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Al final de esta sección Ud. podrá:
1. Explicar cual es el origen de los Biochips
2. Por qué son una nueva y valiosa herramienta para el diagnóstico molecular

en el laboratorio clinico.
3. Explicar como opera un Biochips y cómo se relaciona con el diagnóstico

mediante PCR múltiple.
4. Explicar el proceso, incluyendo amplificación múltiple y detección mediante

biochips..

1 DlAGNOTEC



Introducción al Diagnóstico con Biochips
2

INTRODUCCION

Los métodos de diagnóstico deben tener cualidades fundamentales como poseer una

máxima especificidad, sensibilidad y rapidez. Con el aumento de la especificidad se
evitan las reacciones cruzadas y por ende los falsos positivos; y con el aumento de la

sensibilidad se intenta detectar la mínima cantidad de patógeno existente con lo que se

evitan los falsos negativos. La rapidez con que se entreguen los resultados es

fundamental para una oportuna decisión en cuanto a las líneas de acción a seguir.

A principios de los 80 ocurrió una gran revolución tecnológica con el descubrimiento de

los anticuerpos monoclonales aplicados para la detección de patógenos. Se pensó que

gracias a la alta especificidad y sensibilidad que presentaba esta técnica, se habían

solucionado gran parte de los problemas de diagnóstico. Sin embargo, con el correr de

los a"os se comprendió que los anticuerpos monoclonales eran muy útiles para algunos

casos, pero no servían para otros, más aún, quedaban muchos casos sin resolver.

A mediados de la década de los 80, apareció otra gran revolución científica la que se

denominó reacción en cadena de la polimerasa (peR). Esta herramienta tecnológica

consiste en aumentar artificialmente el contenido del material genético del patógeno

mediante la amplificación de una región específica del genama utilizando la enzima Taq

DNA poIimerasa. Esta técnica se caracteriza por ser altamente sensible ya que es

capaz de detectar cantidades mínimas del patógeno. lo que generalmente corresponde

a etapas tempranas o/y crónicas de la enfermedad. Con este descubrimiento también

se han llevado a cabo grandes progresos en la especificidad del diagnóstico de

patógenos, ya que no presenta reacciones cruzadas, superando con creces a los

métodos inmunólogicos. La rapidez con la que se obtienen los resultados es otra

caracteristica diferencial de esta técnica.
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Cada día van apareciendo más modificaciones de la técnica de PCR, como la

automatización o la combinación de ella con otras técnicas, que permiten día a día un

diagnóstico más certero.

Recientemente en el campo de las ciencias biomédicas, estamos asistiendo desde

hace años a un boom de la biología molecular y más concretamente de la genética y la

genómica, gracias a la continua implementación y desarrollo de técnicas

experimentales a disposición de los investigadores en los laboratorios. Los biochips

representan una de las herramientas recientes con las que cuentan los investigadores

para hacer frente a la resolución de los problemas biológicos basados en nuevos

enfoques que se orientan a la obtención masiva de información. El desarrollo de estos

enfoques integrados para el análisis ha venido de la mano de la capacidad de gestionar

y almacenar grandes cantidades de información, por tanto no es de extrat'\ar que la

llegada de estos dispositivos haya coincidido con la madurez de la bioinformática en la

cual se sustentan la realización de los experimentos en general y el análisis de los datos

que de ellos se obtienen en particular. A estos dispositivos también se les conoce con

otros nombres como Micromatrices de material biológico, Microarrays, y según el tipo de

material inmovilizado como DNA arrays o Chips Genéticos, Protein Chips o Tissue

Chips. Estos dispositivos están constituidos formando una matriz con el material

biológico que se inmoviliza sobre ellos de forma que se sabe en cada punto de la matriz

que es lo que se ha depositado permitiendo el posterior análisis. El número de

poSICIones en estas matrices puede llegar a alcanzar las decenas de miles. El

fundamento de los biochips se encuentra en el desarrollo y miniaturización de las

técnicas de afinidad que se conocen y han venido empleando desde hace a"os como

una herramienta común en biologia molecular. El desarrollo de los primeros ensayos de

afinidad con muestras inmovilizadas sobre soportes sólidos se remonta a los primeros

ensayos inmunológicos que se desarrollaron en los a"os 60's y en los que se

inmovilizaban sobre una superficie de antígenos o anticuerpos para su detección. El

siguiente paso en la evolución hacia estos dispositivos se dio en los años 70's cuando

Edwin Southem, comenzó a emplear filtros de nitrocelulosa para que actuasen como

soporte sólido para la adhesión de moléculas de DNA. El DNA si inmovilizado no

interacciona con las otras moléculas inmovilizadas pero mantiene su capacidad de
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hibridar con moléculas complementarias en disolución. La detección de estas

hibridaciones se realizaba mediante la detección de un marcador radiactivo en un

revelado por autorradiografía. A este tipo de técnica se la bautizó con el nombre de

Southem blot, que después se extendió al campo de la inmovilización de proteínas y

RNA. Con la puesta a punto de la técnica de Southern, el siguiente paso en el camino

hacia la aparición de los biochips consistió en la construcción de matrices de material

biológico inmovilizado por este mecanismo empleando para ello superficies porosas

como son las membranas de nitrocelulosa o nylon. Posteriormente se comenzó a

trabajar con el empleo de superficies con unos tamaños de poro más reducidos y con

soportes sólidos como pueden ser el vidrio y el silicio. Paralelamente con la llegada y

desarrollo de las técnicas de minlaturización también se comenzó a disminuir el tamaño

de los puntos de material depositado sobre la superficie, consiguiendo de esta manera

una mayor densidad de integración en las matrices. La aplicación de las técnicas de

miniaturización condujo hasta el desarrollo de las Micromatrices.Uno de los

acontecimientos más importantes se produjo a finales de la década de los 80's cuando

en un laboratorio de la compañía entonces llamada Affymax, un grupo de cuatro

científicos, Stephen Fodor, Michael Pirrung, Leighton Read y Lubert Stryer, que

trabajaba en la síntesis sobre superficies sólidas de péptidos, terminó desembocando

en la plataforma GeneChip, que ha sido desarrollada por Affymetrix, una compañía

escindida de Affymax en 1993. La importancia de este paso radica en la gran

capacidad de miniaturización alcanzada por este sistema. Posteriormente al nacimiento

de la tecnología desarrollada por Affymetrix se han ido sucediendo la aparición de

nuevas compai\ías y nuevos desarrollos que han permitido alcanzar el alto grado de

diversidad tecnológica existente en la actualidad. Esta técnica comenzó a ser operativa

entre el año 1993 y 1995, desde entonces a la fecha ha superado problemas

refacionados con sensibilidad y reproducibilidad lo que ha permitido a partir del ai\o

2000 su consolidación como una técnica habitual en investigadón, más aún se prevé

el inicio de su aplicación clínica para el año 2003. Cabe destacar que más de 200

centros los utilizan habitualmente y cotaboran en el desarrollo de la tecnología. Las

múltiples aplicaciones de esta tecnología son:
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• Expresión diferencial de tumores (Cáncer-Tumores)

• Detección de mutaciones o polimorfismos (Genotipificación)

• Detección de microorganismos (Diagnóstico)

• Screening de fármacos (Farmacogenómica)

s

La aplicación de esta técnica al diagnóstico de microorganismos es muy interesante ya

que abre grandes posiibilidades a realizar diagnóstico múltiple, es decir, detectar varios

patógenos a partir de una misma muestra en una misma reacción, lo que significa una

característica adicional de gran relevancia para el diagnóstico en sectores productivos

donde deben ser chequeadas altas cantidades de muestras y patógenos en periódos

de tiempo y a un costo limitado, Esto ha incentivado la creación de empresas cuyo

objetivo es lograr el desarrollo de biochips y lectores accequibles para uso masivo, tanto

en términos de costos como técnicamente.

J Cómo trabaja un BIOCHIP?

A continuación se presenta un diagrama que explica cómo opera un biochip. Este

consiste en una superficie no mayor al tamaño de un portaobjeto en la cual se

encuentran unidos cientos de oligonucJeotidos ubicados matricialmente. Luego se

incorporan a la matriz productos de PCR y/u oligonucJeotidos marcados -.En el caso de

que alguno de los produdos incorporados sea complementario con los oligos ligados a

la matriz, permanecerán hibridados y mediante algún sistema de detección es posible

identificar cual punto fue complementario con el producto incorporado, así se puede

determinar una serie de variables simultáneamente en algún ensayo de interés. En el

caso de su uso para el diagnóstico, se incorpora producto de PCR de los patógenos de

interés y en el caso de que exista producto(s) amplicado(s) deberá(n) hibridar con el

ligando correspondiente al patógeno, así se puede utlizar esta matriz con fines

diagnósticos múltiples.

S DlAGNOTEC
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Proceso de PCR múltiple.

El diagnóstico múltiple tiene por objeto detectar a partir de una misma muestra en un

mismo ensayo, más de un patógeno a la vez. Para ello, se dise~an partidores

específicos para los patógenos de interés y además estos deben cumplir con

requerimientos determinados para que puedan actuar como partidores de la mejor

manera posible, sin interferir con el resto de las reacciones de los otros partidores que

ocurren en el mismo tubo. Esto significa que cuando se lleva a cabo una reación de

amplificación múltiple, lo que ocurre es que en un mismo tubo pueden estar ocurriendo

simultáneamente una serie de reacciones paralelas que van a resultar en productos

específicos amplificados. Luego mediante el uso del Biochips ,se pueden detectar

simultáneamente una serie de puntos y/o los patógenos de interés a partir de la misma

muestra.

El método de PCR múltiple consta de cuatro pasos:

1. Preparación del Reactivo (Pre-PCR)

2. Preparación de la Muestra (Pre-PCR)

3. Amplificación (Post-PCR)

4. Detección (Post-PCR)
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Preparación del Reactivo (Pre-PCR).

• Master Mix (Mezcla Maestra): es el reactivo primario utilizado en PCR. Este reactivo

tiene los componentes necesarios que permiten la amplificación específica de la

secuencia objetivo:

1. Nucleótidos marcados: Unidades individuales de dATP, dGTP, dUTP y dCTP

marcado., .

2. Cofactor de la enzima: Mg+2 para la polimerasa Taq o Mn+2 para la Transcriptasa

reversa

3. Polimerasa Taq o Transcriptasa reversa: Enzima utilizada para la replicación del

DNAoRNA.

4. Buffers: Se usan para mantener el pH y la concentración de sales adecuados.

5. Partidores o Primers para patógeno 1, para el patogeno 2, para el patógeno 3, etc:

Son pequeñas secuencias sintéticas de DNA de una sola cadena que consisten de

no más de 20 a 30 bases. Son complementarios a la secuencia de DNAlRNA de

cada uno de los patógenos de interés.

Preparación de la Muestra.

las muestras que se pueden usar son: tejido, sangre, ovas ,fluido ovárico, semen. las

técnicas de preparación de la muestra variarán dependiendo del tipo de ácido nucleico

que se desea extraer o aislar.

Fudamentalmente la muestra debe ser lisada para liberar al patógeno, luego se deben

separar las proteínas del écio nucleico y finalmente se debe recuperar et DNA y/o RNA

y una vez extrardo de la muestra, se añade al tubo de reacción con la Mezcla Maestra.

Amplificación múltiple

Una vez que se ha añadido el DNAlRNA extraído la muestra al tubo de reacción con la

Mezcla Maestra, se somete a la reacción de PCR (con Transcripción Reversa si fuese

necesario) múltiple dentro del termociclador.
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Detección

8

Una vez que ha finalizado la reacción de PCR múltiple , el(los) producto(s)

amplificado(s) se somete(n) a una reacción de hibridación con la matriz diseñada

especifícamente para la detección del patógeno(s) de interés, esta reacción consiste en

una serie de pasos de hibridación y lavado. Finalmente la matriz se somete a la lectura

mediante un lector que es capaz de detectar las señales emitidas por el producto

marcado en el caso de que haya hibridado con algún ligando presente en la matriz. Esto

se traduce en una serie de puntos marcados y al tener conocimiento previo de la matriz

diseñada se puede determinar que producto logró hibridar con la matriz.

Así se puede detectar simultáneamente en una pequeña superficie una serie de

patógenos de interés

a DIAGNOTEC
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Generallnformation

CLONOIAG O>
~"io 1.cMoI09~ ,--';x:;=::.c....,+L-.-

Notes

This booklet describes in detail all of the steps in an ArrayTube~ hybridization and detection

experiment. Hybridization is performed directly in the ArrayTube (AT) against the (customized)

microarray integrated within the microtube. For the detection of the hybridization pattem, the

ArrayTube(~ reader ATR 01 is required. User instructions for the ATR 01 reader are available in

the separately provided ATR 01 Reader Manual. Since the detection of the hybridization pattem

is done online within the reader (atter the enhancement reaction has been initiated), carefully

read all of the notes tor ATR 01 use before starting your detection experiment. Take all of the

notes and recommendations into consideration to ensure reliable and successful experiments. r
there are any complications or questions, contact support@clondiag.com

Copyright
Copyright by CLONDIAGf chip technologies 2002. Reproductlon aOO publication of any part of this

manual is prohibited without written permission of CLONDIAGf chip technologies.

Trademarka
ArrayTube- and CLONDIAGf are trademar1cs of CLONDIAGf chip tec:hnologies GmbH. Registered names

and lrademar1cs used in this document, even when not specifically martced as such, are proteded by law.
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Storage and Handling

To secure optimal performance, the ,AtrayTubes~ (AT) are shipped in Iight-proteetive foil sealed

under ¡nert gas. Within these packages, the AT's can be stored at room temperature for at least

6 months. After opening these packages, we recommend that the AT's be used within a week to

prevent a loss in their performance. Keep the tubes ¡nside the foil in which they were shipped in

a dry and dark location. Protect the ArrayTubesl~ from direct sun Iight exposure. Avoid touching

or scratching the microarray on the bottom of the tube. Information on how to store the

processed ArrayTube~ upon completion of the experiment can be found in the seetíon "Post

Assay Procedure .. on page 15.

.&. Precautions

• The ArrayTubes~ are for research laboratory use only.

• FoJlow standard lab satety regulations when using the AT's with any hazardous material that

may be required in your individual experiments.

• Do not expose the ArrayTube~ or the solutions to direet sun Iight.

• Never scratch or touch the array surface (e.g. during pipetting steps with the pipette tip).

• Do not bring any metaJlic surface (tweezers. etc.) ¡nto contad with the AT and AT solutions.

• Keep your solutions nucJease-free.

Reagents and Materials

a) Supplled Matertal.
• AT Hybrldlzatlon Buffers

Ready-to-use solutions.

We offer three different AT Hybridlzatlon Buffers, 1, 11 and m. Depending on your

individual assay. buffer 1, U or nI wiJl be best ter your experiment.
• A T Blocking Mix

Ready-to-use powder blend for dlssolvíng in water or a buffer.

4
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b) Addltlonally requlred reagents

ClONOIAG D
chip 19Chflo~c~.e,d-.t.-,,·-

'., 1" ",

\Recommended Company·
British Biocell-

Solutfon . Remarb

• Streptavidin-gold Streptavidin - colloidal

conjugat (STP.S) Gold labeled (Snm)

• Silver enhancement kit--- ,British Biocell-

• SOS - wash solutions tor preparation sea below Common lab suppliers

• SSC - wash solutions
• These suppliers are recommendations only.

- Please ask for your local distributors.

-- An alternative homemade silver solution is avaHable. For more information. please contact us.

e) Prepartng AT Assay Solutlons

The washing buffer procedure listad below is only a recommendation. Depending on your

individual assay. alternative buffer solutions may result in better results.

N.me
" ... ,. ,.

• AT Blocking solution

• TritonX solutlon

• Silver solutlon (Brltish Blocell)

• 2xSSC (wash solutlon)

• 2xSSC/SOS (wash solutlon)'

• 0.2xSSC (w8sh soIution)

. ~ " - _. ......,

,'..
···'Procedure .'

'... '.'. .-. . .~ '. . ~ .. '. ,

• Prepare 1-2 mi of 2% solution of AT

Blocking Mix in AT Hybridization

Buffer. Mlx and vortex for dlssolving.

• Prepare a 0.001% TritonX 100

aqueous solution

• Mlx 70 ~I of enhancer and ¡nitiator

solution in a ratio of 1:1

• Dlssolve 17.53 9 NaCI and 8.82 9

Na-citrate In 100 mi H20

• Oissolve 17.53 9 NaCI and 8.82 9

Na-citrate in 100 mi H20, add SOS

to a final concentratlon of 0.2%

• Oiaselve 1.753 9 NaCI and 0.882 9
Na-citrate in 100 mi H20

CLONOIAG chip technologies GmbH
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AT Experiment Procedure:

CLONDIAG D>
cilipi4cil~ Fcl-- -.,.

The illustrations on the next two pages give an overview of the methods used in an AT assay

experiment. 'Mthin the ArrayTube~, containing the individual probe array, the hybridization,

washing, conjugation and detection steps are pertormed. AII sample preparation procedures.

including labeling, are usually done outside of the ArrayTube(~. The main step in the labeling

process is adding gold particles to the target molecules. This can be done either by the direct

binding of gold to the target or by indirect gold labeling via the biotin-streptavidin interaetion, in

which gold partides are linked to streptavidin morecules. After hybridization. all target molecules

binding to the microarray will carry gold partides. Upon adding a silver enhancement solution,

the gold particles will induce the precipitation of elementary silver specifically at those spots

where the gold-Iabeled target molecules are bound. The hybridization pattem can be visualized.

