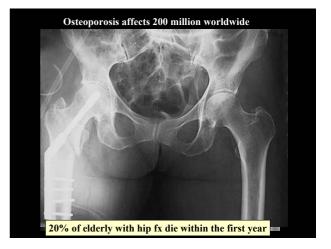


15 Senior Scientists
135 support staff
2 metabolic kitchens
Service labs: clinical lab, mineral analysis
2 DXAs, Whole body counter



Risk Factors for Osteoporosis

- Age
- Gender
- Genetics
- Sedentary life style
- Smoking
- Alcohol
- Low calcium / Vitamin D
- High protein intake (NIH Consensus Statement, 2000)

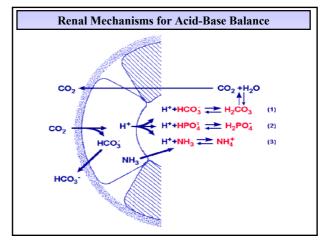
The Controversy

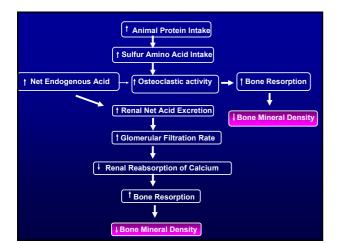
High protein diets are a risk for osteoporosis...

Especially if source is <u>animal protein</u> and <u>calcium intake is low</u>

- <u>Purified</u> sources of protein increased urinary calcium loss (Linkswiler et al 1970s)
- <u>common</u> sources of protein did not (Spencer et al. 1978; Hunt, et al 1995)

Phosphorus Effect?

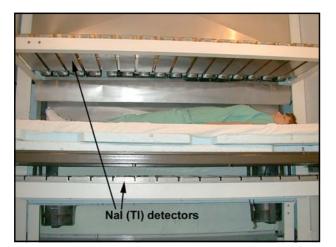

Observational Evidence


- Feskanich et al (1996): Animal protein associated with increased risk of forearm fractures
- Munger et al (1999): Animal protein associated with reduced incidence of hip fractures
- Hannan et al (2000): Lower total and animal protein intake associated with increased bone loss
- Wengreen et al (2004): Increased total protein intake associated with reduced hip fx in "younger" elderly

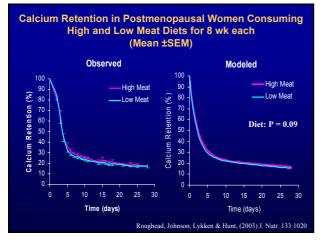
Bone

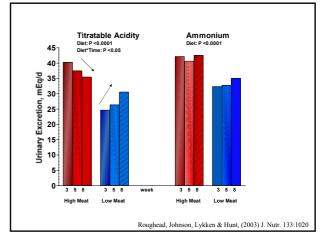
- <u>Composition:</u>
 - 70% mineral (40% calcium; 99% body Ca)
 - 25% organic (>90% protein)
 - 5-8% water
- Function
 - Structure, locomotion, hematopoesis, growth factors
 - Acid-base balance

Research Questions ... Does increased animal protein intake decrease calcium retention? Does replacing animal protein with plant protein improve calcium retention? Do dietary calcium and protein interact


Do dietary calcium and protein interact in a dose-dependent manner?

Design Considerations

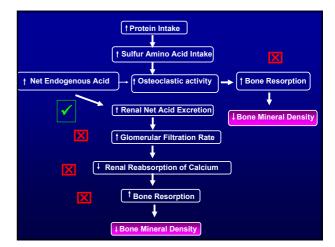

Purified	vs.	Common protein
• Equalized P	VS.	Variable P
Urinary Ca	vs.	Ca retention
Balance	vs.	Tracer methodology
		(absorption vs. retention)
• Short-term	VS.	Long-term feeding
• Few subjects	vs.	Statistical power


