
A CHALLENGE

Managing the Fertility and Health Of High Producing Dairy Cows

> K.L.Macmillan University of Melbourne

Milk Yield, Health and Fertility

- Milk yield increases have been impressive consequences of the "internationalisation" of genetic improvement
- This has been combined with improved cow nutrition for production
- Yet, declines in cow health (as reflected by reduced lactations/cow/lifetime) are also occurring in most industries
- Major causes are associated with peri-parturient diseases, udder health and lower fertility

Milk Production and Fertility in Dairy Cows (NE USA) 100 12000 (kg/yr 10000 80 8000 Production (%) 60 6000 R 40 4000 20 2000 Milk 1996 1951 1975 1985 2001 CR ---- Milk Production

Reproduction in High-Producing Herds

- Summaries of reproductive records for herds of different levels of production suggest negligible effects of milk production on reproductive efficiency. (Lucy, JDS 2001).
 - Nebel and McGilliard, JDS, 1993.
 - Stevenson, Hoard's Dairyman, 1999.
 - Morton, InCalf, 2004.
- The improved reproduction in high-producing US herds probably reflects better feeding, healthier cows, and better reproductive management. (Lucy, JDS 2001).

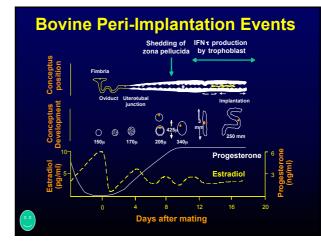
Risk Factors for Conception

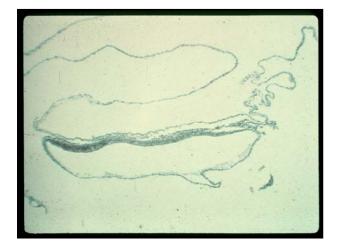
First 60-d Milk Yield (kg)	Hazard Ratio
<u>< 1582</u>	1.00
1583 - 1891	0.99
1892 - 2195	1.01
2196 - 2541	1.01
> 2541	0.92

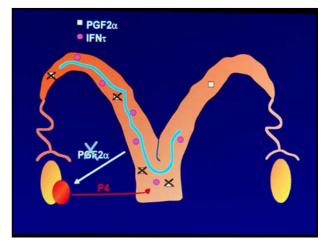
Source: Gröhn and Rajala-Schultz, 2000

The "fertility decline" would seem to be "genetically linked" to the changes associated with selecting for higher milk yield. Fertility changes are much less in non-lactating cows and in heifers.

Embryo Responses: Dry vs. Lactating Cows




Criteria for Determing Pregnancy and Early (EEM) vs Late (LEM) Embryonic Losses

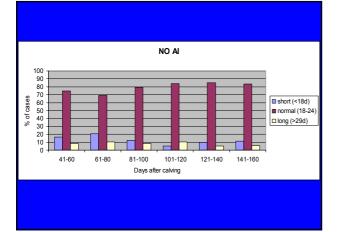

Status	Day 0	Day 21-24	Day 35
Pregnant	P ₄ < 3.5 ^a ng/ml	P ₄ > 5 ng/ml	PSPB +
EEM / Non- FERTILIZ.	P ₄ < 3.5 ng/ml	P ₄ < 5 ng/ml	2 nd Service/ Non-Preg
LEM	P ₄ < 3.5 ng/ml	P ₄ > 5 ng/ml	PSPB -/ Non-Preg

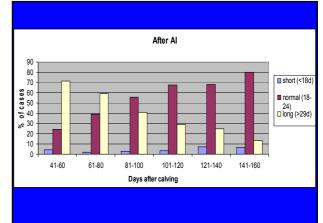
Pregnancy Rate and Early (EED) vs Late (LED) Embryonic Death in Lactating Dairy cows			
Pregnancy Rate	EED	LED	
42.7% (559/1395)	31.6% (441/1395)	14.7% (209/1395)	

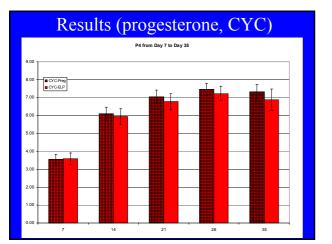
Embryo Development

Pregnancy Rate and Early (EED) vs Late (LED) Embryonic Death in Lactating Dairy cows			
Pregnancy Rate	EED	LED	
42.7% (559/1395)	31.6% (441/1395)	14.7% (209/1395)	