In our instruetions, we recommend doing the gold labeling via the indirect method because it is

more reliable and less expansive.
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AT Experiment Workflow

"'\.:'. '';': )c)''''l'''''''!''': II ...)¡.,.,1·••:,. .... :,;. ),\0;,..'0\ <"1·1"·'~ ,'\> 1\·..··"" ....: '('lo\-.,'o""'o(. ;;0' r ~\. lo., .. ·:l~,·S~p'·Pre'pa·~ió:~:~:·~::I"
.: ......., .... (l :''!. ¡',~ •.:......~. ," '''! ." ....;" "'"""'~".; ...... ". ,••.:.¡t.:. 011"';...... r";'~;: ....;,.~~•. 1~'''"

.2. ArrayTube· Condltló''II¡;g·'

, .
\> ,

'. /'
't, "«. .,. •. ~,

;I ...I"....~... ........ I ..
'Y ... ..... •

r'" •• 'l #J. \.

~

"

'o. I t
\ ........~ ~

". :""',,- i
, '\ -4 "
t' , l'" , .. ,. ~
• ,.. # •

~ '.. ~ ," ., .
• l~

•

Sample TargEts
(e.g. RNA)

Marker
(e.g. biotinytatl!d primer)

Labeled Targets ArrayTube~ wíth
~ecific microarray

At first. the sample preparation procedures like extractlon, purification. amplification and biotin

labeling need to be performed using standard methods that are best suited to your specific

target. For biotinylation o, the target molecules, use a standard procedure when introducing

biotinylated primers or nucleotides during PCR or tor direct chemical coupling ot biotin to the

target molecules.

The second preparation step includes pre-conditioning the AT probe-array.

r
r r ¡ I . ! I 1 • 1J •.. .. • 4 ~ .. .. .. ..• .; ~ , : • . . •.. 1 .. .. .. ..• , . , • . I ~ • • • •. .,~ , f r t

f· ., r ,,l
I~ , r
•

11l

Probes on ArrayTub~Chip Hyoridizated Target
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Target hybridization and the washing and blocking steps are performed within the ArrayTube'~

reaction vial.

....••.""I!':r:~ ~I~"','" ·",·:~"··c:r ·.-':;,:~',,!:i~'~ ......·;':.'J.l~ ...··:~~V\· ,:,~,; .~. i '~",:,~~';:'.~;

6. Conjugation
.~:~:t·lt"· \"" ~,:J,~''(:'''~vw.~,.r.~''~~,r~'··'\:~;·M~:1''''~~''':';7''':t:~;I'·;'·\'''·,:,'"~~,~.~ol': ...

7. Sllver Enhancement . ",

..¿.- Streotavicin1"\1 __

. ,+\ Gold Conjugate
I.,
•..

.~ :'{~;~ ~~. ~¡;~

1C r f f i-l.! I ~

Pre~~l~tion iJi !1i 11:1
.1. -lki

After hybridization. a streptavidin gold conjugate is added which binds to the biotinylated target

molecules. The gold particles induce a silver precipitation reaction that results in a detectable

hybridization pattem.

..·.,f

ArrayTube~Reader

"­,

IconoClust AT

The ArrayTube"l Reader detects as a time series the AT hybridization pattem. which has been

recordad and analyzed by IconoClust-AT software.
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~..~V'!'·~~"~'..,~"\'·¡":,!,!.:"".·."~·\(~~~~\.~",v·:-,~'~\~~",V lf\'';'.~·~,·.':,'':f:~\'!f;4:'''''{~'')· .."I:-:'''''':s·r·''''t'NJI:,''''!:~~''~:''.''''·~;·'':~\~',·N"",~ ..,•.

10. Re8ultEvaluationand DafaManagement '

IoonoCust AT
~ , •..•~ ·••..·r· ~ ~ ~-./ .'.-·.·."'· ..·.,..:1-· ~.· ~'I."'ij:~íJ

,;·_·-'·'1t. '- .......

,t,· ." . ,
.1

!llImp/e
.. .-IIJ.

Im.g.

J

'"1x'04ES ,., ..
150

'"1. contenll8llon of ._pIe nrnol/l
~ lIen.Ul1IIion 5 lIIItI

1.1.....' ..... 95 oc
1. hybndoulion 1 hour.

L. 'IOIum. 150 Ili
.... Itmpt'..... G oc

Partisan arrayLIM5

The array ¡mage results can be evaluated and preparad tor turther processing with IconoClust­

AT. As an optlon ter your experimento our software system Partlsan arrayUMS, whlch manages

the whole experiment data workflow, is available.

9
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AT Experiment Steps
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AII of the AT experiment steps are summarized in Table 1. The required procedures are

described on the following pages.

Table 1

Step'

1.

2.

3.

4.

5.

6.

7.

8.

Expertment Step* ,
. . .

Sample Preparation

and Biotinylation

AT Conditioning

Target Hybridization

Washing

Blocking

Gold labeling

(conjugatíon reaction)

Silver Enhancement

Detection

. \ .. AT Component*·.

AT

AT

AT Hybridization Buffer

AT Blocking Mix

AT

AT
ATR01
IconoClust-AT

Notes.
. . . , .
Performed by using any

standard procedure that is best

suited to the user's specific

target.

Supported by AT assaying

protocols.

Supported by AT assaying

protocols. Silver Enhancement

and Detection are parallel

processes.

9. Image Analysis

10. Post Assay Procedure

IconoClust-AT

AT

"AlI o, ttle AT experlment steps can be aupported by PARTISN arrayLIMS. CLONDlAG"s powerful array laboratory
Informallon management system. PARTISAN arrayUMS organlzetl a/l data around mlcroarray experlmenlll and can
enily be u.ed wIth ttle AT-System.

10
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Befare starting
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Prepare all solutions according to the instructions on p. 5. Prepare a ao°c water bath or a

heating block for use in step 4. Prepare a heating block at 95°C tor denaturation of the

hybridization sample. Tum on the AT Reader and adjust its working temperature to 25°C. Before

performing step 8, start the appropriate IconoClust-AT functions required tor AT online detection

(sea also ATR 01 Manual).

1. Sample Preparatian

Perform sample preparation, purification and amplification by tollowing the procedures that you

would normally use and that are most appropriate tor your specific target. For target labeling, we

recommend using indirect labeling via the biotin-streptavidin-gold complex. Follow standard

biotinylation procedures like introducing biotinylated primers or nucleotides during PCR or

having direct chemical coupling of biotin molecules to targets.

2. AT Canditianing

Before performing hybridlzatlon, the AT has to be pre-conditioned. Wash the AT 2-4 times every

step with 100 ~I of the hybridlzation buffer for 5 min at 500rpmo each time.

°Listed rpm values are recommendatlons only.

3. Sample Hybridizatian

Requlred matertal.:

Sample in hybridlzatlon buffer

2 xSSClSDS

2xSSC

0.2 x SSC

Volume

100 ~l

500~1

500 ~I

500 ~I

• Prepartng the AT hybrtdlzatlon sample

3.1 Prepare an allquot 01 your labelad sample in 100 ~I 01 hybridization buffer to a final

concentratlon of ~ 100 pM. We recommend that you optimize the concentration of the

sample by testlng different aliquots.

11
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• Hybridlzatlon (Outslde of the An
3.2 Heat the hybridization sample at 95· C tor 2 mino

3.3 Load the sample ¡nto the AT and incubate it at 60·C tor 1h at 500 rpm. You might need

to optimize the incubation time and temperature depending on the sample used.

eaution: Never rinse the ArrayTube with distiJled water after hybridization because it will result

in denaturation.

4. Washing after hybridization

4.1 Remove the sample solution.

4.2 Add 500 ~I of 2 x SSCISOS wash solution. Wash the tube tor 10 min at 30·C and at 500

rpm.

4.3 Oiscard the solution. Add 500 ~I of 2 x SSC wash solution. Wash the tuba tor 10 min

at 20·C at 750 rpm.

4.4 Remove the solution. Add 500 ~I of 0.2 x SSC wash solution. Wash the tube tor 10

min at 20·C at 750 rpm.

4.5 Ory the tuba in a Speed Vaco

5. Blocking

Requlred materials

AT Hybridlzatlon Buffer

AT Blocking Mix

Volume

100 ~I

2 % (vlwv) in AT Hybridizatlon Buffer

5.1 Prepare a tresh 2% (vtwv) solutlon of AT Blocking Mix in the hybridizatlon buffer

and shake it at 500 rpm.

5.2 Add 70 ~I of the blocking buffer solution to the tuba. Incubate it tor 15 min at 3D-C.

6. Gold Labeling (Conjugation Reaction)

If using the recommended indirect target labeling, the biotinylated target molecules will have

already hybridized to the probe arrays. For labaling, the streptavidin-gold conjugate now has to

be added foJlowing the procedure below:

12
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Requlred matenals:

Streptavidin.5 gold conjugate (conjugation

solution)

2 x SSClSDS

2xSSC

0.2 x SSC

Volume

250 pg/~1

500 ~I

500 ~I

500 ~I

CLONOIAG D
chip it(flt1otoglll~ c~~,cdl-._",-

• Conjugation

6.1 Add the conjugation solution into the AT, which contains the blocking solution of step 5.

Incubate it tor 15 min at 30°C.

6.2 Carefully remove the complete sorution with a pipette.

• Washlng:
6.3 Wash with 500 ~12 x SSClSDS for 10 min at 30 0 e
6.4 Wash with 500 ~12 x SSC tor 10 min at 20°C

6.5 Wash with 500 ~I 0.2 x SSC for 10 min at 200 e

Note: After the AT is preconditioned and the sample is prepared, we recommend processing it

within a day. During this time, keep the AT and the sample on ice until further processing.

7. Silver Enhancement

'M1en adding the silver enhancement solution, the gold particles attached to the hybridized

target molecules will immedlately induce the precipitation of elementary silver corresponding to

the hybridlzation pattem.

Note: The AT reader and the appropriate IconoClust-AT functions tor online AT ¡mage detection

need to be started at this point. See also the ATR 01 Manual.

Before Recordlng:

• Start the IconoClust-AT programo Set the correct directory for saving the images, the

collecting ¡nterval time and the number of readings (see p. 12 in the ATR 01 Manual) . For

your first experiments. we recommend recording 120 images with a time ¡nterval In between
of 20 seco The total recording time would then be 40 min, which usually results in a complete

precipitation reactlon.

13
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Volume

35 ¡JI

35 ¡JI

500 ¡JI

Note: Depending on your assay. shorter time intervals with less readings might be useful.

• Place the ArrayTubeaD in the reader slol. If required, adjust the tube's position with the live

preview mode of IconoScan.

Requlred matertals:

Enhancer Solution

Initiator Solution

0.2 x SSC

• Preparatlon o, the SlIver Enhancement Solutlon

7.1 Pipette 35 ¡JI of the enhaneer and initiator solution into a separate microreaetion tube.

7.2 Vortex the reagents, add 500 ¡JI of 0.2 SSC and incubate the solution at 25°C for 20-40

min with 550 rpm.

Note:

• Always prepare a fresh silver enhancer sorution on ice.

• For temporary storing, keep the enhancer and initiator solution in a dark locatíon at 2-8°C

prior use.

• SlIver Enhancement

Carefully add 70 ¡JI of the freshly prepared silver enhancement solution into the AT. (Try to

prevent air bubbles from forming within the solution. If bubbles do form, carefully try to remove

them by repested up. and down pipettlng of the AT solution).

Next. begin the recordlng of the precipitation reactlon (sea also ATR 01 Manual, p. 13).

elide. the record button on the upper menu bar

of the image aequisitlon module leonoScan.

Dependlng on the assay condltlons, a grey precipitatlon pattern will become visible after 5·10

mino The fu" development of the precipitation pattem usually needs 15 - 20 mino and ends with

the saturatlon of the reaetions after 30·40 mino

14
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Note: Do not move or vibrate of the AT-Reader during recording!

Do not change the focus position anymore after starting the record process!

After finishing the ¡mage recording, pull the AT out of the reader. If you would Iike to store the

ArrayTubeilO
, follow with the post assay procedures described below.

8. Post Assay Procedure

The precipitation pattem on the AT array is quite stabre after the post assay procedure have

been performed and can still be imaged after a couple of months. The post assay procedure

should be done shortly after recording.

Requlred materials

H2~or 0.2 SSC

Volume

5001..11

8.1 Suction off the silver solution.

8.2 Wash the ArrayTube with 250 ~I H20bldelt or SSC tor 1 min two times.

8.3 Dry the tuba in a Speed Vac for 15 min without vacuum.

15
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Mutual Confidential Disclosure Agreement

DATED August 22, 2003

Between

DIAGNOTEC S.A.

and

CLONDIAG chip technologies GmbH

Lobstedter Strasse 103-1 05

07749 Jena/Germany

Whereas in' furtherance of their business relationship each of the parties proposes to
diselose t6 the other certain confidential and proprietary information in connection with
mutually beneficial business opportunities; and

WHEREAS for their mutual protection DIAGNOTEC and CLONDIAG wish to set out the .
terms and conditions for the use and maintenance of the confidential information of the
other party:

Now therefQre, in consideration of the mutual covenants and agreements contained
herein and intending to be legally bound, the parties agree as follows:

1. As used in this agreement, the term "Confidential Information" means any
information concerning the current products, future products, business plans, .
marketing plans or research and development of either party, or any third party
proprietary information given to either party, whether diselosed in written, oral or
other media form, to the other party or its employees, but does not inelude
information which:

(i) is known to the receiving party before receipt thereof from the
other party, as evidenced by the receiving party's records, and
was not acquired, directly or indirectly, from the diselosing party;
or

(ii) is diselosed to the receiving party in good faith by a third party
who had a right to make such disclosure; or

(iii) is made public by the originating party, or is established to be a
part of the public domain otherwise than as a consequence of a
breach by the receiving party of its obligations hereunder.

2. Each party agrees that its obligations hereunder shall continue for so long as the
parties maintain their business relationship, and for a period of five years thereafter;
provided that this time Iimitation on the obligations of the parties shall not be deemed
to reduce the term of copyright or other statutory protections.



3. Neither party will use or derive any benefit from or disclose to any person, firm or
corporation, any part of the Confidential Information of the other, except with the prior
written consent of the other.

4. Each party shall disclose and grant access to the Confidential Information of the
other party only those óf its bona fide, full-time employees who shall have a
legitimate need to know the Confidential Information for the purposes specified in this
Agreement. Each party shall employ {he same safeguards to keep the Confidential
Information of the otl:ler party confidential as it employs to safeguard its own trade
secrets, including, without limitation, causing each of its employees with a need to
know to enter into a general confidentiality agreement for the protection of the other
party's Confidential Information herewith.

5.. Each party shall use the Confidential Information of the other party strictly tor the
purposes specified in this agreement. Neither party shall use or allow the use of the
Confidential Information of the other party for any purposes without the prior written
consent of the other party. '

6. Corifidential Information shall not be copied by either party without the express
written consent of the other, except for such copies as each party may reasonably
require tor its use pursuant to this Agreement.

7. Upon written request of the other party, each party shall return promptly to the
requesting party all originals and copies of any and all Confidential Information which
they have received.

8. The parties hereby acknowledge and expressly agree that the disclosure of
Confidential Information without the express written consent of the disclosing party
will cause irreparable harm to the disclosing party, and that any breach or threatened
breach of this Agreement by the receiving party will entitle the disclosing party to
injundive relief, in addition to any'other legal remedies available to it, in any court of
competent jurisdiction.

9. Nothing contained i~ this Agreement shall be construed as granting or conferring any
rights by license or otherwise in any Confidential Information, except for the right to
use the Confidential Information strictly in accordance with the,provisions of this
agreement.

10. This agreement shall apply to each and every country in the world and shall be
governed by and construed in accordance with the laws of the Province of Ontario,
Canada, and shall benefit and be binding upon the respective successors and
assigns of the parties hereto.

IN WITNESS HEREOF, the parties hereto have executed this Agreement as of the date
first noted above.

DIApNOTEC ~~~~H--------..
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AP 5ystem
The Assay Processor AP
Integrated Platform for Genomic Diagnostics at the Point-of-Care

CLONOIAG@)'s Assay Processor (AP) is a
complete platform for array-based genotyping.
Oue to its robust performance and un­

precedented simple structure, the AP has the
potential to become the first test stripe format for
use in pharma-associated diagnostics at the

point-of-care.

Device for a new type of genotyping
assay: fast, robust and inexpensive

The performance of inexpensive, fast and robust
genotyping assays is essential for modern
diagnostic and therapeutic approaches. Proven the
abilty to run genotyping assays at the point-of-care,
personalized medicine will become a common
standard. Systems for point-of-care genotyping will
have to combine all steps necessary to perform a
genetic analysis. With the AP-System, CLONDIAG\l)
has developed the new key system for complete
array-based genotyping.

Image of the AP principIe setup with power lines (1),
gasket (2), microarray (3), guidance tor fillíng needle
(4), heater& sensor chip (5) and cartridge base (6).

•

CLONDIAG\l) chip technologies GmbH

The Assay Processor - microreactor with array,
integrated heaterand sensor chip.

Integrated solution

The AP-System is based on single reactor assays
combining DNA array analysis with microfluidics
performance. We developed the AP to conduct
sample preparation, target amplification and
labeling, analysis of the target for specific markers
and interpretation of raw data within a single system.
Thus. the AP-System is a complete platform for
performing complex diagnostic assays in a fast,
accurate and inexpensive way.

