
yij uj Zk =1 Tjk bij’ he Completely

Multiplicative Model (COMM)

-1 )"k uiijk +Eij, and the Shifted

Multiplicative Model (SHMM)

v =%t

y.=p+Xt L +E, .

The SHMM model was the first lincar-bitincar model
uscd for identifying subsets of genotypes or
cnvironments in which genotypie rank changes would
be negligible (Comelius et al., 1992, 1993; Crossa et
al., 1993, 1995, 1996; Crossa and Comnelius, 1993).
The SREG model is useful in plant breeding because
the bilincar terms contatn both the main effects of
genotypes and GxE. (Crossa and Cornelius, 1997).

In matrix notation, these linear-bilinear models can

be expressed as Y=ka=lﬂk X, + AAG'+E (Comelius
and Seyedsadr, 1997) where Y= Yij]’ X = xkij 1

E=[aij], A=diag(h, , k=120, b 2k 220,

A=), G=(ynt)), and AASG'GSL

Thexkijare known constants and Bk’ Lo, a. ,and

kK’ ik
Y " are parameters to be estimated.
J

Linear models

The GxE is modcled directly using regression on
environmental {and/or genotypic) variables. A usecful
lincar model for incorporating extcrnal environmental
(or genotypic) vanables is the factonal regression (FR)
model (Denis, 1988; van Eeuwijk ct al., 1996). The FR
models are ordinary lincar models that approximate the
GxE effects of Eq. I by the products of onc or more of
(1) genotypic covariables (observed) x environmental
potentialities (cstimated), (2) genotypic scnsitivitics
{esumatcd) x environmental covariables (observed).
For k=1,...,G genotypic covariables (centered)

represented by  x. ,.,x. , [Egq. I

becomes
il "G

y.. = 5. +30 +£._, G<I-1, where
yij |.1+ti+oj+Zg=]xig§jg Eij’ , where

£. represcnts an environmental factor (regression
18

coefficient) with respect to the genotypic covariable,

X, . Constramnts on the
1g

Zri=ZS-=Z§- =0. In matrix notation the
1 [ JE

parameters are

expectation is
E(Y)=pLil'y +tl';+ 1§ + XE’ Eq. 3
where Y=[§ij] is a fx/ matrix; 1; and 1, are /x] and

Jx1 vectors with all elements equal to one,

respectively; t=[1] is the /x1 vector of main effcets of
genotypes; 8=[8;] is the Jx1 vector of main effcets of

cnvironments; X =[x, ] is the /xG matrix of known
18

genotypic covariables; B=[ £

| is the JxG matrix of

unknown environmental factors
coefficients).

For h=l,..., H environmental covariables (centcred)

(regression

represented by  z. ,..,7

Eq. 1 is
3l

jH’
- H E J<J.
yij = p+1:i +6j +):h =1€ih7'jh H:ij’ H<J-1, where

g_h represents an genotypie sensitivity (regression
1

cocfficient) with respect to the to the environmental

covariable, z Constraints on the parameters

i’
are?ti =§6j = )i:,c_ih =0. In matrix notation, the
expectation is

E(Y)=pL1'y+1';+ 11§ + CZ Eq. 4
where Z =[zjh] is the JxH matrix of known

cnvironmental covariables;  =[ g_h] is the /xH matrix
i

of unknown differential genotypic sensitivities.

The FR model including genotypic and
environmental covariables simultaneously
ISy, =u+71T +0. +ZG__ x. &+

ij i) Te=igtig

H H G =

+ X, v % ..

Zh=1c"i “ih Zh=1 Zg=1 1g‘gh?Jh +Elj
where v kh is a constant that scales the cross-product
of the genotypic covanables, xk , with the

environmental covariables, Z, , and can bc derived

h

from the two previous FR modecls by imposing the

restriction E"Jg = vghzjhor Sin = xihvgh; each




cross product represents one degree of freedom in the
GxE subspace. In matrix notation the expectation is
ECY)=pl 1"y + <1, + 1§ + XvZ+ XE'+HZ’ where the
constraint XZ'=CZ'=0 (where 0 is a matnx HxG of
zeros) is required. The model should be fitied for all
possible combinations of genotypic covariables with
environmental covariables.

When environmental (or genotypic) covariables
show high collinearity, interpretation of the least
squares regression cocfhicients is complicated becausc
they are estimated very impreciscly. Consequently, a
stepwise procedure for choice of the covariables to
include could be useful for model construction. Noise
on the response vanable also complicates the
interpretation of the FR parameters. Furthermore, lcast
squares estimation of the parameters in the FR models
are not unique when the number of covariables is larger
than the number of obscrvations, so an alternative
estimation method is nceded. Partial Least Squares
(PLS) regression overcomes some of these problems
and it can be used as an alternative estimation method.