Protocol

- <u>Volunteers:</u> healthy post-menopausal women
- <u>Design:</u> randomized <u>crossover</u>
- Diets: weighed diets; 7-8 wk
- Calcium Retention:
 - wk 3-4: labeled entire 2-d menu with ⁴⁷Ca (constant specific activity)
 whole body scintillation counting for 4 wk

	Low Meat	<u>High Meat</u>
Meat (beef, chicken, turkey, pork)	, g 65	112
Protein, % of energy	12	20
g/kg bw	0.94	1.62
Fat, % of energy	30	31
Carbohydrate, % of energy	58	49
Calcium, mg	700 (594.2 ± 19.3)	698 (574.1 ± 18.4)
Phosphorus, mg	214 (1218.2 ± 87.0)	1659 (1616.4 ± 104.1)
Potassium, mg	(2803 ± 339)	(2184 ± 290)

Diet did not Affect Biomarkers of Bone Metabolism

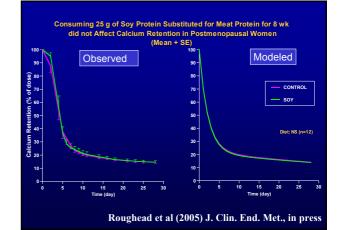

Blood:

• Tartarate-resistant acid phosphatase, Bonespecific alkaline phosphatase, Osteocalcin, 25-OH Vitamin D

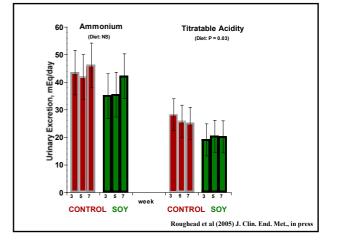
Urine:

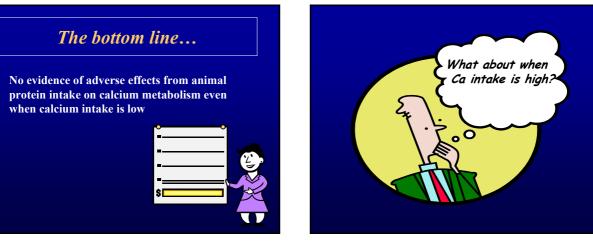
• Calcium, N-telopeptide

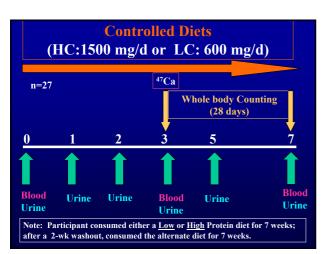
Roughead, Johnson, Lykken & Hunt, (2003) J. Nutr. 133:1020

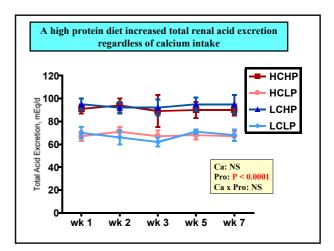

Plant vs. Animal Proteins?

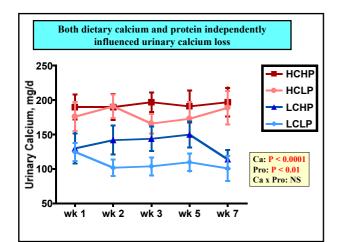
Objectives

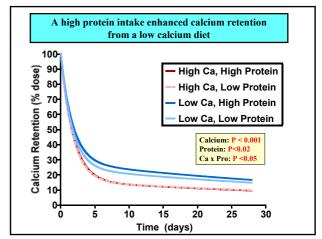

In healthy postmenopausal women, determine if daily substitution of 25 g of soy protein for meat protein