Multifunctional reaction cartridge

Combining target amplification and array hybridi­
zation, which relies on precise temperature control,
is feasible. To perform both processes, the AP
functions as a miniaturized pressure cooker with a
reaction volume of about 10 !JI. The reactor consists
of a chip with thin film temperature sensors and
heaters and the probe array. A gasket serves as a
septum for the delivery of the reagents and the
sample material. Thus, amplification and detection
occur simultaneously in a single reactor.

www.c1ondiag.com



The probe array

AP 5ystem
Detection

CLONDIAG® O>
chip technologies~

A key unit of the AP cartridge is the integrated probe
array which carries out a multitude of analytical
reactions in parallel. For fabricating high quality
arrays of oligonucleotides, we use in-situ synthesis
with micro wet printing (IJWP) technology on a four
inch wafer scale. From this, hundreds of identical
miniaturized arrays, each ofthem 3mm x 3mm in size
with a density up to 106 probes/cm 2

, are produced
within a single manufacturing step.

In regard to assays, the system is optimized for
fluorescence detection of the hybridized target. Due
to the design of the reaction chamber, the AP bears
the unique potential to detect the hybridization
pattern online. This feature provides the opportunity
to develop easy genotyping tests based on robust
f1uorescent protocols. Thus, the user no longer
needs to perform numerous handling operations to
obtain the results.

The AP-System - determínatíon of specíes specífíc markers for poínt-of-care detectíon of ínfectíous díseases:
the amplífícation performance is strongly comparable to standard benchtop systems; the sequence specífic
determínatíon ofthe amplífied target is done by hybridization.

A:
8&0:

C&E:
Target:

100 bp ladder
PCR product, standard
thermocycler
PCR product, AP cartridge
bacterial genomic DNA,
PCR product length ca. 500 bp

Hybridization of a 500 bp PCR
product to CCTglut-170 array

Data matrix Computer controlled processes

The integrated data matrix interfaces the AP with
assay associated data. This data is accessible within
the database and can be used by the management
software PARTISAN arrayLIMS, permitting
automatic control and processing ofthe whole assay
process.

CLONDIAG@ chip technologies GmbH

The heating, cooling, filling and flushing ofthe AP are
controlled by CLONDIAG@'s software tool
IconoClust. A specific adapter connects the AP to the
DNA reader or the dispensing systems. The AP
injector module can handle small sample volumes of
15-40 IJI. Dead volume effects are excluded.

www.c1ondiag.com
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AP 5ystem
Modular design

Due to its modulardesign, the AP platform supports a
multitude of applications. Different AP modules, like
the AP injector for manual filling, can be easily
plugged into the configuration, optimally fitting the
user's needs. A specific module fixes the AP to the
appropriate optical system for online-detection. The
AP is designed to allow the integration of future
devices, thus leading the way to the development of
assays that meet the requirements of point-of-care
diagnostics.

Fine temperature tuning

The thin film heater, temperature sensor and air
channel allow tuning and rapid alterations of
temperature, which is necessary for the fine
modulation of the PCR and hybridziation reactions
run in an interval of 0° to 100°C.

AP manual injector

Parallel assay optimization

The AP 8xController enables parallel independent
processing of eight Assay Processors. Each AP unit
is controlled separately, thus allowing for example
the performance of eight different amplification
protocols. Fast and easy assay optimization is
possible.

CLONDIAG~ chip technologies GmbH

AP 8xController for automated and independent
AP processing.

Automated image analysis

AP reader control, data readout and automated
image analysis is feasible with CLONDIAG~'s

software tool IconoClust. Its program structure and
XML data exchange format permit easy integration
with database systems like CLONDIAG~'s

PARTISAN arrayLlMS.

Database connection

The AP-System is supported by an Oracle based
laboratory information and management system,
PARTISAN arrayLlMS. PARTISAN arrayLlMS
provides management based on objects
representing all data and processes of a bioarray life
cycle. Thus, the entire assay is mapped in the
database.

www.clondiag.com
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Future test stripe APaccess

New approaches in point-of-care medical
diagnostics, environmental testing and biotech­
nology require low cost, portable DNA-analysis
instruments that perform the complete analysis
within a single reactor. Since the Assay Processor
satisfies these requirements, we believe that it has
the unique potential to make genomics testing as
easy as today's pregnancy tests.

The Assay Processor Platform is available for
diagnostics applications development on a
collaborative basis. For more information on AP
applications development, please contact us:

c1ondiag@clondiag.com.

Components of the AP

Partisan
Database
- chip data
- probe data
- substrate data
- protocol
- others

Datamatrix

AP~ dotobase¡

Heater
Substrate

~

Lower
part

Chip with gasket

CLONDIAGI!> chip technologies GmbH
Loebstedter Str. 103-105
07749 Jena, Germany
phone: +49/3641/5947 O
Fax: +49/3641/594720
email: c1ondiag@c1ondiag.com

© CLONDIAGI!> 2002
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AT-5ystem: The Platform
The ArrayTube@(AT) - Array Technology for Every Lab

The ArrayTube@ - main features:

• New array-based platform for parallel lab-
genomics

• Integration of microarray and microtube

• Easy handling

• Affordable for every lab

• Inexpensive, non-fluorescent detection

Array and reaction tube in one

CLONDIAG~'sArrayTubel!> AT is a revolutionary new
platform for performing easy and ¡nexpensive
experiments with microarrays. The direct
implementation of high quality DNA arrays into a
standard micro-reaction tube allows all hybridization
and analysis procedures to be performed in an easily
manageable and straightforward manner. No more
highly specialized equipment is required.

the tube

the array

,
•

...

• •• •
.. " ....

K •••• . t..... ... .
• • •• • •

.. .... ~ ., .... ' .
•• ~. ",¡

synthesized array

_ •• f

~
spotted array

Patented ATplatform with synthesized arrays (here: 1024 30mers/spot size 32Jlm / array size 2048 Jlm x 2048
Jlm / application: SNP analysis) orspotted arrays (here: array with 120 spotted o/igonucleotides)

Platform for every lab

The unique ArrayTube~ design allows improved
assay performance - array handling becomes much
easier and more reproducible. Any solution can be
easily pipetted into the AT, incubated and agitated
with microtube equipment available in every lab.

High quality arrays

We develop and produce customized ArrayTubesl!>
with both spotted and synthesized DNA arrays. The
spotted arrays are fabricated by applying state-of­
the-art spotting technologies and optimized
substrate surfaces. For in-situ synthesizing of
arrays, we employ our patented IJ-wet printing
technology (IJWT) which results in high quality arrays
of several thousand oligonucleotides.

Multiple advantages

Besides its lab compatibility and easy handling, the
AT comprises many other advantages:

- Working with the AT plattorm reduces the
amounts of all required reagents.

- The array integration within the reaction vial
guarantees uniform wettability of the array during
all processes.

- As a closed system, the AT ensures protection
against evaporation and contamination effects.

- The specific AT design allows online detection of
the signal amplification.

- With the AT platform array technology is now
accessible to every lab.

-
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~ AT-5ystem: The Detection

Novel Robust AT Labeling Technology

Image of si/ver precipitate (by electron microscopy)Principie
To provide a detection kit perfectly suited to our AT
platform, we revived the method of precipitation
staining for its application in array based analysis.
Our new technology is based on gold induced silver
precipitation, which directly correlates to the amount
of specifically hybridized target molecules on the
array. Analysis of the precipitation is done by simple
transmission measurements, which leads to the
effective reduction of the input in optical equipment.

Easy detection

The application of silver precipitates for hybridization
detection alllows the use of a transmission imaging
reader like our AT reader ATR 01, which is affordable
for every lab. No highly sensitive optical equipment
with cost intensive, high performance detectors is
required.

'.
••

•

•

PrincipIe of gold-si/ver labeling

slreplavidin
gold
conjugale

High quality data

The amount of silver precipitate direct/y represents
the target concentration. By applying the ATR 01
reader, it can be determined by endpoint detection or
by monitoring precipitation dynamically over a period
of time. Quantitative data analysis is feasible with the
integrated reader software IconoClust-AT.

High sensitivity

Following hybridization, target staining is performed
by applying gold-streptavidin conjugates. Gold par­
ticles catalyze the process of silver precipitation in
the presence of silver solutions resulting in an
enhanced detection performance. It is now possible
to receive detection limits higher than those for
conventionallabeling methods.

!
!
!

silver
precipilale

--
silver
enhancement

!
!
!

I
11

biolinylaled

large;l

hybridizalion
duplex

\¡

11I

!
probe J !

\ ; i
• J .. gold
r J hybridizalion ~ labeling
r J ~

f' - ii -

L
Signal stability

As a result of detection via transmission measure­
ments, problems such as light induced bleaching no
longer arise. Stable output signals allowing comfor­
table data analysis are guaranteed.

Non-hazardous dyes

AII reagents required for the hybridization reaction
using our AT labeling kit are non-toxico Thus, easy
and cost effective experimental handling is possible.

CLONDIAG~ chip technologies GmbH www.clondiag.com
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AT-5ystem: The Reader

The Reader for Analyzing CLONDIAG® ArrayTubes®

Effective solution

Applying the ArrayTubes@ in combination with
colorimetric hybridization detection is the key to
create affordable array reader systems that can be
integrated into every lab. In analyzing the hybridi­
zation pattern by transmission measurements, cost
intensive detector equipment, like confocal laser
scanning systems, is not required.

The reader ATR 01 is an instrument that analyses
CLONDIAGII> ArrayTubesll>. For reliable data
acquisition, the assay temperature is kept constant
during hybridization detection. Operation modes
allow endpoint detection and dynamic data
acquisition during the precipitation process.

ATR 01 reader tor sensitive detection ot AT hybridization patterns

Requirements

Desktop computer with 500M Hz Pentium Processor,
256 MB RAM, 10GB HD;
Serial port for data matrix re.ader (optional).

AT Reader benefits

The system is easy to use. With its user-friendly
graphics interface, working with the ArrayTubesll>
becomes a daily routine. The operating software
/conoClust-AT is based on the successfullconoClust
package. Being script based, it allows the user to
customize the reporting scheme and data output,
and provides instant calculation and interpretation.
The system is flexible, reliable and affordable,
making quality array technology accessible to any
lab.

-

Specifications
Dimensions (W x O x H)
Supply vo/tage
Pixel Resolution
Operating temperature

246x 134x 143 mm
110-230 V AC

752 x 582
18° - 30°C (64,4 - 86°F)

CLONDIAGII> chip technologies GmbH www.c1ondiag.com
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AT-System: The Software
IconoClust-AT, the Tool for AT Data Acquisition and Analysis

IconoClust-AT
Reader control, data readout and data analysis are
performed with one software package, the
IconoClust-AT. Based on our powerful stand-alone
software IconoClust, the package comprises all
features for automatic reader control and fast and
easy image acquisition. Uve previews and online
data collection can be easily performed. A special
submission algorithm allows immediate transfer of
all image data ¡nto the module for analysis.
With the concept of experiment templates, the fast
and automated image analysis of series of images
for high throughput applications is easily accessible.

Database- and L1MS-lnterface

IconoClust-AT can be optionally supported by our
extensive laboratory information management
system, PARTISAN arrayllMS. Program structure
and the XML data exchange format of IconoClust-AT
permit its easy integration ¡nto our L1MS-system.

Image analysis of an in-situ synthesized array (1024
probe molecules) with IconoClust-AT. Related array
probes and 3D details are visualized.

Hybridization of multiplex PCR produets against human eyp206-array (P450): a) leonoClust-AT sereen plot of
data acquisition, b) images of time series, e) plot of time series data and d) plot ofanalyzed hybridization results
with leonoClust-AT.
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AT System: The Workflow

The Genomics Lab Analysis Work Platform

Thesystem

CLONDIAG® has combined the benefits of all AT
components ¡nto a poweñul working statlon. The AT
System comprises the new AT platform providing the
array andthe reaction vial as one system, the novel
non-fluorescent labeling kit for easy AT detection
and the smart and robust reader system ATR 01. By
integrating our IconoClust-AT software package,
optimal instrument control, data aquisition and
custom specific image analysis are guaranteed .

Optionally, the AT System is supported by our
powerful leboratory Informetlon manegement
system PARTISAN arrayLlMS, which provides
reliable data and experiment management. AII
ArrayTubes®include a unique data matrix accessible
within the database allowing correct AT and data
tracking.

le--- With the AT 5ystem, CLONDIAGllprovides an affordable work statlon for superior array-based
,_, __~nalysis results, bringing the world o!,.array technologi~s and multiplex assays to any lab.

The complete AT System

~

~
~
lo

L.
AT

detection

ArrayTube* AT
with data matrix

CLONDIAG® chip technologies GmbH
Loebstedter Str. 103-105
07749 Jena, Germany
phone: +49/ 3641/ 59 47 O
fax: +49/ 3641/ 5947 20
email: clondiag@c1ondiag.com

•
CLONDIAG® chip technologies GmbH

ATR 01

PARTISAN
arrayLlMS

IconoClust-AT

- reader controlling
- data acquisition
• ¡mage analysis grey value ¡mage

© CLONDIAG® 2003
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AT-System: Solutions

Products and 8ervices

Your AT starter package
We provide the AT System as the new working
plattorm tor easy and affordable array-based
analysis. A typical starter package ineludes the
reader ATR 01 and a starter kit ot ArrayTubesl!>
designed to customer needs with comprehensive
user instructions. Subsequent ArrayTubel!> pur­
chases will be provided with identical or moditied
array designs.

Services
The services we provide around the ArrayTubel!>
System inelude probe and array designo The
complete ArrayTubel!> package comes with probes
generated by uso On demand, we also apply probes
delivered by the customer tor producing the AT
arrays. Additionally, we provide assay development
and data analysis.

AT Reader Solutions Specification

ATR 01 Standard Package: ATR 01 reader with PC provided with tramegrabber card
and preinstalled IconoClust-AT software tor reader control
and image analysis.

ATR 01 Modular Package: AT reader with IconoClust-AT software tor reader contol and
¡mage analysis, and with tramegrabber card (tor installing in
yourown PC)

AT PARTISAN arrayLlMS: System tor efficient organization and management ot AT
experimental data, tor 5 users, preinstalled.

ArrayTube@ Kits Specification
--- --- ._----_._._-_.

ArrayTubel!> Starterkie: Set ot 100 (502
) ArrayTubesl!>

Additional ArrayTubesl!>: Packs ot 100 (502
) ArrayTubesl!>

11 ArrayTubesl!) specified by the customer. Standard AT arrays contain up to 144 spotted
features. Probes can be provided by CLONDIAG"' or by the customer. For synthesized arrays
with up to 4096 features please contact uso

21 Sets of 50 ArrayTubes" can be delivered, ifthe probes are provided by the customer.

For inquiries and further information, please contact uso
clondiag@clondiag.com

www.clondiag.com

CLONDIAGI!> chip technologies GmbH www.c1ondiag.com
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Application Fields of the
ArrayTube® 5ystem

The ArrayTube" (A T) System can be used for mulliple
applications in array-based analysis. Its unique
features make it exceptionally suitable for routine
genotyping and mulation analysis. as well as for
applications in expression and proteomics analysis

Depending on lhe specific application, ArrayTubes'"
with spotted arrays (up lo 144 fealures. various
substance classes possible) or in-situ synthesized
arrays (up to 4096 o/igonuc/eotide probes) can be
provided

Examples of Al-Applications:

• Genotyping of Bacterial Resistance Genes
The ArrayTube® System was used to setup a
genotyping assay for the fast and reliable
analysis of different resistance genes of the germ
Staphy/ococcus aureus.

• Mutation Analysis ofthe Human cyp2D6 Gene
Using AT-arrays with probes containing different
mutations of the cyp206 gene, clinicalsamples
were screened for cyp206 mutations.

• Species Discrimination &Identification
With a set of specific ArrayTubes®, different
bacteria were identified by hybridization against
AT -arrays carrying selected 16S rDNA
sequences.

• Genotyping of Human HVR2 mtDNA
A 45 sequence space of the HVR2 region of
human mtDNA was analyzed. AT-arrays carrying
a set of 4096 combinatorial oligonucleotide
probes were applied.

• Analysis of Thrombogenetic Mutations
(OGHAM Diagnostics GmbH)
The AT-System is used for the mutationanalysis
of 8 different loei providing risk factors for
thrombosis.

• Mutation Analysis of Atherosclerosis
associated Mutations (OGHAM Diagnostics
GmbH)
The ArrayTube® Platform can be applied for the
determination of genetic variants associated with
atherosclerosis.

AT-arrays with in-situ synthesized o/igo­
nuc/eotides foroptima/ probe designo

• Protein Assays
AT-arrays with spotted proteins can be produced
for the fast detection of protein-target interactions
with the ArrayTube® System.

• Identification of Respiratory Bacteria and
Viruses (Institut Dr. Viollier)
The fast and differential diagnosis of different
respiratory bacteria and viruses was proved with
the ArrayTube® System.

B. 5ubtilis,/ 1lJ¡ El B. globigli I!l • Expression Profiling
The AT-System can be applied for the expression
analysis of selected genes.

/dentification of different bacteria with spotted AT­
arrays (different c%red frames represent bacteria
specific probe mo/ecules).

For inquiries and further information, please contact
us at c1ondiag@c1ondiag.com or www.clondiag.com.

•
CLONDIAG® chip technologies GmbH

~" ....
o-eGI!' .. o1tO.

Oetection of specific protein-antibody interactions
with AT-arrays (here: phosphory/atedproteins).

© CLONDIAG@ 2003

www.c1ondiag.com
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Al Application:
Genotyping of a 45·Sequence Space
of Human HVR2 mtDNA Region

Image ana/ysis of 4096-spot AT-arrays with
/conoC/ust-A T.