Rate of Embryo Loss from Days 27 to 45 in "Pregnant" Holstein Cows


Study	Cows	Test days	Interval	% loss
1	195	28 & 42	14	18
2	139	27 & 45	18	21
3	1503	31 & 45	14	13
4	203	28 & 45	17	16
5	360	31 & 45	14	11
6	220	27 & 41	14	10
7	176	31 & 45	14	10
8	167	28 & 39	11	-11
Average	2971	27 to 45	11 to 18	13

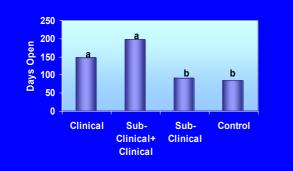

Rate of Embryo & Foetal Loss from Day 28 up to Day 98 in "Pregnant" Holstein Cows


Study	Cows	Test days	Interval	% loss
1	211	32 & 74	42	14
2	171	28 & 90	62	17
3	1601	28 & 98	70	20
Average	1981	28 to 98	42 to 70	18.8

Why are the embryos dying?

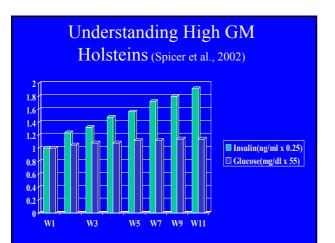
- Abnormal genes? Unlikely
- Abnormal uterine environment? *Likely*
- But the energy requirements of the embryo are minimal !!
- *Is there a conflict between uterine/embryo requirements and udder demands for lactation?*
- When the embryo dies after Day 17, the cow does not show oestrus for a prolonged period

The decline in fertility could be linked to other health issue

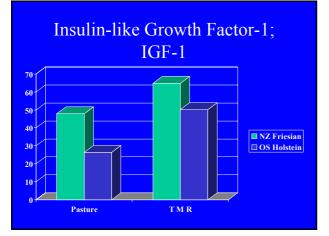

Cow Health and Fertility

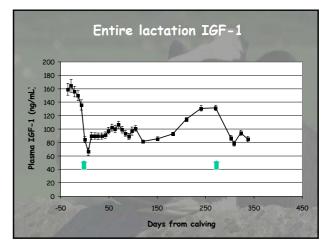
Condition	Odds Ratio	Conc Rate	Range
Normal (healthy)	1.00	50	40 - 60
Chronic metritis	0.63	32	1 – 23
Acute metritis	0.68	34	6.5 - 8.3
Retained placenta	0.72	37	4.5 - 8.6
Ketosis	0.90	46	7.4
Lameness	0.83	43	<1-4
Ovulatory dysfun.	0.71	36	2 - 9

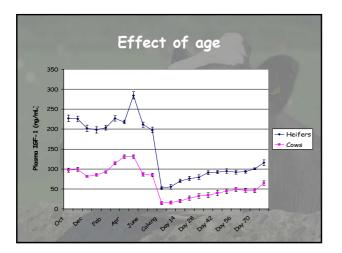
Effect of Mastitis on Risk of Abortion in Dairy Cows

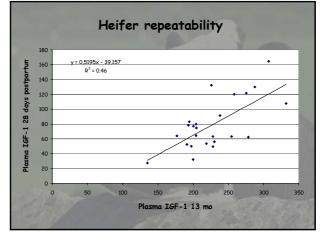

Factor	Adjusted Odds Ratio	95% Confidence Interval; P ≤ 0.05
Mastitis No Yes	1.0 2.7	1.3 - 5.6

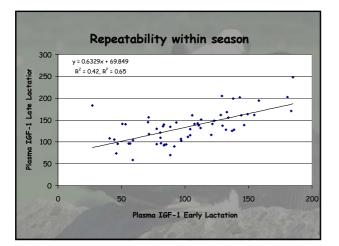
Mastitis During The Breeding Period

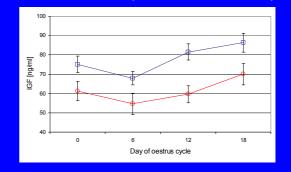

What hormonal changes have occurred with selection for increased milk yield ?