Bilinear models

Multivariatc Partial Least Squares (PLS) regression
models (Aastveit and Martens, 1986; Hclland, 1988)
are a special class of bilincar models. When genotypic
responses over cnvironments (Y) are modeled using
cnvironmental covariables, then the JxA matrix Z of H
(h=1,2,.. ) environmental covariables can be writtcn
in a bilincar form as
Z=t\p’ Ftop' st Ftyp' yHEN=TP'+E Eq.5
where the matrnix T contains the t; ./x1 vectors called
latent environmentai covariables or Z-scores (indexed
by environments) and the matrix P has the p,...pu
Hx1 vectors called Z-loadings (indexed by
environmental variables) and E has the residuals.
Similarly, the response variable matnix Y in bilincar
form is
Y=thr;+t2q’1+...+th'M+FM=TQ’+F Eq 6
where the matrix T s as in Eq. 5 and the matnx Q
containg the qy...qq /x1 vectors called Y-loadings
(indexed by genotypes) and F has the residuals. The
relationship between Y and Z is transmitted through
the latent variable T. The PLS algorithm performs
separate (but simuitancous) principal component
analysis of Z and of Y that allows reduction of the
number of variables in cach system to a smaller
number  of hopefully more  interpretable  latent
variables.

Helland (1988) showed that a reduced number of
PLS latent variables gives a low rank representation of
the least squarcs cstimates of the FR  with
environmental covaniables because the expectation of
Y is
E(Y)=QT=QZW)=(QW)Z'~(Z=

ez Eq. 7

ith " jh
as in Eg. 4 where T, Q, and Z are defined as before and
the vector W is Hfx1 and contains the Z-loadings (or
weights) of the cnvironmental covariables; £ contains
the PLS approximation to the regression coefficients of
the rcsponses in Y to the environmental covariables in
Z. The matrices T (with ./ coordinates for
cnvironments), Q (with [ coordinates for genotypes)
and W (with # coordinates for cnvironmental
covariables) can be represented in the PLS biplot such
that projecting the j* environment (row) of T on the i
genotype (row) of Q [Y'=(TQ')Y] approximates the
GxE; projecting the h' environmental covariable (row)
of W on the i® genotype (row) of Q (QW'=0)
approximates the regression coefficient of the ™
genotype on the h® environmental covariable (Vargas
et al.,1999; van Ceuwijk et al., 2000). When genotypic
covariables are used to model cnvironmental responses
over genotypes, then the latent genotypic covariables
arc T=XW where vector W is Gx1 and contains the
weights of the genotypie covaniables. The expectation
of Yis
CY)=TQ'=XWQ'=XE=

G

g =1%ig" e
as in Eq. 3 (van Ecuwijk et al., 2000, Vacpas ct al,,
19993 where E contains the PLS approximation to the
regression cocfficients of the responses in Y to the
genotypic covariables in X. The matnices T (with /
coordinates for genotypes), Q (with .J coordinates for
cnvironments) and W (with ( coordinates for
genotypic covariables) can be represented in a PLS
biplot such that projection of the i" genotype (row) of
T onto the j" environment (row) of Q (Y=TQ’)
approximates the GxE; projection the g™ genotypic
covariable (row) of W onto the j'* environment (row)
of Q (W(Q)'=E) approximates the regression cocfficient
of the | environment on the g genotypic covariable.

Cq. 8

QTL and QTLx environment interaction analysis in
genetics and plant breeding

In plant breeding much research is directed at
locating the regions of the chromosomes that are
involved in the physiological processes underlying
phenotypical traits. These regions are called
quantitative trait locit (QTL or QTLs). When these
regions differ between genotypes in relation to changes
in the covironment, QTLxenvironment interaction
occurs (QTLxE). The statistical problem can be
interpreted as a multivariate multiple regression of
phenotypic  fraits  as  observed over a set of
environments on a set of genetic predietors. 'R
provides a suitable framework for QTLxE analysis. In