Comparisan afthe hybridization resu/ts to sequence
data af MOUSE 11 and corre/atian ta popu/ation
arigins.

Detection and analysís
The detection of the characteristic sample
hybridizations was performed with the ArrayTube<!>
reader ATR 01. Time series of the specific silver
precipitations representing the hybridization images
were collected and analyzed with the software
IconoClust-AT.

Results
Different hybridization patterns of the amplified
sample fragments were detected. The results were
compared and aligned with sequence data from
public mtDNA databases. With regard to thé five
selected mutation sites, the detected sequence
variations could be correlated to distinct geo­
graphical population origins (database MOUSE 11'1).

1) MOUSEII:
Mitchandria/ and Other Usefu/ SEquences, LMU
Munich, www.gen-epi.de/mause/index.htm/
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Conclusion:
The ArrayTube<!> (AT) System is most suitable far the
performance of fast and reliable genotyping assays
using highly integrated microarrays. It opens up the
possibility to extend the application of array
technology to fields like forensic medicine.
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CCCCATCCCATTATTTATCGCACCTAC
example 2:
origin: Europe
detected sequence

I examp/e 1 examp~~_

Characteristic hybridizatian patterns af twa different
samples.

example 1:
origin: Africa
detected sequence:

CCTCATCCTATTATTTATCGCACCTAC
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AT Application:
Genotyping of a 45.Sequence Space
of Human HVR2 mtDNA Region

Introduction
Sequences of the noncoding region of human
mitochondrial ONA are potent tools to infer aspects
of genetic population history. They show specific
characteristics Iike high evolutionary rates and the
maternal mode of inheritance. Especially the
hypervariable sites HVR1 and HVR2 in the
noncoding or O-loop region of mtONA can be used to
differentiate between non related species: HVR1
and HVR2 contain mutational hot spots with one
polymorphism in 200 - 400 generations [1], [2], [3].
The analysis of mtDNA with conventional methods
like sequencing, PCR, or restriction fragment length
polymorphism is time-consuming and cost­
intensive. Here, the ArrayTube® (AT) System was
applied tor the first time to set up a fast, affordable
and reliable genotyping assay for a set of mutations
within the HVR2 region.

Methods
Microarray preparation
After screening public gene databases for the
relevant sequences, five distinct mutation sites
within the hot spot areas ot the HVR2 region were
selected tor the genotyping analysis. ArrayTubes®
with oligonucleotide arrays covering the complete
sequence space of all 45 = 1024 variants of the five
mutation sites were manufactured. The production of
the 4096 probe arrays (each probe 4 times
redundant) was performed by CLONDIAG®'s in situ
synthesis technology (see 'technologies' in
http://www.c1ondiag.com).

AT-array carrying 4096 oligonucleotides; spot size
20 J1m 20 J1m, arrays size 2048 J1m x 2048 J1m.

Sample preparation and hybridization:
Capillary blood samples (5-10 ¡JI) were collected.
After Iysis, the complete HVR2 region was amplified
using 5'-biotinylated primers tor labeling.
Biotinylated PCR fragments were diluted 1:20 in AT­
hybridization buffer and pipetted into a pre­
conditioned ArrayTube® containing the HVR2
microarray. Hybridization reaction was performed in
a conventional thermomixer. After washing, the AT­
conjugation and AT-silver enhancement reaction
were performed according to standard ArrayTube®
labeling protocols (http://www.c1ondiag.com).

3

ArrayTube® processing: After pre-conditioning the AT-array, the biotinylated sample is pipetted (1) into the
ArrayTubelSJ for hybridization (2). Detection of the hybridization pattern is performed by the si/ver enhancement
reaction (3).

CLONOIAGISJ chip technologies GmbH www.c1ondiag.com
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AT Application Sample:
Genotyping of the Human
cyp2D6 Gene
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Results

•
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•
Bar graph of the hybridization pattern received with
the multiplex-PCR product of a clinical sample
carrying several mutations.

Conclusion

CLONDIAG@'s AT Platform is an optimal tool for
genotyping cyp2D6 because it allows fast and
reliable screenings of clinical samples for mutations.

Hybridization pattern ofa mu/tiplex PCR product ofa
clinical sample carrying several mutations. AII
probes were immobilized 4 times redundant. Marker
molecules and a control sequence were added.

Data acquisition and image analysis were done by
an IconoClust-AT software package.

I

ª500 -=::::.
.- .. ; r"

... w..

Ana/ysis of mu/tip/ex PCR products for
different c/inica/ samp/es with standard
agarose-ge/-e/ectrophoresis (1-3)
(N=negative control).

Hybridization against a 100 probe AT array was
performed by inserting the AT into a conventional
microtube thermomixer. Hybridization was started
by pipetting aliquots of PCR product in an
appropriate buffer into the AT. After subsequent
washing steps, a streptavidin-gold-conjugate was
added. Detection of the hybridized target molecules
was achieved by adding a silver enhancement
solution: catalyzed by the gold particles attached to
the hybridized target molecules, silver precipitation
was initiated. The AT was inserted into the AT reader
ATR 01, which collected the hybridization images as
a time series. The reader is provided with heating
and cooling elements guaranteeing constant
hybridization conditions.

Experiments

DNA containing the related mutations was prepared
by asymmetric multiplex PCR using chromosomal
DNA of c1inical samples as a template. For target
DNA labeling, biotinylated primers were used.

M 1 2 3 N

Background
The human cyp2D6 gene is coding for the Cyp2D6
enzyme, a member of the Cytochrom P450 family.
The enzyme is involved in the metabolism of drugs
like analgesics, beta-blockers, antidepressants and
others. It was found to be responsible for more than
70 different drug oxidations. Mutations in the cyp2D6
gene can cause severe adverse drug reactions like
toxicity, inefficacy and hypersensitivity. In addition,
Cyp2D6 was also found to be involved in severe
disorders like Parkinson's disease and cancer. Up
until now at least 18 cyp2D6 mutations are known,
which differ highly in their impact on the Cytochrom
P450 function.

© CLONDIAG@ 2002
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Al Application Sample:...._---_..
Fast Genotyping of
Staphylococcus aureus
Resistance Behavior

n. available Tst1-negative

Oxacillin + all
beta lactams

Toxic Shock

Syndrome Toxin

Tetracyclines

Aminoglycosides

Erythromycin

Clindamycin

Levofloxacin

-------+.

Isolate 2000 V 8510
virulence factor (epidemic strain "Hannover")
or resistance phenotype detected gene
1----------..:1,1"'". .....,.,.
Coagul~~e____ ?
Penicillin

Table 1:
Comparison of the conventional growth inhibition
assays o, S.aureus and the genotyping analysis
applying the ATPlatform.

Results
The results of growth inhibition assays and
hybridization experiments of one c1inical sample
isolate are presented. Table 1 summarizes the
resistance pattern as determined by both the
phenotypical and genotypical characterization
methods.
80th methods resulted in well corresponding data.
AT based diagnostics have the advantage of being
very fast, inexpensive and robust in handling.
Compared to classical phenotypical charac­
terization, AT based diagnostics can provide a high
amount of c1inically and biologically relevant data in
parallel within a short period of time. Arrays with
modified or additional probe molecules can be
generated easily, thus making the AT Platform a
highly flexible tool. The AT Platform is best suited for
genotyping studies as described here.

Hybridization pattern representing the genotypical characterization ofresistant genes using the AT
Platform, specified with different optimized oligonucleotides.

The Tube

The Array

© CLONDIAGQi) 2002
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~__... AT Application Sample:
Fast Genotyping of
StaphylococcuS aureus
Resistance Behavior

Background

Staphylococcus aureus is a common germ that
causes wound infections, food poisoning, toxic
shock syndrome and other effects. The appearance
of distinct S.aureus populations showing resistance
to many antibiotics is of increasing significance to
hospitals because they complicate patient
treatment. Choosing the appropriate treatment
depends on the rapid and accurate identification of
the infecting S.aureus strain and its specific
antibiotic resistance.
As of now, about 30 S.aureus genes that are
resistant and their complete sequence information
have been identified. Screening for these genes
using conventional methods like PCR is extremely
time-consuming and cost-intensive. Therefore,
these screenings cannot be performed routinely with
clínical specimens.
CLONDIAG@'s AT Platform provides a solution that
allows fast and relíable array-based genotyping and
SNP analysis, which, for example, can be used to
determine the antibiotic resistance patterns of
bacterial pathogens based on their genes.

Staphylococcus aureus cells in pus

Experiments
In arder to generate the appropriate AT array used in
the genotyping analysis, oligonucleotide probes
camplementary to the resistance genes shown in
table 1 were determined using CLONDIAG@ software
tools. Probe molecules were synthesized by stan­
dard procedures and immobilízed by needle-based
spotting techniques and covalent coupling to the
substrate surface. For the hybridization experiments
with the AT Platform, genomic DNA from clínical
isolates of S.aureus was prepared.

CLONDIAG® chip technologies GmbH

An amount of 5 ~g of isolated genomic DNA was
labeled by applying a method developed by
CLONDIAG@ resulting in fragmented and biotin­
ylated DNA that is ready for the hybridization
procedures. Hybridization against the array was
performed in the AT insertad into a conventional
microtube thermomixer. Detection was done with the
AT reader ATR 01. As a control, the antibiotic
resistance patterns of the isolates were
characterized phenotypically based on growth
inhibition assays using the VITEK 1 system
(BioMerieux).

Scheme of genotyping experiments with the AT
Platform.

Staph. aureus •
celis from overnight culture

Preparation of DNA

Fragmentation of DNA

9iiMil ~

~ lWIlIIIl

Labeling

o./~~
Hybridization to immobilized probes

and detection

www.c1ondiag.com
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Fundalllentals of cONA Illicroarray
data analysis
Yuk Fai Leung and Duccio Cavalieri

Bauer Center For Genomics Research, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA

Microarray technology is a powerful approach for
genomlcs research. The multl-step, data-intensive
nature of thls technology has created an unprecedented
informatlcs and analytlcal challenge. It Is Important to
understand the crucial steps that can affect the out­
come of the analysis. In this review, we provide an over­
view of the contemporary trend on various main
analysis steps in the microarray data analysis process,
which includes experimental design, data standardiz­
ation, image acqulsition and analysis, normalization,
statistical significance inference, exploratory data analy­
sis, class prediction and pathway analysis, as well as
various considerations relevant to their implementation.

The development of microarray technology has been
phenomenal in the past few years. It has become a
standard tool in many genomics research laboratories.
The reason for this popularity is that microarrays have
revolutionized the approach to biological research. Instead
of working on a gene-by-gene basis, scientists can now
study tens of thousands of genes at once. Unfortunately,
they are often daunted and confused by the complexity of
data analyses. Although it is advisable to collaborate with
statisticians and mathematicians on performing a proper
data analysis, it is crucial to understand the fundamental s
of data analysis. In this review, we explain these
fundamentals step-by-step (Figure 1; Table 1). Instead of
discussing any particular analysis software, we focus
primarily on the rationale behind the analysis processes
and the key factors that a1fect the quality ofthe resulto For
a compilation of current microarray analysis software see
a recent article [1] and author's website (http://ihome.
cuhk.edu.hk/-b400559/arraysoft.html; permanent link:
http://genomicshome.com). We also focus on the use of
the two-dye cDNA microarray data analysis, although
most ofour discussions are also applicable to the single-dye
oligonucleotide platform (i.e. A1fymetrix) (Box 1). We hope
that by appreciating the fundamentals novices will become
successful at microarray data analysis.

Experimental design and implementation
'Ifthe experimental design is wisely chosen, a great
deal of information is readily extractable, and no
elaborate analysis might be necessary. In fact, in
many happy situations aH the important conclusions
are evident from visual examination ofthe data'. [2]

GorrespoTUi.ing authnr: Yuk Fai Leung (yfleung@cgr.harvnrd.ooul.

'Well begun is half done', is an aphorism that is
especíally trua offor microarray experimenta. Good design
is very important at the beginning ofa microarray experi­
mento A typical microarray usually consists of tens of
thousands of elements. On the one hand, it provides a
comprehensive coverage that almost always promises
sorne new discoveries. On the other hand, analyzing the
vast amount of data being generated can be daunting to
scientists. It is therefore, more important now than ever, to
design a microarray project carefully to generatehigh­
quality data and to maximize the efficiency ofdata analysis.

Good microarray experimental design should comprise
at least four elements: (i) a clearly defined biological
question and/or hypothesis; (ji) treatment, perturbation
and observation of the biological materials, as well as the
microarray experimental protocols, should be as little
a1fected by systematic and experimental errors as possible;
(iii) a simple, sensible and statistically sound microarray
experimental arrangement that will give the maximal
amount of information given the cost structure and
complexity of the study [3-5]; and (iv) compliance with
the standard of microarray information collection, which
will be further discussed in the next section.

Standardization of information generated by microarray
experimentation
The adoption of international standards have long been
seen as vital in science because ofthe confusion generated
through the use ofvarious units. We have been experienc­
ing a similar issue in the microarray field. The same
increase or decrease in gene expression observed by
two different laboratories might actually be di1ferent,
especíally when they are using di1ferent experimental
protocols and data-analysis methods. Without a standard,
it is almost impossible to judge the validity oC a result
just by inspecting the expression changes or even the raw
data [6]. In view of this problem, the Microarray Gene
Expression Data (MGED) Society (http://www.mged.org),
an international initiative to develop standards for
microarray data, has recently proposed a standard
Minimum Information About a Microarray Experiment
(MIAME) (http://www.mged.orgiWorkgroups/MIAMEI
miame.html) [7]. The research community has embraced
it and many major journals now require compliance with
MIAME for any new submission [8]. It is therefore
advisable to ensure that the experimental design,
implementation and data analysis comply with the
MIAME standard
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Glossary

MIAME represents the minimal information to be
recorded that enables faithful experimental replication,
the verification of the validity of the reported result, and
the facilitation of the comparison among similar experi­
ments. Besides, the information should be structured with
controlled vocabularies and ontology to assist in develop­
ing database and automated data analysis. Currently, the
minimal information ineludes the six parts: (i) experimen­
tal design; (ji) array design; (iii) samples; (iv) hybridiz­
ations; (v) measurements; and (vi) normalization controls.
Adetailed description ofeach part and a convenien t checklist
are available on the MIAME website (http://www.mged.org/
WorkgroupsIMIAME/miame_checklist.html).

Adaptlve clrcle Ngmentatlon: a segmentatlon proceas In whlch the dlameter
of the clrcle belng applled to the spot la calculated case by case In order to
addreu the varlatlon 01 epot dlameter. The plxele that la\l wlthln the clrcle are
re<¡¡arded aa loreground.
~ckground ..tlmatlon: the background Iluoreacence algnal usually orlg'
inatea Irom non-epeclflc hybrldlzatlon 01 the labeled aamplea or auto·
fluorescence 01 the glaaa sllde. Thl$ unwanted background slgnal needs to
be estlmated and removed Irom loreground slgnal durlng Image analysls.
~ckgroundIntlll\lllty subtractlon: the calculatlon olfluoreacence signal from
the background plxela 01 a spot Identifled durlng the segmentatlon procesa.
Uaually the median 01 the plxellntenaltlea le uaed.
Dye-ewapplng axperlrnant: two hybrldlzatlons 01 the aample pair 01 samples In
which the labellng dye of the two lamplea la reversed In one 01 hybrldlzatlona.
Averaglng the two expreaalon ratlos would glve one a good estlmate 01 the
true ratio.
flxed clrcle Ngmentatlon: a segmentatlon procesa In whlch a clrcle wlth a
constant dlameter la applled to all apota on the Image. The plxela that lall
wlthln the clrcle are regarded SI loreground.
Intenllty extractlon: the procesa that calculatea the loreground (slgnal) and
background Intenaltlea Irom the pixels after the segmentatlon process.
local background aatlmatlon: a oommonly used background estlmatlon
method In whlch the Immedlate background pixels surroundlng the spo!. 86

Identlf1ed by the segmentatlon procesa. are uaed lor estlmatlng the back·
ground slgnal.
Segmentatlon: a oomputatlonal procesa whlch dlflerentlate& the pixels withln
a spot·containlng region into fore<¡¡round (true slgnall and background.
Spot Intenslty extractlon: the calculatlon 01 fluorescence slgnal from the
foreground pixels 01 a spot ldentlfled durlng the segmentatlon process.
Uaually the mean of the pixel lntensltles Is used.
Spot recognltlonor grlddlng: a computatlonal process whlch locatea each spot
on the mlcroarray Image.

