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Introduccion al Diagnéstico miltiple usando Biochips

CONTENIDO
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Introduccién a los Biochips

¢ Cémo trabaja un Biochip?

Proceso de diagnostico mulriple para biochips
Preparacién del Reactivo (Pre-PCR).
Preparacién de la Muestra.
Amplificacion mediante PCR muttiple
Deteccion mediante Biochip
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Objetivos

Al final de esta seccién Ud. podra:

1. Explicar cual es el origen de los Biochips

2. Por qué son una nueva y valiosa herramienta para el diagnéstico molecular
en el laboratorio clinico.

3. Explicar como opera un Biochips y como se relaciona con el diagndstico
mediante PCR mudttiple.

4. Explicar el proceso , incluyendo amplificacion muitiple y deteccion mediante
biochips..
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INTRODUCCION
Los métodos de diagnostico deben tener cualidades fundamentales como poseer una

méxima especificidad, sensibilidad y rapidez. Con el aumento de la especificidad se
evitan las reacciones cruzadas y por ende los falsos positivos; y con el aumento de la
sensibilidad se intenta detectar la minima cantidad de patogeno existente con lo que se
evitan los falsos negativos. La rapidez con que se entreguen los resultados es

fundamental para una oportuna decisién en cuanto a las lineas de accién a seguir.

A principios de los 80 ocurrié una gran revolucion tecnolégica con el descubrimiento de
los anticuerpos monoclonales aplicados para la deteccion de patégenos. Se pensd que
gracias a la alta especificidad y sensibilidad que presentaba esta técnica, se habian
solucionado gran parte de los problemas de diagnéstico. Sin embargo, con el correr de
los aflos se comprendid que los anticuerpos monocionales eran muy utiles para algunos

casos, pero no servian para otros, mas aun, quedaban muchos casos sin resolver.

A mediados de la década de los 80, aparecié otra gran revolucién cientifica la que se
denomind reaccién en cadena de la polimerasa (PCR). Esta herramienta tecnoldgica
consiste en aumentar artificialmente el contenido del matenal genético del patégeno
mediante la amplificacién de una region especifica del genoma utilizando la enzima Taq
DNA polimerasa. Esta técnica se caracteriza por ser altamente sensible ya que es
capaz de detectar cantidades minimas del patégeno, lo que generalmente corresponde
a etapas tempranas oly crénicas de la enfermedad. Con este descubrimiento también
se han llevado a cabo grandes progresos en la especificidad del diagnéstico de
patégenos, ya que no presenta reacciones cruzadas, superando con creces a los
métodos inmundlogicos. La rapidez con la que se obtienen los resultados es otra
caracteristica diferencial de esta técnica.
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Introduccion al Diagnostico con Biochips

Cada dia van apareciendo mas modificaciones de la técnica de PCR, como la
automatizacion o la combinacién de ella con otras técnicas, que permiten dia a dia un

diagndstico mas certero.

Recientemente en el campo de las ciencias biomédicas, estamos asistiendo desde
hace aftos a un boom de la biologia molecular y mas concretamente de la genética y la
gendmica, gracias a la continua implementacién y desarrollo de técnicas
experimentales a disposicion de los investigadores en los laboratorios. Los biochips
representan una de las herramientas recientes con las que cuentan los investigadores
para hacer frente a la resolucién de los problemas bioldgicos basados en nuevos
enfoques que se orientan a la obtencidén masiva de informacién. El desarrollo de estos
enfoques integrados para el andlisis ha venido de la mano de la capacidad de gestionar
y almacenar grandes cantidades de informacién, por tanto no es de extradar que la
llegada de estos dispositivos haya coincidido con la madurez de la bioinformatica en la
cual se sustentan la realizacidn de los experimentos en general y el analisis de los datos
que de ellos se obtienen en particular. A estos dispositivos también se les conoce con
otros nombres como Micromatrices de material biol6gico, Microarrays, y segun el tipo de
matenal inmovilizado como DNA arrays o Chips Genéticos, Protein Chips o Tissue
Chips. Estos dispositivos estan constituidos formando una matriz con el material
biolégico que se inmoviliza sobre ellos de forma que se sabe en cada punto de la matriz
que es o que se ha depositado permitiendo el posterior andlisis. El numero de
posiciones en estas matrices puede llegar a alcanzar las decenas de miles. El
fundamento de los biochips se encuentra en el desarrollo y miniaturizacién de las
técnicas de afinidad que se conocen y han venido empleando desde hace afios como
una herramienta comun en biologia molecular. El desarrollo de los primeros ensayos de
afinidad con muestras inmovilizadas sobre soportes sélidos se remonta a los primeros
ensayos inmunoldgicos que se desarrollaron en los affos 60°'s y en los que se
inmovilizaban sobre una superficie de antigenos o anticuerpos para su deteccion. El
siguiente paso en la evolucidn hacia estos dispositivos se dio en los aflos 70°s cuando
Edwin Southern, comenzé a emplear filtros de nitrocelulosa para que actuasen como
soporte sdlido para la adhesion de moléculas de DNA. El DNA si inmovilizado no