Crossa ct al. (1999) examples are given of how FR and
PL5 can be used for assessing location and importance
of QTL and QTLxE.
FR models of the form
V. =p+5 +39_ x E +E_ and

ij i Te=1g7g Ty
V. =u+d, +EGW 13, E.  +T_(van Eeuwijk, et

i ) BT laetig )
al., 2000} are useful for studying QTL and QTLxE,
respectively where xig "s are genotypic covariables, or

genetic predictors, at specific locations of the
chromosmes, whose values are functions of the
neighboring genetic markers and the position at the

chromosome. The ég "s represent the QTL main
effeets, which are indexed by environment, ﬁjg ,
represents the QTLxE. Following Haley and Knott
(1992), the simplest QTL mapping analysis considers
the regression on the genetic predictors at marker
positions (individual marker regression) where the
additive cflects of the observed marker genotypes AJM,
dm and ymr are 1.0, and -1, respectively and the
dominance effects for MAL, Mdim and pmn are 0,1, and 0,
respectively. Somewhat more advanced, simple

interval QTL mapping analysis cunsiders the

regression on the genetic predictors not only at marker
positions but also at regular intervals between markers,
The additive effect and dominance effects can be
computed,

In compositc interval QTL mapping analysis a
correction is added for the effects of QTLs at other
positions in the genome. Lt the position under
evaluation be p, then other markers, called cofactors,

C, are included in the model to reduce noise created by
the effect of other QTLs, then the model
is yij =u+d + T ligég + "ipEJP +Eij' Selection
geC
of the appropriate markers to be uscd as cofactors for
correcting the effect of other QTL can be done by one
of a few PLS-axes created by regressing the
multivariate response on all genetic predictors outside
the evaluation window in composite interval mapping,
and then performm the mapping procedure with the
corrected responses. Testing procedures for the
presence of QTL and QTLxXE at a certain position can
be done by permutation tests (van Ecuwijk, at al,,
2000).

Some results of the application of the methodology
described in van Eeuwijk et al. (2000) now follow. The
grain vield of F; (211) tropteal CIMMYT maize lines
lines was evaluated in eight cnvironments that were
contrasting in drought and niwogen stress. As FR s
essentially a regression method, QTLs and QTLxE can

be lorated by the application of standard F-statistics.
Plot of F-prefiles over the first chromosome 1s in Fig.
1. Based on randomization studies thresholds should be
applied of about 54, 4.5 and 9, respecnvely {¢=0.05).
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Figure L. F-values for the differen: positions
along e [irst cliromosome for additive geneuc
QTL mam effects, additive genclic GTL=E.
and QTL inain effects+QTL=E.

Treatment x environment interaction analysis in
agronomy

A parsimonious description of the Treatment x
Environment  (TxE) cexisting in 24  agronomic
treatments (1-24) [tllage, summer crop, manure, and
nitrogen (N)] evaluated during 10 consccutive years
(1988-97) was conducted by Vargas ct al. (2001).
Results of the final MFR were compared with those of
a Partial Least Squares (PLS} to achicve extm insight
in both the TxE and the final multiple factorial
regression (MFR) model.

The MIFFR was applied on the six most importan
components of the TxE term:  YearxTillage,
YearxSummer  Crop, YearxManure, YearxN,
YearxSummer CropxN, and  Yecarx Manurex N.
Results for the MFR of the 27 cnvironmental
covariables x  tillage interaction  showed  thai
¢vaporation in December (EVD) x tillage sum of
squares accounted for 68% of the wholc vear * allage
interaction. For year x summer crop, evaporation in
April (EVA) accounted for 36% of the year x summer
crop. For year x manure, covanables precipitation in
December (PRDY) and sun hours in February (SHF)
contributed with 56% of the year X manure sum of
squares. Year x Nimogen (N) interaction determined
the major parl of year x treatment interaction sum of
squares,

The PL.S biplot separated the nine highest yielding
tecatments (9,19.2{,17,11,12,10,23, and 18) from the
nine lowest yielding treatments (1,2,3,4,5,6,7,8, and
16) (Fig. 3). The ninc lowest vielding treatments had a



positive interaction with year 1995 that had high
mTUF, mTF, and MTA but a negative interaction with
year 1988 (opposite quadrant). The PLS biplot contains
roughly five clusters of comelated cnvirommental
covariables. The erder of inclusien of these covariables
in the MFR with the stepwise procedure for cach factor
¢ifect corresponds to selecting covariables for the
different cluster groups depicted in Fig. 3.

Figure 3. Biplot of the first and second PLS factors
representing the Z-scores of the 10 years (1988-97),
and the Y-loadings of the 24 practice treatments (1-24)
enriched with the Z-loadings of 27 environmental
variables: EV: total monthly cvaporation, PR: total
monthly precipitation, SH: sun hours per day, mT:
mean minimum tempeature sheltered, MT: mean
maximum temperature sheltered, mTU: mean
minimum temperature unsheftered; D: December, J:
January, F: February, M: March, A: April; N: Nitrogen
(from Vargas et al.,, 2001).