Image acquisition and analysis
After performing aH biological and hybridization experi­
ments, the first step of data analysis is scanning the slide
and extracting the raw intensity data from the images.
There are four basic steps in image acquisition and
analysis: (i) scanning; (ii) SPOT RECOGNITION OR GRIDDING

(see Glossary); (iii) SEGMENTATION; and (iv) INTENSITY

EXTRACTION and ratio calculation.
Image acquisition is a very important step in data

anaiysis. Once an image has been scanned, aH data, high
or poor-quality, are essentially fixed. A poor-quality image
requires further manipulations, which will lead to a
decrease in the power of analysis. There are two pre­
requisites for obtaining a high-quality image. First, aH
steps in array construction, RNA extraction, labeling,
and array hybridization have to be performed to the
highest possible standards. These endeavors ensure that
aH images would be least affected by contamination
(e.g. dust or dirt), and have consistent spots with high
signal-to-noise ratios. Second, the choice of scanning

FIgure 1. Aow of I typlcal mlcroerray experlment. A typlcal mlcroarrav experlmenl
beglna wlth good experimental dealgn. After carrvlng out the blologlcal experl­
mento the aamplea. elther tluues from patlent or animal mode~ or celle from
In vllro culturea. are oollected. Thelr RNAa ere than extracted end Ilbeled wlth
dlflerent fluorescent dy... end co-hybrldlzed to a mlcroarray. The hybrldlzed
mlcroarrlY la scanned to Icqulre the tluorescent Imagee. Image analyale Is per­
formed to oblaln the rlw slgnal data lor every spol. Poor quallty data are fUtered
out and the remllnlng hlgh quallty dlta Ire normallzed. Flnally dependlng on the
11m of the study. one can Infer statlstlcII slgnlflcance 01 dlfferentlal expresalon.
perform various exploratory data analyaes. c1aaslfy samples acoordlng to thelr
dlsease subtypes and carry out pathway anllyals. Note thlt data from all the steps
should be collected accordlng to certaln standards. mlnlmum Informatlon about a
mlcroarray experlment (e.g. MIAMEl. and archlved properly.

parameters is also important. We discuss the settings
for the Axon scanner, but the general principie is applic­
able to other platforms. A low laser power (30%) should be
used whenever possible to prevent photo-bleaching. The
photomultiplier tube (PMT) gain settings are adjusted
during the scanning process to balance the overall
intensities between the two channels (Le. cy3 and cy5)
as much as possible. This balance can be evaluated in
several ways: (i) visual inspection of the scanning image.
The non-differentially expressed spots should appear
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Table 1. Summary of microarray analysis steps·

C.veaU

Exploratory data analysls

Data normallzatlon

Identlfylng dlfferentlally expressed genes

Data pre·procaS5lng

lmage analysls

Data collectlon and archlval
Imaga acqulaltlon

Analyals &tep

Experimental dealgn and Implementatlon Define the blologlcal questlon and hypothesls clearly
Oesign the mlcroarray experimental seheme carefully; Inelude blologlcal repllcatlon In

experimental design
Avoid experimental errors
Compliance with microarray Informatlon collectlon standards le.g. MIAME)
Avold photo-blaachlng
Try to balance the overall intensities between the two dyes
SCan ¡mage at appropriate resolution
Inspeet the gridding result manually; ad)ust the mask and flag poor-quality spots If

necessary
Choose and apply an appropriate segmentation algorithm
Apply quality measures to aid decision of spot quality
Remove poor-quality spots
Remove spots with intensity lower the background plus two standard deviations.
Log-transform the intensity ratios
Use diagnostic plots to evaluate the data
Conslder uslng LOWESS and Its varlants for normallzatlon
Do not use fixed thre¡¡hold lI.e. two-fold ¡ncrease or decrease) to Infer ¡¡Ignificance
Calculate a statistlc based on repllcate array data for ranking ganea
Select a cut-off value for rejecting the null-hypothesis that a gene is not differentially
expressed; remember to adjust for multiple hypothesis testing
Use different analysis tools with different setting to 'explore' the data
Valldate the result by follow-up experiments

elass predlctJon and classlficatlon Do not over-train the classifier; try to balance the accuracy and generallzablllty
Pathwayanalyals Try to understand the microarray data In a pathway per¡¡pectlve and not genes In Ilol.tlon

°Abbrevlatlons: lOweSS, locally welghed scatterplot smoothlng: MIAME. mlnlmum Informatlon about a mlcroarray experlment.

yellow (i.e. ratio equals to 1) on a balanced image (Figure 2a).
In many cases, most of the spots on the array are non­
differentially expressed; (ii) examining the extent of overlap
between the pixel distribution histograms of both channels
(Figure 2b); and (iji) computation ofthe global normalization
factor for aH the spots contained in the two channels, for
example the sum of signals in one channel divided by the
sum of signals in the other one. A weH-balanced image
should have a factor close to 1.

The choice of a suitable scanning resolution depends
on the array specification. A rule of thumb is that the
resolution setting should be at least 10% of the spot
diameter. At the same time, the number of spots with
saturated pixels should be kept to a mínimum (e.g. < 3-5
spots in a whole yeast genome array with 6240 elementsl
to maximize the dynamic range usage of the scanner.

Excessive scanning of a slide should be avoíded to prevent
photo-bleaching. Images of high-quality can be acquired
routinely when aH these factors are taken into considere
ation (Figure 2a).

Spot recognition or gridding is not a difficult problem for
most contemporary image analysis software, although it is
often necessary to adjust the grid for sorne spots manually
afterwards. In fact, many scientists prefer to visually
inspect the images for adjusting the grid and flagging low
quality spots instead of totaHy relying on software recoge
nition. Segmentation is a process used to differentiate the
foreground pixels (i.e. the true signaD in a spot grid from
the background pixels. This is a tricky computational
problem beca use the spot morphology in a poor-quality
¡mage can vary substantially and the background can
be high. Furthermore, the image can contain other

Box 1. Oífferent microarray technologies

In general, there are two types of mlcroarray platforms depending on
the method of nuclelc acid deposltlon on the chip surface: robotlcally
spotted [521 or In s/tu synthesls by photolithography, a technology that
is commonly usad in computer chips fabrication [531. The latter is
commercially available from Affymetrix"'. Historically the robotically
spotted microarrays were referred to as cDNA microarrays because the
nucleic acids being spotted were PCR products amplified from cONA
Iibraries. And the photolithographically synthesized arrays were
commonly called ollgonucleotides arrays or oligoarrays because
shorter oligonucleotides (- 25mers) were placed on the arrays and
each gene is represented by multiple oligos. It is inaccurate to use the
type of probes on arrays to differentiate different platforms because
researchers now also prepare oligoarrays by robotically spotting
oligonucleotides (-50 to 70mers) on the slide.

Nonetheless, there is still a fundamental difference in the experi­
mental setup between the robotically spotted arrays and photolitho­
graphically synthesized ones. In the robotically spotted array
experiments, the two samples under comparison are labeled with two

different fluoreseent dves and co-hybridized to the lame array. This II
essentlally a comparatlve hybridlzatlon experlment. The ratio between
the two dyes indlcates the relative abundance of a gene In these two
samples. In the photolithographically syntheslzed array experlments,
the two samples under comparison are labeled with the same dye and
individually hybridized to different arrays.

Although most downstream analyses Iike exploratory analysis are
similar for the two-mlcroarray plattorms, the dlfferences In sample
labeling and hybridizatlon have created dlfferent requlrements In
upstream data pra-processlng. In particular, because the samples are
individually hybridized to different arrays in the case of photolitho­
graphically synthesized array experiments, there are specific concerns
on features selection [54,551. background adjustment [561. the relation­
ship between signal intensity and transcript abundance [56,571. proba­
specific biases [581 and normalization across different arrays [55,56).
This review is focused on the data analysls of the spotted cONA
microarrays, the most accessible microarray platform for general
biologists.

hno:lltlgs.trends.com



652····························· ··· ..···iRE·NDs·i~·G ~~~ii~~···v~i ..;·9··N~:;·;··N~~~~¡;~;·2ooi····· ..········· .

(b)

0.01 ;
~ ~

~
e
::J

8
~ 0001 ¡ \
~ \
Oz

...... ~:. ~ ..::
MlOO 10 000 l~ 000 10 000 2~ 000 lO 000 ~ 000 .0 DOO ".!J 000 ~ ()lM) ~ 000 60 000 6.!J 000

Inlensity (Quanla)

TRENDS In G_1Ics

Agura 2. A typlcal mlcroarray Image. pixel dlstrlbutlon histogram for Image aequlsltion. and the eHeet of Image Quallty on spot recognltlon and segmentatlon. la) In thls
microarray experiment yeast cells treated wíth a ehemlcal that Induced a subtle expresslon ehange was eompared wlth the untreated celia by hybrldlzatlon lo a mlcroarray
wlth a complete set 01 yeast open readlng frames (OAFsI. lb) Pixel hlstogram for Image aequlsltlon. The histograma 01 the two ehannela ahould ovartap ea muen 8a pos·
slble. (e-e) EHect 01 Image Quality on spot reeognltlon and segmentatlon. (el A hlgh·quallty Image. Id) Image wlth dust eontamlnatlon. la) Image wlth hlgh background.
{More poor-quallty Images and how to trouble shoot are avallable at http://stress·genomlcs.org/stress.f1sJexpreSlilonlarray_techltrouble_ahootlngltroubles_lndex.htrn.

imperfections. This can make a proper segmentation
difficult. There are several algorithms for segmentation,
including FIXED CIRCLE SEGMENTATION, ADAPTIVE CIRCLE

SEGMENTATION, adaptive shape segmentation and histo·
gram segmentation. There are also several algorithms for
BACKGROUND ESTIMATION, for example constant back·
ground, LOCAL BACKGROUND and morphological opening.
hnD:f/tlgs.trands.eom

These algorithms are implemented in different image
analysis software [9]. The adaptive circle segmentation
and local background estimation algorithms work effi­
ciently for us, but the choice of appropriate algorithms
obviously depends on the quality of the raw images. For
example, the adaptive circle segmentation that estimates
the diameter separately for each spot, works best when aH
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the spots are circular. Figures 2c-e show the recognition
and adaptive circle segmentation results of spots with
dilferent background contaminations. When the image
quality is high, the algorithm can predict the size of the
spots and segment their signal accurately (Figure 2c). If
there is dust contamination (Figure 2d) or a high back­
ground signal in the image (Figure 2e), the algorithm will
not only reject those poor-quality spots, but might also
recognize the contamination as a spot (Figure 2d). In this
case, both the true signal and background signals wiU be
erroneously estimated. Because it is much more robust for
various algorithms to perform segmentation and back·
ground estimation processes on a high-quality image than
on a low·quality one, it is crucial to produce a high·quality
microarray and collect a high·quality image from it in
the first place.

RecentIy there has been an interesting experimental
segmentation method reported in which the DNA spots on
the microarray were counterstained by 4',6' ·diamidino-2·
phenylindole (DAPI) and the counterstained image used
to assist in the segmentation process [10J. This new
experimental approach has apparently resolved many
limitations of the algorithmic approach and potentially
facilitated the development of a fully automated image
analysis system.

Mer the segmentation process, the pixel intensities
within the foreground and background masks (Le. the
areas in the image defined as foreground and background
by the software, respectively) are averaged separately to
give the foreground and background intensities, respec·
tively. Median or other in tensi ty extraction methods can be
used when there are extreme values in the spots that skew
the distribution of pixel intensities. Subtracting the BACK­

GROUND INTENSITY from the foreground intensity in each
channel gives the SPOT INTENSITY for calculating the
expression ratio between the two channels.

A rapidly developing area that assists in image analysis
is the measurement of quality. Some software apply
criteria such as diameter, spot area, circularity and repli.
cate uniformity to judge whether a spot is of sufficientIy
good quality for downstream analysis. The underlying
assumption of these criteria is usually a perfect spot,
which can be too idealized. A working definition of a good
spot is therefore necessary. There is also a need to relate
these measures to more common statistical concepts in
order that they can be useful for a routine image analysis
[9J. A combination of the empirical counterstain segmen­
tation method discussed aboye [lOJ and theoretical quality
measures can be a practical solution. The DNA counter­
stain provides information about actual spot morphology
and DNA distribution in the spots, which helps to formu­
late an improved basis for applying different theoretical
measures to evaluate the spot quality.

Data pre-processing and normalization
The data extracted from image analysis need to be
pre-processed to exclude poor-quality spots and normal­
ized to remove many systematic errors as possible before
downstream analysis. Any spot with intensity lower
than the background plus two standard deviations
should be excluded. The intensity ratios should also be
hno:lltlgs.trend•.com

log·transformed so that upregulated and downregulated
values are ofthe same scale and comparable (11).

The process of normalization aims to removing sys­
tematic errors by balancing the fluorescence intensities of
the two labeling dyes. The dye bias can come from various
sources ineluding differences in dye labeling efficiencies,
heat and light sensitivities, as well as scanner settings for
scanning two channels. Sorne commonly used methods
for calculating normalization factor inelude: (i) global
normalization that uses aH genes on the array (Figure 3b);
(ii) housekeeping genes normalization that uses con­
stantIy expressed housekeeping/invariant genes; and
OiD internal controls normalization that uses known
amount of exogenous control genes added during hybrid­
ization (http-J/www.dnachip.org/mged/normalization.html)
[11]. Unfortunately these normalization methods are
inadequate because dye bias can depend on spot intensity
and spatial location on the array. Housekeeping genes are
not as constantly expressed as was previously assumed
[12J. As a result, using housekeeping genes normaliz­
ation might introduce another potential source of error.
Dye·swapping experiments are seen as a plausible
solution to reduce the dye bias problem, but C~ln be
impractical because of the limitad supply of certain
precious samples.

RecentIy there have been suggestions for using a non·
linear normalization method on the basis ofgene intensity
and spatial information [4,11], which is believed to be
superior to the other methods. Figure 3 provides a com­
parison ofvarious normalization methods, using the data
extracted from Figure 2a. All data analyses and graph
plotting were performed using statistical microarray
analysis (SMA) package (http://stat-zww.berkeley.edu/
users/terry/zarray/Softwarelsmacode.html) running in
R statistical environment (http://www.r-project.org/). The
plots show Log2 ofthe expression ratio versus average spot
intensity. Ideally the center ofthe distribution oflog·ratios
should be zero, the log-ratios should be independent ofspot
intensity, and the fitted line should be parallel to the
intensity axis. In our example, the globallocally weighted
scatterplot smoothing (LOWESS) normalization is a goc,>d
choice because it provides a good balance on the three
factors mentioned aboye (Figure 3c). The fluorescent
images (Figure 2a) do not suffer from serious spatial
elfects, as indicated by a very similar log expression ratio
distribution among aH the print-tips in the bloxplot for the
global LOWESS normalization (Figure 3e). However,
when there is a significant dilference in the distribution
of log-ratios among the print-tips in the bloxplot, sug­
gesting a possible spatial effect, print-tip group LOWESS
(Figure 3d) or scaled print-tip group LOWESS normal.
ization (Figure 3e) should be considered. Apart from
within·a single array, the distribution of gene expression
ratios from replicate experiments might have different
distribution of log ratios due to the difference in experi­
mental conditions. Therefore scaling adjustment is often
necessary to standardize the distribution of log-ratios
across replicate experiments to prevent any particular
experiment becoming dominant and affecting downstream
statistical analysis.
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Data analysis
TIle next stage of analysis is to apply various statistical
and data mining techniqu8s to studythe data. There are
several typical approaches that are discussed in the
following sections.

Significance inference - identifying significantly
differentially expressed genes
Traditionally, differentially expressed genes are inferred
by a fixed threshold cut off method (Le. a two-fold increase
or decrease), but this is statistically inefficient, the main
reason being that there are numerous systemic and
biological variations that occur during a microarray
experimento Although some of the systemic variations
such as dye bias can be effectively removed by normal­
ization, random biological variations such as sample-to­
sample and physiologícal variations are more difficult
to handle [13,14J (for a comprehensive review of various
statistical issues, variations and errors of microarray
experiment see Ref. [15]). Because of these underlying
variations, merely using a fixed threshold to infer sig­
nificance might increase the proportion offalse positives or
false negatives. A better framework of significance infer­
ence includes calculation of a statistic based on replicale
array data for ranking genes according to their possibi­
lities of differential expression and selection of a cut-off
value for rejecting the null-hypothesis that the gene is not
differentiallyexpressed.

Replication of a microarray experiment is essential to
obtain the variation in the gene expression for statisticB
calculation. lt has been suggested that every microarray
experiment should be performed in triplicate to increase
data reliability [16J. There are two types of replication:
biological and technical. Biological replication refers to the
analysis of multiple independent biological samples
(e.g. one tissue type obtained from different patients
with the same disease, or individual samples of a par­
ticular cell line under the same treatment), whereas
technical replication refers to the repetition of microarray
experiment using the same extracted RNA samples.
Biological replication is particularly important for expres­
sion profiling of disease tissues, because there might be
variability of expression among the same tissue type or
tis8ue heterogeneity. Any particular tlssue might not be
representative of the whole disease sample group. Tech­
nical replication provides a precise measurement of gene
expression for a particular sample and eliminates many
technical variations introduced during the experimento
Unfortunately, merely obtaining a precise expression
measurement of a tissue by technical replication will not
resolve the problem of biological variation. Therefore it is
usually preferable to have biological replication rather
than technical replication if there are not enough tissues
or resources to perform several microarray experiments.
provided the experiment procedures are carried out care­
fully [4,5]. Statistical methods such as Studen t's t-test

and its variants [17,18], ANOVA [19,20], Bayesian method
(17,20,211. or Mann- Whitney test (221. can be used to rank
ths genes from repllcated data.

Setting a cut-off for differential expression is tricky,
because one has to balance the false positivas (Type 1error)
and the false negatives (Type II error). Furthermore, per­
forming statistical tests for tens of thousands of genes
creates a multiple hypothesis-testing problem. For example,
in an experiment with a 10 OOO-gene array in wruch the
significance level ex is set at 0.05, 10 000 X 0.05 = 500 genes
would be inferred as significant even though none is
differentially expressed. Therefore using a p-value of 0.05
is likely to exaggerate Type 1 errors. The multiple hypo­
thesis testing problem is conventionally tackled by con­
servative approaches that control the family-wise error
rate (FWER>. the probability of having at least one fal.e
positive among all testing hypotheses (231. A classical
example is the Bonferroni correction. However, controlling
the FWER can be too stringent and limits the power to
identify significantiy differentially expressed genes. In fact,
differential expression is usually confirmed by RT-PCR,
northern blots or in situ hybridization (24). lt is often
acceptable to have few false positives ifthe majority oftrue
posilives are chosen. 'l'hereCore it might be more practical
to control the false discovery rate (FDR) [25], the expected
proportion offalse positives among the number ofrejected
hypotheses. A program, statistical analysis of microarray
(SAM), has been developed to utilize this FDR concept as a
tool to assist in determining a cut·off after performing
adjusted t-tests (http://www-stat.stanford.edu/-tibslSAM/
index.html) (18).