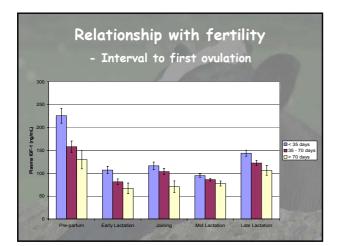

- Somatotrophin (bST) concentrations have increased
- Insulin concentrations have decreased
- IGF-I concentrations have decreased
- BOH, urea and NEFA have increased
- Glucose has hardly changed

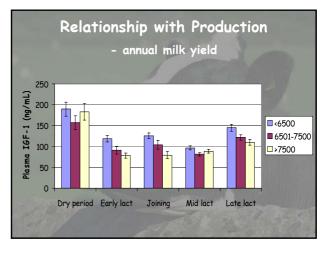


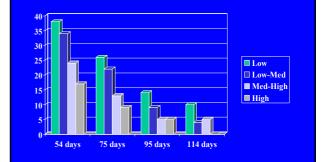

IGF-I is a potentially useful indicator of energy balance and energy partitioning.


It may be a useful "genetic marker" for yield and fertility, especially in pasture-fed herds.

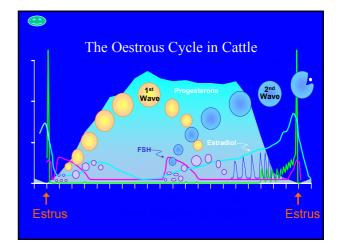








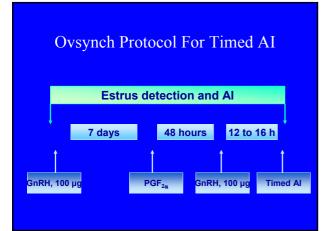
Reproductive performance is also linked to milk composition.


The cows within a herd with the lowest milk protein % have the poorest reproductive performance

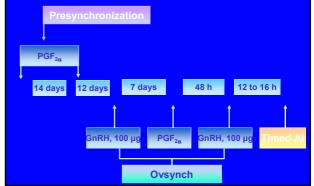
Incidence of Anoestrus x Postpartum Interval x %P

How can we improve cow health and reproductive performance?

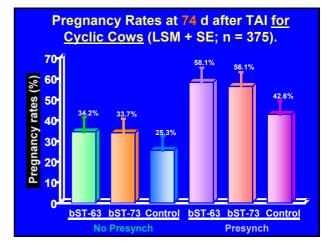
Is there a price to pay for higher production?

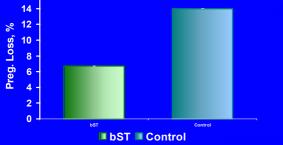


Controlled Breeding Programs

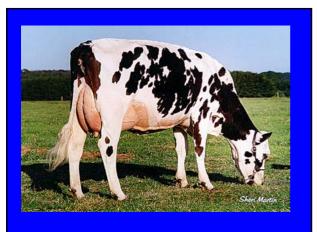

- Controlling follicle development
- Regulating the length of the cycle
- Synchronising ovulation
- Timed AI no oestrus detection
- Stimulating embryo development
- Early pregnancy testing
- Re-synchronising non-pregnant cows

Higher Producing Lactating Dairy Cows


- Larger or same size preovulatory follicles
- Lower oestradiol concentrations
- More multiple follicles and double ovulations
- Lower duration of mounting activity


Presynch/Ovsynch Protocol For Timed AI In The First Postpartum Service

Treatment With bST Associated with Reproductive Protocols Improves Pregnancy Rate and Embryo Maintenance in Lactating Dairy Cows



bST Treatment Reduces Losses of Pregnancy Between 31 and 45 d after First Postpartum AI in Cyclic Dairy Cows

Conclusions

- Selection for increased milk yield has also increased energy partitioning towards the udder
- This has been achieved by altering the balance between the "metabolic" hormones
- Although normal reproduction is not "energy demanding" (except in late lactation) it does need a balance in these metabolic hormones
- Rapidly mobilising body tissue in early lactation can come at a price
- Given sufficient time to recover from the energy demands of early lactation, fertility levels have scarcely declined