Crossover interaction analysis in plant breeding
Using hnecar-bilincar SHMM model, Cornelius ¢t al.
{1992) defined sufficient conditions for the absence of
significant genotype crossover incraction (COI) in a
set of environments and/or genotypes: (1Y SHMM with
=1 (SHMM,) must be an adequate model for fiting

the data and (2) le are all of like sign. When SHMM,
predicted  vajues, j‘}ij = B+i’lﬁi l?j |- are  plotted
against the primary effects of cnvironmcnts,?jl, the

graph consists of a set of cegression lines, one for cach
genotype, all of which concur at the point (0, ). Fora

non-COl SHMM, the '?jl arc all of like sign (or zero)

and, thus, the point of intersectron 15 a point either at

the boundary (if une ?jl=0), or outside (left or righr)

of the region containing the plotted points. If the
?j] have different signs, then the point of concurrence

is within the segion containing the plotted points and a
complete reversal of rank order of genotypes is
displayed on the right, as compared to the Ieft, of the
point of concurrence. For ciustering environments,
SREG, can be used instead of SHMM,; and all the
above propertics still hold then the figure shows an
overlayed set of broken lines (one for each genotype)
that display no genotype COl within the region of
plotted points.

When SHMM is fitted to the cntire sct of data,
several components are necessary i an adequate fit is
to be achicved. The procedure by a which subset of
environments without COL is found cunsists in using a
clustering strategy that will divide the environments
into subscts such that significant variation captured as
sccondary, tertiary, ete., cffects when SHMM is fitted
to the entire data set, can be cxpressed as primary
effects in separate analyses of dala from the subsets.
The measure of distance between two environments is
the residusl mean square after  fitting SHMM,
[RMS(SHMM 3| to the data from the ¢wo
environments subject to a non-CQl constraint.

Data from a tnal with g=9 genotypes evaluated in
e=20 environmems showed that SHMM, will not
adequately it the entire data and the fitted SHMM,
itself displayed genotype COL In Fig. 4, the consistant
response of the nine genotypes across a subset of ten
environments is depicted through the overlayed broken
line SREG, that does not cross over.

Yield (ton/ha)

T T T
H fapo 0 L T

Site mean
Figure 4. SREG, model fitted to nine
genotypes and a subset of ten envirenments.
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ANEXO 3
CARTA DE AGRADECIMIENTO AL DIRECTOR DE CIMMYT



Santiago, November 21, 2004,

Dr. Masaru Iwanaga
Director General

CIMMYT

Apdc Postal 6-641
06600 Mexico DF
Mexico

Dear Dr. Iwanaga,

This is to acknowledge the recent participation of Dr. José Crossa as
an Invited Professor to the University of Chile. Dr. Crossa spent a week with us in
Santiago and offered a Course in Selected Topics of Experimental Design and Data
Analysis with Emphasis on Multivariate Analysis. Twenty five students including
University Professors, Graduate Students, INIA Researchers and Research Staff of
major Seed Production Companies attended the course.

This activity turned to be of major importance to upgrade our
knowledge in these matters, particularly considering that Dr. Crossa is one of the world
leading scientists in the subject. His course was rated excellent by all participants. The
usefulness of the topics treated for agriculture as well as for other research areas is.
beyond expectations. A highly complex subject was taught in an elegant conceptual
way, such that all participants understood the principles involved. At the same time,
continuous, carefully chosen readings and exercises put the concepts to work, A final
comprehensive take home exam, approved by all participants, was the final test for this
successful project. The Course was submitted to the Graduate School of the Agronomy
Faculty of our University for evaluation, such that it would provide credit to the
graduate students who attended and approved it.

Financial support for Dr. Crossa’s air travel and expenditures while in
Chile, as well as for minor expenditures related to the course, was provided by the
Chilean National Fund for Innovation in Agriculture (FIA) that belongs to the Chilean
Ministry of Apgriculture. The Course preparation was carried out by the Soil-Plant-
Water Relations Laboratory of the Faculty of Agronomy of the University of Chile. The
computer hardware as well as other infrastructure was provided by the Faculty of
Agronomy. Dr. Crossa brought with him the specially required computer software.

Finally, 1 would like to express my gratitude to Dr. José Crossa for
graciously sharing with us his valuable knowledge and experience as well as.my
recognition to CIMMYT for maintaining state of the art research in this essential area
for agricultural development.

Sincerely yours,

dmurdo Acevedo
Ing. Agr. MS PhD
Profesor Ti

tvérsidad de Chile

cC.
N LN
Decano Facultad de Agronomia /

Deputy Director of Research CIMMYT
Director de Programa de Doctorado CSAV