Exploratory data analysis - understanding the
(dis)similarities o( the gene expression levels smong sil
samples
AIso known as unsupervised data analysis, exploratory
data analysis does not require the incorporation of any
prior knowledge in the process.lt is essentially a grouping
technique that aims tot find genes with similar behaviors
(j.e. expression protiles). Sorne commonly used examples
inelude principal component analysis (PCA) (26] or singu­
lar value decomposition (SVD) (27] for dimensionality
reduction, as well as hierarchical cluaterin¡ [28J, K·m••na
c1ustering [29] and self organizing maps (SOMs) [30) for
clustering. There are already several excellent reviews
on various unsupervised analyses and their applications
in microarray data mining [31-33], therefore we do not
discuss their details here.

There is perhaps no unsupervised data analysis that
can suit all situations. Different analyses or even different
parameters ofthe same analysis can reveal unique aspects
of the data. This idea is illustrated in Figure 4, in which
five genes from a hypothetical time series data are
clustered using various distan ce or similarity measures
and unweighted pair group method with arithmetic mean
(UPGMA) algorithm. Each distance or similarity measure

FIgure 3. A comparlson of varlous normallzatlon methods. The raw data was extracted from Figure 2a. Any spot wlth Intenslty lower than the background plus two standard
deviatlons or of poor-quallty was excluded from further analysls. From top to bottom: Lag, ratlos (M) versus average Intensltles (A) plot and boxplot of the data wlthout
normallzation la) and wlth four dlfferent klnds 01 normallzatlon methods: lb) median. fe) global locally welghted scatterplot smoothlng ILOWESSI, (dI prlnt-tlp group
LOWESS. (el scaled prlnt-tlp group LOWESS.
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can assign the genes to different clusters. For example,
Euclidean and Manhattan distances are sensitive to
absolute expression levels, and are able to reveal those
genes that have similar expression levels in the cluster.
Two main clusters are identified in the data, one for
gene A and B and the other cluster for gene e, D and E
(Figure 4e,O. A and B are clustered with each because
their overall expression ratios more similar when com­
pared with e, D and E, and vice versa. The similarity
between their expression profiles suggests the genes in
the two clusters might be co-regulated. However, if the
researchers conclude the analysis at this stage, they are
likely to miss some other interesting relationship among
the genes. A slightly different picture is revealed by using
correlation coefficient with centering, a similarity measure
that is sensitive to the expression profile shape, regardless
of the expression levels (Figure 4b). Gene A, B and e are
grouped in the same cluster whereas D and E are in
another. Intriguingly,A and e, geneD and E are correlated
with each other perfectly using this distance measure. An
inspection ofthe expression profile otrers a hint. Although
A and e differ largely in expression level, the shape oftheir
expression profiles is the same. This is also true for gene D
and E. As a result, the correlation coefficients for both
A and e and gene D and E are 1. This result suggests
gene A and e, gene D and E are likely to be co-regulated,
and analyzing their promoters can sometimes identify
common regulatory elements. Further insight is provided
using absolute correlatiol1 coefficient with centering as a
similarity measure (Figure 4d). This time A, e, D and E
are clustered perfectly together, leaving B separate. It is
because the shape ofthe expression protiles ofA and e are
a mirror image of D and E. Although their correlation
coefficient is -1, which will place them in two separate
c\usters as shown in Figure 4b, the absolute value oftheir
correlation coefficient is the same and will place them in
the same cluster. Therefore it is very likely thatA, e, D, E
are regulated by a same factor or mechanism, which
represses the expression A and e while enhancing the
expression ofD and E, and vice versa. The same principie
also applies to the choice of clustering algorithms [311.

Hence, it is always advisable to apply several unsuper­
vised analyses and different parameters to explore the
data. Nonetheless, there must be a balance between the
time spent on data analysis and the time spent on subse­
quent experimental confirmation. Unsupervised analysis
is a usefui method for generating new hypotheses. The
validity of the result has to be built upon both statistical
significance and biological knowledge.

C/ass prediction - using gene expression profi/es as a
means to classify samp/es
Another intriguing type of data analysis is to train a
classifier algorithm using the expression protiles of pre­
defined sample groups, so that the classifier can best
assign any new sample to the respective group. This type of

analysis is also known as supervised data analysis, which
has great promise in clinical diagnostics (31) and has
been used successfully in several recent studies [34-36).
Examples ofsuch analysis inelude support vector machines
[371. artificial neura! networks (38), k-nearest neighbor [39)
and various discrimination methods (http://stat-www.
berkeley.edu/usersfterry/zarraylHtml/discr.html). The ulti­
mate goal is to generalize the trained classifier as a
routine diagnostic tool for differentiating between the
samples that are difficult or even impossible to c1assify by
available methods.

The challenge for supervised data analysis is to
generalize the c1assifier for aH situations. The training
samples are often limited in number that might not be
sufficiently representative for their classes in general.
Over-training on the same dataset would result in a
situation called 'over-fitting', in which the classitier is
very etrective in c1assifying the training samples but not
accurate enough for new samples. A balance between
accuracy and generalizability has to be established by
validation of the trained classifier. Several approaches
are available for this purpose. For example, the training
samples are divided into two individual sets, one for train­
ing and one for validation. The training of the classifier
will be stopped when the prediction error on the validation
sel reaches a minimum. More sophisticated cross-validation
methods divide the training dataset into several subsets.
Each subset will be lhe validation set in turno The overall
accuracy therefore is the average accuracy across all
validation trials. An extreme case of cross-validation is
called leave-one-out cross-validation, in which one sample
is taken away from the training set to be a validation
sample each time. An investigation of several supervised
analyses, their performance, and cross-validation was
detailed previously (40).

An emerging approach - pathway analysis
Genes never act alone in a biological system - they are
working in a cascade of networks. As a result, analyzing
the microarray data in a pathway perspective could lead to
a higher level ofunderstanding ofthe system. There áre at
least three interesting approaches in this area. The first is
a natural extension of the exploratory cluster analysis
described aboye. If several genes are assigned to the same
group by cluster analysis, as discussed aboye, they might
be co-regulated or involved in the same signaling pathway.
Analyzing the promoters of this group of genes can oftan
reveal common regulatory motifs and unveil a higher level
of network organization in the biological system (41). The
second is to reverse-engineer the global genetic pathways,
the identification of the global regulatory network archi­
tecture from microarray data. It can be done by a system­
atic targeted perturbation like mutation or chemical
treatment [421. and time series experiments [43]. The
assumption here is that the perturbation will cause a
change in expression ofother proteins in the network. This

Figura 4. Dlflerent dlstance measures provlde dlflerent vlews 01 the data. Une graphs 01 a hypothetlcal time series experlment wlth flve genes end seven time polnts
(upper pa~el). Hlerarchlcal clusterlng 01 the data uslng sl~ common dlstance or slmllarlty measures (Iower panel); (al correlation coefflclent wlthout cantering.
lb) correlatlon coefllclent wlth centerlng. lel absolute correlatlon coeflldent wlthout centerlng. (d) absolute correlation coefllclent wlth centering. la) Euclidean distanca.
(1) Manhattan dlstance. Ousterlng was performed uslng unwelghted palr group method wlth arlthmetlc mean algorlthm IUPGMA).
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change in the expression profiles should be able to capture
the underlying architecture of the network. Various
roethods have been proposed for constructing a network
froro this kind of microarray data, such as a Boolean
network that simplifies gene expression as a binary logical
value to infer the induction of a gene as a deterministic
function ofthe state ofagroup ofother genes (44-46J and a
Bayesian network that models interactions among genes,
evaluates different models and assigns them probabili ty
scores (47,48) (readers are referred to two excellent reviews
on these and other methods for reverse engineering of
networks (49,50)). The final approach is to study the
expression data on a pathway perspective. Qur group has
recently developed a method called Pathway Processor
(http://cgr.harvard.edu/cavalierilpp.htm1) that can map
expression data onto metabolic pathways and evaluate
which metabolic pathways are most affected by transcrip·
tional changes in whole-genome expression experiments
(511. We used the Fisher Exact Test to score biochemical
pathways according to the probability that as many or
more genes in a pathway would be significant1y altered
in a given experiment than by chance alone. Results from
multiple experiments can be compared, reducing the ana·
Iysis from the full set of individual genes to a limited
number ofpathways ofinterest.

Conclusion
Microarray analysis is evolving rapidly. New and more
complex analyses appear everyday. making it easy for the
researcher to get lost in endless new methods and soft­
ware. Collaborating with statisticians and mathemati·
cians is often advisable for performing a proper microarray
analysis. Nonetheless, this will not replace biological
expertise. a good foundation for statistical methods and
roeticulousness in conducting experiments.
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COMMENTARY

Questions and Answers on Design oC Dual-Label
Microarrays for Identifying Differentially
Expressed Genes

Kevin Dobbin. Joanna H. Shih. Richard Simon

The rapid growth in the use of microarrays has generated
many qucslions about how to design expcriments that use this
lechnllll1gy effeclively. lnvesligalors need answers lo queslions
about RNA sample seleetion, aJlocation of samples to arrays,
robustness of design, dye bias, sample size, and statistical power
to ensure that the experimental objectives are achieved. We
lIddress sorne common questions lhat arise in designing duaJ­
label microarray experiments and provide statistical answers
to these questions, focusing specifical1y on how to seleet opti­
mal designs for the identification of differentiaJly expressed
genes.

BACKGROUND

The dual-Iabel microarray measures the express ion level
of thousands of genes for a samplc of ceJls. A common goal
of microarray experiments is to determine which genes are dif­
ferenlially expressed among two or more predefined classes
of biologic specimens. These types of study goals are referred
to as "c1ass comparisons" (1). Sorne examples of class compari­
sons are 1) identifying the differentially expressed genes in
BRCA I mutation-positive, BRCA 1 mutation-negative, and
sporadic cases of primary breast cancer (2); 2) idenlifying the
differentiaJly expressed genes in colon cancer ceJls trealed
with high versus low doses of camptotheein (3); and 3) identi­
fying lhe differentiaJly expressed genes in the pruslale cam;er
cell line LNCaP hefore and after treatment with lhe lumor
growth inhibitor, PC-SPES (4). Because of their widespread
use. class comparison cxperiments wiJl be the focus of this com­
mcntary.

A microarra)' generaJl)' consists of either cONA or externaJly
synlhesil-ed oligonucleolides thal are printed or coaled on glass
slide..'. A dual-Iabel microarray uses compelilive hybridization in
which nuc1eíc acids (Le., cONA, cRNA, or RNA) derived from
two RNA sources are hybridized to me same microarray (5,6).
The cONA from one source is labeled with green (Cy3) dye, and
the cONA from the other source is labeled ....,ith red (Cy5) dye.
either díreetly or indirectly (7). The cONA or oligonucleotides
representing different genes are immobilized on the glass slide
and are oflen referred to a<¡ spot<¡. For each spot there are lwo
corresponding measurements, one for each dye, often referred to
as the two channels. The advantages of compelitive hybridiza­
tion for cONA experiments have been well established (8). The
relative intensities of lwO /abeled specimens measured al a
single Spol are much less variable than the relati ve illlensities if
measured al corresponding spots on different arrays. Relative
expression measuremenls provide a means 01' controJling the

variability in the size and shape of corresponding spots and
the effeet.<¡ of varialion in sample concentration on the surfaee of
lhe array.

The relalive express ion measurements compare the expres­
sion levels of labeled cONA that haye originated from two dif­
ferent RNA sources. cONA from a single souree is often applied
lo every microarray slide and ís laheled wílh the same dye (eilher
Cy3 or Cy5). These labeled cONAs are referred to as the refer­
cnce. If thc refercnce is labelcd with Cy3 dye. thcn the nonrcf­
erence samples are a11 labeled with Cy5 dye. Comparisons be­
tween the nonreference samples are ba<¡ed on log-ratios of the
intensity of the Cy5 dye lo the intensity of lhe Cy3 dye for
corresponding spots on different arrays. Basing comparisons be­
tween the nonreference samples on the log-ratios eliminates the
sources of variability attribuUlble to aspects of the spot that
affeel both channels similarly. The gene expression data from
such a design, called a reference design, is easy lo analyze
because simple 1 tests or similar statistical methods can be ap­
plied directly lo the log-ratios, and there is much existing soft­
ware avaiJahle for performíng sueh test<¡. In addition, it is also
possible to control for spot variability from designs that do not
use a refcrencc by statistical modeling. Henee. the refcrence
design may or may not be the best choice for a particular situ­
ation.

111e ability to measure expression levels for two samples on
each cONA array permilS a number of design options for as­
signing specimens to labels and arrays. When choosing among
these design options, one should consider the objectives of the
experimenl, the sourees of variability, and the differences be­
tween dyes with regard lO labeling and detection characteristics.
The purpose of this eommentary is lO provide statistieally sound
advice aboul the design of investigations for finding differeu­
lía1ly expressed genes using duaJ-lahel mícroarray platforms.
We present a number of results comparing the statistical prop­
erties of different designs that we have established elsewhere.
However, to keep the presentation nonmathematical, we have
replaced equations presented in our earlier articles (9,10) with
graphical displays where appropriate.
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What Are the Adv~nlages and Disadvantages of Pooling
Samples?

FIg. 1. Accul'llcy of sample and class mean estimates as a function of !he number
of n:pücates per sample. The number of lIlT"dYS was flXed al 24. AccurdCY is
defined as !he invcrse of thc varianee of the estimate. The estimates llI'C the
diffcn:nce in the class aVCl".1ges for c1ass mean estimates (solid squares) and
!he avcr.¡ge of repeated measurcments Oll !he same sample for sample esti­
mates (open drcles). Sorne: pllnllnetelli, such lIli thc biologic and expcrilDl:nta1
viuiallon. were fixcd lo constnlcl the display. For further detalls aboUI matb­
ematical equations, rcfcr lo online supplemenlal informalion (su bllpll
j ncicaneen;pectnlm.oupjoumals.org,'j ncifcontentlvo195lissuc18/index.shtml).

Pooling samples involves mixing logelher RNA from several
sources before labeling ano hybrioizalion. Two molivalions for
pooling samples are 1) nol enough RNA available from each
individual lo perform the assay. and 2) wanting to reduce lhe
number of arrays used. Invesligalors somelimes hope lO cut
down on lhe number of arrays needed by eomparing a single
pooled sample from each class. The reasoning behind lhis ap­
proach is lhal lhe concentralion of an mRNA molecule in a
pooled sample is likely lo be closer lo lhe average concentralion
for lhe class lhan lhe eoncentration in a sample rrom a single

42 3
Number of replicates per sample

1

when lhe lotal number of arrays is rLXed. An obvious exceplion
lo lhis rule is when onIy a limiled number of valuable RNA
samples are available and when one does not have access to
more. Assaying each sample multiple times will clearly be prcf­
erable lo assaying each sample only once.

One mighl lhink lhat replicale hybridizations would help off­
sel high measuremenl variabilily in low-qualily microarray ex­
periments lhat display high variation in rcpealed assays on lhe
same sample. The pllwer lo uelecl a t1ifferenlially express~

gene as a function of lhe number of subsamples per sample used,
for example, of bolh a high-qualily (i.e., displays low variation
in repealed assays on lhe same sample) and a low-qualily ex­
perimenl, is shown in Fig. 2 (see supplemenlal information al
http://jncicancerspectrum.oupjournals.org/jnci/contentlvoI95/
issue18/index.shtml for details and proof). The high-quality ex­
periment is assumed to have an experimental error variance of
halr lhe biologic variance, and the low-qualily experiment is
assumed lo have an experimental error variance twice that of the
biologic variance. Allhough lhe 10ss of power is more dramalic
for lhe high-qualily experiment lhan for lhe low-quality experi­
menl. lhe low-qualily experiment also loses power when one
replil:ales hyhridi/.alinns fur a lixed numher nf arrays.

SAMPLE SELECfION

Is II Sufficicnt lo Samplc Onc Indhidual From Each
Clas.~?

The answer is no, because lhe goals of class comparison are
lo determine whelher the gene expression profile.<; are different
belween the c1asses and lO identify differentially expressed
genes. Differenl individuals in the same class are nol expected lo
have e~aclly lhe same gene expression level measurements. Bio­
Jogic variation and measuremenl error will produce sorne dif­
ferences in the gene expression profiJes. If we sample only one
individual from cach class, then there is no way to distinguish
expression differences associated with c1ass from those associ­
ated with biologic variation or measurement error. Sorne genes
may vary widely in their expression level from individual to
individual in the sarne c1ass, whereas others may display differ­
ential expression that is relatively smalJ but is nonetheless criti­
cal for class distinction. Therefore, it is important to have mul­
liple (and dislinct) individuals from each cla<;s lo ohtain an
estimate of biologic variation. Similarly, in studying gene ex­
pression in model organisms under differenl biologic eonditions,
it is important to llave distincl applicalions of the condilions and
harvesting of cells.

How Many RepUcales oC Each RNA Sample Should Be
Hybridized?