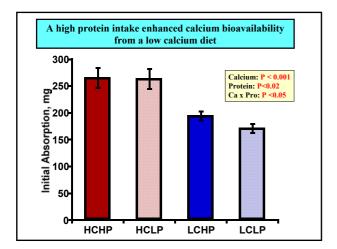

- 1) improves calcium retention
- 2) affects biomarkers of bone metabolism

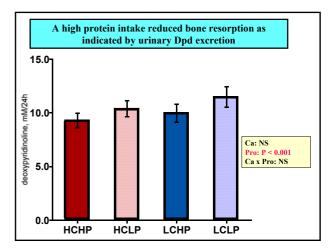

Diet (Diet Composition ¹			
	<u>CONTROL</u>	<u>SOY</u>		
Meat (beef, chicken, pork), g	170	55		
Soy Protein Isolate, g*		30		
Protein, % of energy	15	16		
g/kg bw	1.32	1.33		
Fat, % of energy	30	30		
Carbohydrate, % of energy	55	55		
Calcium, mg	690 (653 ± 40)	746 (740 ±27)		
Phosphorus, mg	1505 (1563 ± 207)	1533 (1601 ± 178)		
Phytate, mg	1673	2150		
¹ Per 2200 Kcal. Data in parentheses are analyzed values (mean ± SD)				
*Soy protein: 2.28 mg aglycone/g protein				

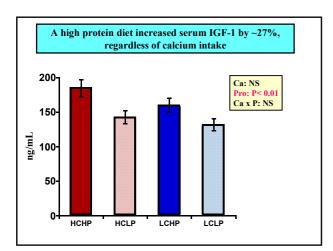


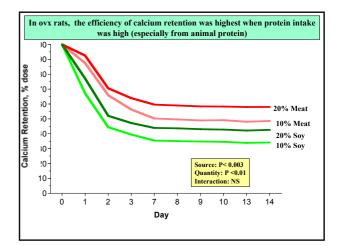


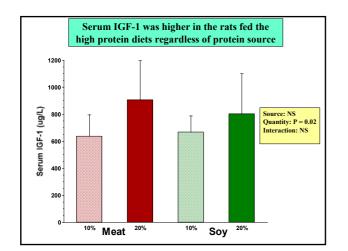


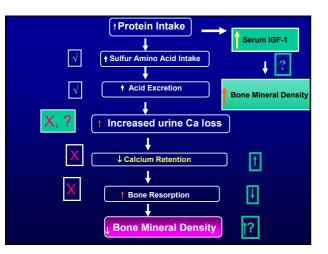


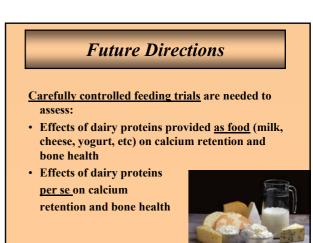











Dairy Protein and Bone?

- <u>Isolated</u> Casein and Lactalbumin have been shown to be calciuric
- <u>Isolated</u> Whey Protein may reduce bone resorption

Milk supplementation, 12 mo: increased spine and total BMD in young girls (Chan, 1995) Milk supplementation, 18 mo: increased serum IGF-I and lumbar BMD and total BMC in young girls (Cadogan, 1997) Milk supplementation, 3 y: prevented vertebral bone loss in pre-mencopausal women (Baran, 1990) High Ca milk supplementation 24 mo: decreased bone loss in femoral neck, lumbar spine and total hip in postmenopausal women (Chee, 2003) Milk Supplementation 12 wk: increased serum IGF-I and decreased urinary N-telopeptides in older men and women (Heaney, 1999)

"As we analyze a thing into its parts and properties, we tend to magnify these, to exaggerate their apparent independence and to hide from ourselves the essential integrity and individuality for the composite whole. We may study them apart but it is a concession to our weakness and the narrow outlook of our minds."

(D'Arcy Thompson, 1942)

Acknowledgments

- Janet Hunt, PhD, RD

LuAnn Johnson

- Bonnie Hoverson, RD Glenn Lykken, PhD - Debbie Krause, RD
 - Brenda Hanson, RD
 - Angela Scheett, RD
 - Emily Neilsen, RN
- Jennifer Hanson
- Jackie Nelson Aldrin Lafferty

Carol Zito

- Study Volunteers
- Primarily supported by USDA
- Partial support: National Cattlemen's Beef Association, North Dakota Beef Commission
- Solea Company (soy protein isolate)