Sume invesLigaton; (Jl) have promoted using lhree or more
replieale measuremenLS for each RNA sample, and olhers (12)
have suggested thal al leasl lwo replicate measuremenls are re­
quired for each sample. These guidelines may be correcl in some
silualions; however, they will probably nol be correcl for cJass
comparison problems. When one is inleresled in class compari­
son, then replication measuremenLS should generally be al lhe
population level. so that each replicale represents RNA from a
ditl'erenl individual. Intuitively, lhe reason lhallhis level of rep­
licalion produces the besl comparisons is thal. by replicating al
lhe population level. one simullaneously reduces variabilily
from bOlh population helerogeneily and experimental error.
When mulliple aliquots are replicaled from lhe same RNA
suun:e. une unIy r~u(;es variabilily from experimental errur.
Therefore, replication of individual samples is inefficienl for
class comparisons.

Hybridization replicales inerease the aceuracy of the indi­
vidual sample measuremenLS (11). However, if lhe number of
arrays is fixed (e.g., when one onIy has time or resources avail­
able lo run a prespecified number of arrays), then increasing the
hybridizalion replicates requires decreasing the number of dis­
tinct RNA samp1es assayed. The result ol" this approach is a
reduction in the accuracy' of lhe c1ass mean estimates. The re­
lationship belween sample measurement accuracy and c1ass
mean estimate accuracy as the number of hybridization repli­
cales per sample increases for an experiment wilh a tixed num­
ber uf 24 arrays is shown in Fig. l. (see supplemenLaI informa­
lion al http://jncicaneerspeclrum.oupjoumals.org/jnci/conlentl
vol95/issue 18/index.shtml for details and proof). Accuracy is
defined as lhe inverse of lhe variance of lhe mean estimale.
Populalion parameler eslimales are IllOsl accurale when hybrid­
ization replicaúon (i.e., subsampling) is avoided. even lhough
lhe accuracy of individual sample estimales is al a minimum
when lhere is no subsampling. Wilh less subsampling. one is
oeller aole lo delecl ditlerentially expressed genes in lhe classes
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Flg. 2. Statistical power to detecl differcntially exprcsscd genes as a funetion of
tbe numbcr of rcplicates per sample. The numbcr of arrays was fued al 24. Tbc
higb-qualily (Le.• dh"plays low variation in rcpcatcd assays on tbc same sample)
cxperiment (soUd squares) bas experimental error varianee balf lhal of tbe
hiologie v-.mance. Tbe low-quality (i.e .• displays higb v-.mation in rcpcaI.Cd as­
says on tbe same sample) experimcm (open c1rcles) bas experimental error
variance twice lhat of thc biologie variance. The power is tbe probability of
deteeting a twoCold ebange in gene exprcssion levels Cor tbe high-quality ex­
pcriment and a 2"2-fold cbangc in gene expression levels fur tbc low-qualily
cxperimenl (i.c., to make tbe powers eompar.¡blc). For furthcr dctails aboUI
mathemalicaJ cquations, reCer 10 online supplemental information (ut' bltp/I
j neieancerspectrum.oupjoW11als.orglj nei/con tenllvo1951is.~ ue18/index.shunJ).
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PAIRING SAMPLES FOR CO-HYDRIDlZATION

What Typcs of Dcsigns Should Be Considered?

Three designs have been proposed for cDNA microarray
class comparison experiments (Fig. 3). The reference design is
by fax the most widely used because spot-to-spot variation can
be eliminated in a simple way by using ratios or log-ralios. TIlere
are many olher advantages to lhe reference designo which are
explored later in this seclion: however, its widespread use should
not preclude consideration of olher altemalives. The dislinctive
fealure of a reference design is lhal expression of a gene for a
sample is measured relative to lhe expression of that gene at lhe
same spot on the same array for a reference sample.

The abilily lo cu-hybridiL.e lwo differenlially labeled samples
lo each array may arrear to open a Pandora's hox of experi­
mental design possibilities. However, do we realIy need to sort
lhrough cvery possible design? The fact lhat the differcnce in
gene expression levels between corresponding spots on different
microarrays is a major source of variability makes the arrays
analogous lO a blocking factor in agricultural experiments. There
is eXlensive statistical literature on lhe design of such experi­
ments (13.14J, but it cannol be applied directJy to dual-Iabeled
microarray experiments. because the error structure for micro­
array data is somewhat different than lhe agricultural analog. We
have adapted the melhod for derivíng optimal designs in lhe
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Loop Design
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A, A. BI B,

R R -...R R

'.... A, ,......... 8, r-+ Az ,.--. 82

8, - ~ --- ~ - AlGreen
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Flg. 3. Design diagrams ror eD~A mieroarray c1a~s comparison experiment~.

Rectangles repre.senl tbe arrayS. Al is s.ample 1 frnm c1a.ss A. R , is sample I

from c1ass B, A2 is silmple 2 fmm c1ilss A, and so on. R is tbe reCercnce sample.
Arrows eonnccl samples repealed on mlllliple an-dYS. Red is lhe C'y5 dye and
Grtt'n is tbe C'y3 dye lIsed lO lilbcl Ibe rcfercnce and nonrcference samples.

individual. Unfortunately, a single pooled sample from each
c1ass wiJ] nol be adequale for stalistical inference. because one
has no eslimale of lhe biologic or experimental variability in the
gene expression levels for pooled samples construcled from
samples of lhe same class. Taking multiple subsamples from
each pool and repeating lhem on multiple microarrays does nol
solve lhis problem, because variation among the subsamples will
reflecl onJy measuremenl error and will nol include biologic
varialion.

lt is possible lO perform valid statistical comparisons between
lhe classes wilh pooled data. but lhis approach rcquires multiple
puoleO ~amples [rom each c1~s. Differenl pool~ u[ RNA should
be constructed from differenl sets of individuals so lhat lhe
pooled samples are independenl and represent true replication.
Comparisons of gene expression levels between c1asses are lhen
straightforward. However, lhere are still some disadvantages to
lhis approach. 1) Il does nol allow one to understand the con­
tribulion of individual RNA samples to the observed gene ex­
pression levels. which malees il impossible lo identify oUllier or
poor-quality RNA samples. 2) A pool average is potentially
biased for lhe c1ass average-thal is. the average expression
level of a gene in the pool may differ from the average of the
expression levels of the gene in the contributing samples. which
can happcn becausc 01' inequalities in the amounts 01' RNA con­
tribuLed by diITerenl sample~ ur bt:cause mixing uf lhe RNA
causes unanticipaled alteration of gene expression. 3) It may be
difficult or impossible lO understand how gene expression is
distribuled in the populalion from pooled data ando hence. lo
make valid statistical inferences or prediclions for indi viduals. In
summary. pooling of samples is recornmended when lhere is not
cnough Rl"A from individual samples lO run a microarray. The
use of severa! independenl pools from each cl~s will allow for
valid statistical inference ahout the classes.
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What Happens Ir the Class Dcfinitions Change?

from the same lack of robustness. The more robuSl reference
design appears to be better overall than the other lwo designs
when nonreference RNA samples are limited. .
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FI¡;. 4. Comparison of desi¡;n efficiencics. A) Comparison of dcsi¡;n efficiencies
for !he reference (solid bars), loop (hntehed bars), and balanccd block (open
bars) desi¡;ns when Ihe number of amlYs is flxed. B) Comparison of!he refer­
ence (salid bars) and balanecd block (open bars) designs whcn Ihc nonreference
RNA samples are ruedo Efficienc)' L~ !he inver.;e of lhe vari:mcc of!he eslÍmalcd
differenee betwec:n Ihe c1ass aver.lges. Sorne par.uneter.;, such as !he biologic and
ellperimenU1l vari:ltion, wen: flxed to conslnlct !he display. ResulL\ are gCllCr.l1
in !hal !he specific number of arr<1Ys or samplcs used <loes nol arfeel Ihe rela­
tionship between !he heights of !he bistogr.un baI1i. The loop design wa.\ not
included in !he hislDgr.un b<Mlusc il uses a diffcrcnl sampling sehcmc. For
furthcr dctails aboUI ma!hemaúcal cquations, rcfcr 10 onlinc supplcmcntal infor­
malion (scc hup//jncicanccrspcclrum.oupjoumals.orgljnci/contcntlvoI95/
íssuc18/indcx.shtml).

Il is not unusual lo have different classificalions of the
samples or to have corrections in the class of specific samples.
The reference design is more robust to changes in the classifi­
calion scheme than either the balanced block or loop designs.
The rt:(C;on for Lhis increase<! robusLness is thaL Lhe reference
design will remain a reference design with a new classification.
In contrast, the balanced block design will probably lose its
structure (i.e.. it will no longer be a balanced block design). With
regard to a new classificatioIl, maIlY arrays may conlain two
samples from the same c1ass. which can result in asevere loss of
efficicncy. It is also possible that. with a ncw classification, the
cJasses cannot be compared with the balanced block design be­
cause they never arpear logether on any arrays. The loop design

Balanced block. loop. and reference design experiments can
all provide unbiased estimates of the differences in gene expres­
sion levels belween c1ass means. i.e., differences belween the
average gene expression levels. However. the three designs are
nol equally efficient. The efficiency of a design is based on the
precision of the statistical estimales of the differences in the
c1ass means for "equivalenl experiments:' We define lwo no­
lions of equivalenl experimenls t.hal we t.hink are appropriate to
many microarray sludies: 1) Two experiments are equivalenl if
they use the same number of microarrays. and 2) lwo experi­
ments are equivalent if they use the same (nonreference) samples
and subsamples.

Definilion 1 is appropriale when nunrefereOl;e RNA samples
are abundam and the limiting factor is the amounl of time or
resources required to aclually run the arrays. The question then
mighl be "If I can afford lo run only 20 arrays. how should I
design the experimenl?" Defilúlion 2 is appropriate when the
nonreference RNA resources are scarce and the cosl of running
Lhe arrays is less crilica!. The queslion then mighl be "Given thal
I have only these 12 RNA samples, how should I design t.he
experimentT

Efficiency comparisons of the three designs for a typical ex­
periment (with biologic varialion twice thal of the experimental
error variation) calculated from equations presented in Dobbin
and Simon (9) are shown in Fig. 4, A. When Lhe numbcr of
micruarrdYs is linúl.e<1 (equivalem;e deJiniLion 1), Lhen Lhe bal­
anced block design is substantially more efficient Lhan the ref­
erence or Lhe loop designs. However, the efficiency gain with the
balanced block design comes with sorne sacrifice, inc1uding ro­
bustness and difficulty in clustering samples.

When Lhe nonreference RNA samples are limited (equiva­
lence definition 2). thcn the cfficicncics of the reference and
balanced block design are similar (Fig. 4. B). The loop design is
less eflicient than t.he balanced block design and also sullers

Which Dcsign Will Providc thc Bcst Class Comparisons?

presence of a blocking faclor lO microarray experiments (9) and
have established that. for many c1ass comparison studies. the
balanced block design shown in Fig. 3 is optima!. The effect of
spot-to-spot varialion in gene expression levc1s is eliminaled in
the balanced block design because each gene' s expression level
is measured at the same spot on the same array for samples from
each of the lwo c1asses being compared.

The thiro lype of design thal mighl be considered for cDNA
micmarrays is une prnpnsed hy Kerr amI Chun:hill (15), which
they caBed a loop design (Fig. 3). Unlike the lwo other designs.
the loop design requires lwo aliquots from each RNA sample.
These aliquol pairs connect the arrays and are arranged so that
the connected arrays foon a loop panero.

Class comparisons for the balanced block design and the loop
design are accomplished by filling an analysis-of-variance
(ANOVA) model lO the logarithm of the background-corrected
channel-spccific intensities (9) and fitting a separale model for
each gene. This approach can also be used for analysis of the
reference designo but the results are equal lo or very similar to
applying simple Student's t tests lo the log-ratio measurements.

More elaborate designs have been proposed lO achieve dif­
rerenl experimental ohjt:Clives (/5, /(¡); however. we will rocu~

on the three types of designs presenled in Fig. 3 because they are
the most obvious choices for c1ass comparisons. Other types of
designs lo consider are presented in the dye bias seclion.
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is also subject lO large efficiency 10ss, because under a new
classification, the classes may appear together only on a small
proponion of arrays.

What Ir We Also Plan to Perform Class Discovery on the
Samplcs?

Class discovery is the process of finding a new classificatíon
system for a set of biologic samples on the basis of gene ex­
prcssion profilcs whcn thc class labcls are unknown ahead of
lime. Clusler analysis is lhe mllsl appmpriale apprnal;h lo use in
class discovery. Of the three designs presented in Fig. 3, effec­
live class discovery can only be performed for lhe reference and
loop designs. Individual samples musl be eompared in class
discovery. The balanced block design eonfounds spot variabílily
with comparison of samples on different arrays because no RNA
sample appears on more than one array. The arrows eonnecting
lhe samples repeated on different slides in the reference and loop
designs indieate why this type 01" eonl"ounding is nol a problem
in lhese designs--lhal is, conneclions can be made between any
lwO samples on differenl arrays using lhe arrows.

The reference design is recommended for class discovery
because cluster analysis can perform substantially bclter wilh a
reference design lhan a loop design (9). parlil;ularly a,-; lhe num­
ber of samples increases. An example of a clusler anaJysis for 10
and 20 samples, which was originally presented in Dobbin and
Simon (9). is presented in Fig. 5. The data in lhal figure were
generated from two tnJe c1usters (Le.• the dala in each c1usler
were generated from a different mean gene expression vector).
The numher of discrepancies helween lhe cluslers found hy a
common clusler analysis algorilhm and the true cluslers for the
reference and loop dcsigns appear on the x-axis. The reference
design finds the true cluslers almost every time, whereas lhe
loop design perfonns poorly for 10 samples and much worse for
20 samples. Moreover, the loop design performs even worse
when lhere are more than 20 samples (9). The difference in
dusler analysis performance is Sil uraml:llic lhal il wiJl usuaJly
offsel any relatively moderale differences in efficiency and
power between the loop and reference designs. For lhis reason.
we reeommend using the reference design for dass discovery
experiments.

What Is Sacrificcd IC a Reference Dcsign Is Not Uscd?

MOSl investigators are familiar wilh lhe reference designo and
lhey may want to know whal will be sacrificed if an allemalive
design such as lhe balanced block design is used. In addition to
lhe issues discussed in the lasl two queslions. lhere an< olber
considerations worth menlioning. 1) The data from a balanced
block or loop design may be more difficult to analyze lhan data
from a reference designo Most mieroarray analysis packages as­
sume a reference design has been used. so analyzing the experi­
ment may require switching to different software. 2) The bal­
anced block ur loop de.sign may be more difficull lo devise lhl:ln
lhe reference designo If there are many groups being compared
or many possible ways lO group lhe samples. designing the study
so lhal aIl comparisons of inleresl can be made may be non­
lrivial. 3) JI may nol be possible lo compare dala from differenl
microarray experimenlS or prospective data lhat is analyzed by
microarrays al differcnt times. If a common reference sample is
used for all experimenls. lhen lhere is sorne foundation for lhe
comparison 01" samples colIected over lime or samples analyzed

F1g. S. Comparison of cluster analysis performance. Comparison of cluster
analysis performance for the reference (solld bars) and loop (hatched bars)
designs on A) 10 samples and 8) 20 samples. Simulated culta comes from two
true (e<lch witb a diffcren! me<ln gene expression) clusl.crs. One thousand genes
were presen! in !he clusters. 20 of which were differentially expressed. x-axis is
tbe number of discrepancies bc!wcen true clust.el'li and closes! matches. y-axis is
tbe frequency of tbe number of cfu¡crepancies observed in 200 simulations.
Simulation was based on a prostate cancer data.set [ue Dobbin and Simon (9) for
dctailsl.

in different experiments. a situation thal is generally nol possible
for balanced block or loop designs.

DYE BIAS

What Is the Source of Dye Bias?

Cy3 and Cy5 have differenl efficiencies for their labeling
ability and detection characteristics. Background correction and
nonnalization adjust for consislent dye-relaled differences lhal
are not gene-specific. For example, median cenlering of arrays is
meanl lo eliminale bias that is common across a11 genes, and
inlensily-dependenl normali7.ation. sueh ac; loess smoothers. ad­
jusI for bias related to overall spot intensity (15). Gene-specific
dye bias is displayed by genes that do nol fall inlo lhe overall
patlen! of the dye eEfeet lhat characlerizes the majority of genes.
This bias may persist even after nonnalization.

Does Gene-Spccific Dye Bias Exist?

To our knowledgc. lhere has beco no definilive study ehar­
acterizing the nature or magnitude of gene-specific dye bias. In
addilion. it is nol clear thal gene-specitic dye bias is the same
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rlg. 6. F,.aimated dye hia.~ cnn!1"a.'il thal ""as nol cnrrected for in normaJi7arion.
brim;¡lcs for clyc: bias ""en: l>;1~.d (ln SSJ:? genes from II mm~genjc lTJ(l1l~

eJ.rc rim<::nl , Darll were UilOSfOflll<X1lo t>lI~ 2 Iogarithms l'O Ibal 'In estimale<! dye
I'>ill~ roornm 'of size J corre:spooos lo R twofokl changc: in gene c:xpres:sion,

Gene-specific dye bias is a polential issue when comparisons
are made between samples labeled with different dyes. Hence. it
is nN generally a problem in reference design experiments be­
cause they compare cln,sses al' nonreference RNA sampJes. Be-

from one experimenl to anoÚler or from one laboralory to an­
oÚler. bul il is of general concem among microarray investiga­
lors. Many slUdies (3.18-22) have been designed lO guard
againsl gene-specitic dye bias, whereas others (8.17.23-25) have
made gene-specific dye bias adjusunents lo their slalislical
analysis. Sorne slUdies have auempled loeliminale gene-specific
dye bias through lechnical innovations in labeling (7,23.26.27).
Although novel labeling procedurcs such as indirecl labeling
appear lo J"e{]uce gene-specilic t.lye hia.'i, il is nol dear lhal lhey
eliminate dye bias.

We have observed gene-specific dye bias and provide, as an
example. one reference design eXPerimenl involving transgenic
mice (Green J: unpublished data). Nine distinct RNA. samples
from nine mice were examined, and three oí these samples wcre
run twice. once wilh each dye label (Le.• once wilh lhe reference
labeled with Cy3 and once with the reference labeled with Cy5),
for a total 01" 12 arrays. Thc intensity data wcre tirsl background­
adjusted to eliminale slray fluorescence signals from lhe slide
and normalized lO make the measurements on differenl arrays
comparable. We then performed an ANOVA on lhe individual
channel log intensities. An ANOVA mode! wasfit separalely to
oala fllT each uf 8832 genes. In lhe ANOV A appruach, lile dye
bias effects are called dye-by-gene inlemctions. Overall, we ob­
scrvcd that there wcrc rnany genes with a statislically significant
dye-by-gene interaetion (P<.OO 1), but these effccts tended to be
smal!. The size of these effccts on the base 2 log-scale is shown
in Fig. 6. The average absolute value' oC Úle gene-by-dye inter·
actions was 0.18 (standard deviation = 0.16), corresponding lO
a 1.l3-fold change in gene expression levels. Only 10 of the
8832 genes had dyc bias thal corresponded lo a twofold or
grealer change in ge'oo expression levels. Tseng el al. (8) have
presented similar resuJts. Although dye bias appears lO be como'
mon in these direct-labeled cONA experimel)~, il appears to be
fairly small in magniludc.

When Is Gerie-SpeciÍic Dye Bias nn Issue?

cause a11 of the nonreference RNA samples are Jabeled wiÚl Úle
same dye, Úle dye bias belween lhe nonreference and reference
intensities does not become a bias in comparing c1asses. Gene­
specitic dye bias is a pot.enlial problem, however, if nonrerer­
ence RNA samples are compared with a common reference
RNA sample. Gene-specific dye bias is also an issue for bal­
anced block and loop designs. When gene-specific dye bias is an
issue, its magnitude must be estimated for each gene, and an
explicil at.ljuslmenl lo lhe slalislical analysis musl he made ln
ensure that class comparisons are unbiased. For example, in
ANOVA analysis, lhe adjusunenl involves adding t.erms repre­
senting gene-specific dye bias to the slatistical model.

How Should I Dcslgn an Expcrlmcnt lo EUmlnate Dye
Bias From the CIass Comparisons?

Oye bias can be eliminated from the class comparisons in two
ways: 1) by labeling 811 samples from a11 classes being compared
with the same dye, and 2) by Iabeling half the samples with one
dye and haJf the samples with the other dye for each c1ass being
compareJ.

Reference designs usually use stralegy l to eJiminate ~ye

bias. Other designs, such a'i balanced block designs, often use
strategy 2. LabeJing exactly half the samples of a class with a
dye is preterable to labeling sorne other fi"action because it pro­
duces more accurate cIass comparisons and is simpler LO ana­
Iyze. If there is an odd number of nonreference RNA samples
from each elass (e.g.• seven), then stTategy 2 wouJd not be abJe
to be foJ1owed cxactly (e.g., three samples labeJed with red dye
[Cy5] and four samples Jabeled willl grecn dye [Cy3]). Oye bias
can still be eliminated from such a designo but it requires a more
complex weighted analysis to adjusl for the dye asymmetry.

Another approach that is sometimes used to eliminale dye
hias is lo run a se.! of arrays wilh Ihe. referen<.:c:, in holh channds
to idenúfy the genes that display dye bias. These genes could
then be flagged as suspect if they show up as statistically sig­
nificanl in the class comparisons.

Sorne investigators (12) have used lhe existence 01' dye bias
as a reason to ron al] sanlple pairs twice, once ",,rilb each dye, lO
eliminaLe lhe bias. However. we (lO) have shown lhat complete
dye swapping is an inefficient way lo adjusl ror the dye bias
correction. lf each sample is run twice in a fixed number ~f

arrays, then Úle effective sample size is cut in half. The refererice
design or balanced block design will provide unbiasedostimates
of the class comparison wilboutrunning any samp]e pairs twice.

I Heilée. lhe ~o.mp]ete dye-s~~gl~V,~~~~e&li~~ves.~.•
the sam~~,¡z,e and reduce.'i~~~~y-wtlIf/fu~alU as . '
far as~..Cóníp~s are concerned. Balancing lhe cJasses ..
with respect 10 the dyes is more efficient than dye swapping of
individual snmples ror etiminating dye bias. --~-:. .

How \Viii Class Discovery Results Be Affected by Dye
Bias?

Dy~ bÚts' generalJy wm not lUIve ti subswnlial impltCt on cl11.ss>
discovery, aIÚlough it may be necessary to make an explicil dye
bias adjusunenL In this eommentary, we have focused on elass
comparison experiments in which we already have élass labels
for the samples. C]ass discovery can be performe<! 011 all tlie..
samples or on only the samples within a particular class. Class
disco'''cry using cluster analysis on al] of lhc samp]cs is some­
times performed lo verify that the resulting clusters iecapitulaLe
lhe known classes (28,29). In addilion, cluster analysis wilhin a

1.51.0-1.0 -0.5 0.0 0.5
Dye Contrast Estimates
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- Joumal-ó(me ~:It.iOllaJ Cancer Instirute, Vol. 95. ~o. 18. Scptember 17. ~OO3 CO~1~fB¡TAA Y 1367



32

o
o

A

l/')
..-

>,0
(.)
e
Q)

'u
lE
W lO

o
d

o
d

2 3

Number of C\asses

R
co
o
d

>-
(.)
e
Q)

'0 -.:t
tE~
WO

Which Dcsign Will Providc thc Bcst Class Comparisons?

presence of a blocking factor to microarray experiments (9) and
have established that, for many c1ass comparison studies, the
balanced block design shown in Fig. 3 is optimal. The effect of
spot-to-spot variation in gene expression levcls is eliminated in
the balanced block design because each gene' s expression level
is measured at the same spot on the same array for samples from
each of the two c1asses being compared.

The third type of design that might be considered for cDNA
miCmaTrdYs is nne prnpose<1 hy Kerr anu Churchill (15), which
they caBed a loop design (Fig. 3). Unlike the two other designs,
the loop design rcquires two aliquoL<; from each RNA sample.
These aliquot pairs connect the arrays and are arranged so lhal
the connected arrays forro a loop pattero.

Class comparisons for the balanced block design and the loop
design are accomplished by fitting an analysis-of-variance
(ANOVA) model to the logarithm of the background-corrected
channel-specitic intcnsities (9) and fitting a separate model for
each gene. This approach can also be used for analysis of the
reference design, but the results are equal to or very similar to
applying simple Student's 1 tesL<; lo the log-ratio measurements.

More c1aborate designs have becn proposed to achieve dif­
rerenl experimental nhjeclives (15, /ó); however, we will rocus
on the three types of designs presenled in Fig. 3 because they are
the mosl obvious choices for c1ass comparisons. Other types of
designs to consider are presented in the dye bias section.

Balanced block, loop, and reference design experiments can
all provide unbiased eslimates of the differences in gene expres­
sion levels between c1ass means, Le., differences belween the
average gene expression levels. Hawever, the lhree designs are
nol equally efficienl. The efficiency of a design is based on the
precision of the statistical estimatcs of the differences in the
c1ass means for "equivalent experimenls," We define two no­
tians 01' equivalent experiments thal we think are apprapriate to
many microarray studies: 1) Two experiments are equivalent if
they use the same number of microarrays, and 2) two experi­
ments are equivalent if they use the same (nonreference) samples
and subsamples.

Definilion 1 is appropriale when nunreferem:e RNA samples
are abundant and the limiting factor is the amount of time or
resources required to actually run the arrays. The question then
might be "If I can afford lo run only 20 arrays, how should I
design tbe experiment?" Defilúlion 2 is appropriate when the
nonreference RNA resources are scarce and the cosl of runmng
the arrays is less critical. The question then might be "Given that
1 have on1y these 12 RNA samples, how should I design the
experimenl?"

Efficiency comparisons of the three designs for a typical ex­
periment (with biologic variation lwice that of the experimental
error variation) calculaled from equations presented in Dobbin
and Simon (9) are shown in Fig. 4, A. When the number 01'
micruarrays is linúled (equi valence uefinition 1), then Lhe bal­
anced block design is substantially more efficient than the ref­
erence or the loop design.'i. However. lhe erticiency gain wilh lhe
balanced block design comes wilh sorne sacrifice, inc1uding ro­
bustness and difficully in c1uslering samples.

When the nonreference RNA samples are limiled (equiva­
lcnce definition 2), then the efficiencies of the reference and
balanced block design are similar (Fig. 4, B). The loop design is
less erticient than the balanced block design and also suffers

Number of Classes

FI¡;. 4. Comparison of design effieiencies. A) Comparison of dcsign efficiencies
for lbe cefercnec (soUd bllrs), loop (hlltchcd bllrs). and balanccd block (open
bars) designs when !he number of arr,¡ys is rued. B) Comparison of lbe cefer­
enec (salid bars) and balanced block (open bllrs) designs whcn !he nonrcfecencc
RNA samples are rued. Efficiency is !he inverse of the variancc of!he estim;¡ted
difference betwecn tbe class averdges. Sorne par.unelers. such as lbe biologie and
expcrimenlal variation, were fixed to eonstnlel tbe display. ResulL~ are gencr.u
in lbal !hc specifie numbcr of arr,¡ys or samplcs ¡u¡ed docs nol affeel !hc cela­
tionship between lbc heigbls of !hc hislogr.un ban;. Thc loop dcsign was not
included in lbe hislogr.un bccausc il uses a diffcn:nt sampling sehcmc. For
furthcr dclails about m;¡lbcm;¡tiea! equations. rcfcr lo online supplemcntal infor­
malion (scc htlp//jncicanecrspeelrUm.oupjournals.org/jnci/contenll\'oI9S/
issuc l8lindex.sbtml).

from the same lack of robustness. The more robust reference
design appears lo be better overall than the other two designs
when nonreference RNA samples are limited.

What Happens Ir the Class Dcfinitions Change?

Jl is not unusuaJ to have different c1assificalions of the
samples or lO have corrections in the class of specific samples.
The reference design is more robust lo changes in the c1assifi­
calion scheme than either the balanced block or loop designs.
The reason for Lhis increased rubuslness is thal Lhe rtference
design will remain a reference design with a new c1assification.
In ~OnlraSl, lhe balaneed block design will probably lose iLI\
structure (i.e.. il will no longer be a balanced block design). With
regard to a new c1assification, many arrays may contain two
samples from the same c1ass, which can result in asevere loss of
efficiency. 11 is also possibJe that. with a new c1assification, the
classes cannot be compared with lhe balanced block design be­
cause they never aprear logelher on any arrays. The loop design
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particular c1ass is sometimes used lo identify novel subc1asses
(28.30.31 ).

In the previous section we discussed two designs for class
discovery-the reference design and the loop designo Dye bias
generally will not affect class discovery for the reference design
because a11 the samples being c1ustered are labeled with the same
dye. The effect of dye bias on cluster analysis results can also be
eliminated from the loop dcsign by making a dye bias adjust­
menL; however, we do nuL recommend Lhis design hecause or iL..;
poor cluster analysis performance. as discussed in the previous
section.

How Can Dye Bias Be Eliminated From Comparisons
Bctween thc Reference and the Nonreference Samples in a
Reference Dcslgn?

One can eliminate dye bias from the comparisons between the
reference and nonreference samples by including dye-swapping
arrays in the design of the experiment. Consider a reference
design experiment used to study a collection of tumor samples.
where the reference sample consists of a mixture of normal
lissue. A fairly common experimental situation is one in which
the primary goal is lO perform class discovery on the tumors and
lhe secondary goal is lo compare Lhe lumon> wilh lhe normal
reference to identify potential tumor markers (32.33). Because
the normal reference sample is labeled with a different dye than
the tumor samp1es, there is potential for dye bias in the com­
parisons. In lhis case, we recommend appending the basic ref·
erence design with just enough dye-swapping arrays to allow for
good statistical inference for lhe comparison with the reference
sample.\This comparison is made by ANOVA and is adjusleU for
dye hiae;; an example of such a design is shown in Fig. 7. Note,
we do not recornmend reversing all Lhe arrays in this situation,
because running all samples both forward and back.-ward with the
reference sample substanlialIy reduces the efficiency of the tu­
mor versus normal comparison (for a fixed number of arrays)
and hinders the ability of lhe cluster analysis to identify true

Array 1 Atray 2

R~~ ~
o~.n0 0

AmIIy n+1 Anll:f n+2 Aney n+k

~n~ GJ ~
R8d0 0 ~

Flg. 7. Oye-swapping reference design for c1u.stering and comparison of non.
refcrence wilh reference RNA samples. Rectangles rr:present the arnlYs. SI is
sample I fmm lhe nonrefc:n:ncc samples. S2 is sample 2 fmm the nonreferencc
samples. and so on up lo sorne nurnhcre:d sarnple n (Sn)' R is lhe reference
sample. Of lhe n + k aJT3ys. k is ron as a dye swap on repeated samples. The nrst
row of arnlYs rr:prescnts lhe forward arrdYs and second mw of arrdYS represcnts

the reverse aInlYs. lbe reference sample is dyed grecn (Cy3) on the forward
affilYs and red (Cy5) on the reverse arrrlYs. The resultirig fixed-effeets analysis
oC variance table has k -1 degrees oC Crecdom for error.

groupings in the gene expression data. Running dye-swapping
arrays on all samples essentiaJly sacrifices the primary goal of
discovering a new taxonomy for the secondary goal of identi­
fying potential markers; even for the secondary goal, complete
dye swapping is inefficient in most cases.

SAMPLE SIZE

How Many Biologic Samples Are Necded for a Reference
Dcsign?

Suppose we want to test whether a particular gene is differ­
entially expressed in two classes. To test the null hypothesis that
there is no difference in gene expression levels at the ex signifi­
cance level, we want to have 1 - ~ power to delect a difference
of 8 in the class mean log-ratios. Let u be the standard deviation
of the log-ratios witbin each c1ass and n be the total number of
arrays used, Le., n/2 arrays for each c1ass. Then the usual sample
size formula (34 j, based 011 an assumption of normal distribu­
tions wilhin the classes, would be:

n = 4(Z)_/2 +Zl_~)2

('6/u)2

The notation Zl-a12 indicates the 100(1 - oJ2)lh percentilc of
lhe standard normal distribution. When the samples sizes are
small, the normal approximation of the test statistic may be poor,
and an ilerdli ve compulalional procedure based on the I uisLri­
bution can be used lO compute the sample size. For example, we
have observed an u -= .50 for human cancer data using log base
2 intensities on cDNA microarrays and a reference design, and
we have observed (J -= .25 with data from inbred strains on
transgenic mice (9). A '6 = .1 corresponds lo a twofold differ­
ence in gene exprcssion. Setting ex = .001 guards againsl an
excessive number of false-posilive genes. For example, wilh
10000 genes, el = .00 I resulte; in an average of 10 false-positive
genes. Setting ~ = .05 provides 95% probability of deteeting a
lwofold change in gene expression. The resulting sample size is
then 30 tOlal samples for u = .50 and 12 total samples for u =
.25. Because of the small sample sizes, we have used I distri­
bulion percenliles in bolh cases.

What Sample Size Should Be Uscd for a Balanccd Block
Design?

Suppose that two c1asses will be compared and that the
samples from each c1ass are independenL Again, we want to test
Lhe null hypolhesis Lhallhere is no úifference in gene expression
Jevels hetween the clae;ses at the ex significance level and to have
1 - ~ power lo delect a difference of '6 in the c1ass means. Let
T be lhe standard deviatioD of the log-ratios. In tbe balanced
block design, each log-ratio involves two independent samples,
one from each class. Tbe T parameter will tend lo be larger tban
the (J parameter in the reference design because additional bio­
logic varialion is displayed in the log-ralios. Let n be the lotal
number 01' arrays used, Le., n arrays with n samples from each
class. The sample size formula would now be:

Because the reference sample appears on each array in the
rderence design, variabilily amung lhe log-mlius will be smaller
for a reference desígn than for a halanced hlock designo We provide
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on-line supplementa1 material (see http//jocicancerspectrum.
oupjoumals.orgljncilcontent/voI95/issue 18Iiodex.shl~ for d~­

tails) thal shows how prior data from a reference deslgn expen­
menl can be used to estimate ,.. For examplc, usíng our cstimated
standard deviation of the log-ratios from the reference design
thal used human samp1es «1 = .50) and the same parameter
seltings thal we used for the reference design sample size cal­
culaLion (5 = 1, ex = .001, (3 = .05) results for,. ::: .67, the
sample sil.e requirecl change.o.; rmm 30 arrays under the rererence
design to 17 arrays under the balanced block designo The refer­
ence dcsign uses 30 arrays from 30 lotal samples, 15 from each
class. whereas the balance<! block design uses 13 fewer arrays
but requires 17 samples from each class, or a total of 34 samples.
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