interacciona con las otras moléculas inmovilizadas pero mantiene su capacidad de
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hibridar con moléculas complementarias en disolucion. La deteccion de estas
hibridaciones se realizaba mediante la deteccion de un marcador radiactivo en un
revelado por autorradiografia. A este tipo de técnica se la bautizé con el nombre de
Southern blot, que después se extendié al campo de la inmovilizacién de proteinas y
RNA. Con la puesta a punto de la técnica de Southern, el siguiente paso en el camino
hacia la aparicién de los biochips consistié en la construccion de matrices de material
biolégico inmovilizado por este mecanismo empleando para ello superficies porosas
como son las membranas de nitrocelulosa o nylon. Posteriormente se comenzé a
trabajar con el empleo de superficies con unos tamarios de poro mas reducidos y con
soportes sdlidos como pueden ser el vidrio y el silicio. Paralelamente con la llegada y
desarrollo de las técnicas de miniaturizacion también se comenzé a disminuir el tamario
de los puntos de material depositado sobre la superficie, consiguiendo de esta manera
una mayor densidad de integracién en las matrices. La aplicacién de las técnicas de
miniatunzacion condujo hasta el desarrollo de las Micromatrices.Uno de los
acontecimientos mas importantes se produjo a finales de la década de los 80°s cuando
en un laboratorio de la compafia entonces llamada Affymax, un grupo de cuatro
cientificos, Stephen Fodor, Michael Pirrung, Leighton Read y Lubert Stryer, que
trabajaba en la sintesis sobre superficies sélidas de péptidos, terminé desembocando
en la plataforma GeneChip, que ha sido desarrollada por Affymetrix, una compadia
escindida de Affymax en 1993. La importancia de este paso radica en la gran
capacidad de miniaturizacién alcanzada por este sistema. Posteriormente al nacimiento
de la tecnologia desarrollada por Affymetrix se han ido sucediendo la aparicién de
nuevas compadias y nuevos desarrollos que han permitido alcanzar el alto grado de
diversidad tecnoldgica existente en la actualidad. Esta técnica comenz6 a ser operativa
entre el aflo 1993 y 1995 desde entonces a la fecha ha superado problemas
relacionados con sensibilidad y reproducibilidad lo que ha permitido a partir del afio
2000 su consolidacion como una técnica habitual en investigacion, mas aun se prevé
el inicio de su aplicacién clinica para el aflo 2003. Cabe destacar que mas de 200
centros los utilizan habitualmente y colaboran en el desarrollo de la tecnologia. Las

multiples aplicaciones de esta tecnologia son:
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. Expresion diferencial de tumores (Cancer-Tumores)

. Deteccién de mutaciones o polimorfismos (Genotipificacion)
. Deteccion de microorganismos (Diagnéstico)

. Screening de farmacos (Farmacogendmica)

La aplicaciéon de esta técnica al diagnéstico de microorganismos es muy interesante ya
que abre grandes posiibilidades a realizar diagndstico multiple, es decir, detectar varios
patégenos a partir de una misma muestra en una misma reaccion, lo que significa una
caracteristica adicional de gran relevancia para el diagnoéstico en sectores productivos
donde deben ser chequeadas altas cantidades de muestras y patégenos en periddos
de tiempo y a un costo limitado, Esto ha incentivado la creacion de empresas cuyo
objetivo es lograr el desarrollo de biochips y lectores accequibles para uso masivo, tanto

en términos de costos como técnicamente.

£C6mo trabaja un BIOCHIP?

A continuacién se presenta un diagrama que explica como opera un biochip. Este
consiste en una superficie no mayor al tamafio de un portaobjeto en la cual se
encuentran unidos cientos de oligonucleotidos ubicados matriciaimente. Luego se
incorporan a la matriz productos de PCR y/u oligonucleotidos marcados -.En el caso de
que alguno de los productos incorporados sea complementario con los oligos ligados a
la matriz, permaneceran hibridados y mediante algun sistema de deteccién es posible
identificar cual punto fue complementario con el producto incorporado, asi se puede
determinar una serie de variables simultaneamente en algin ensayo de interés. En el
caso de su uso para el diagndstico, se incorpora producto de PCR de los patégenos de
interés y en el caso de que exista producto(s) amplicado(s) debera(n) hibridar con el
ligando correspondiente alv patdogeno, asi se puede utlizar esta matriz con fines

diagnésticos muiltiples.
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Proceso de PCR muiltiple.

El diagnédstico muditiple tiene por objeto detectar a partir de una misma muestra en un
mismo ensayo, mas de un patégeno a la vez. Para ello, se diseflan partidores
especificos para los patégenos de interés y ademas estos deben cumplir con
requerimientos determinados para que puedan actuar como partidores de la mejor
manera posible, sin interferir con el resto de las reacciones de los otros partidores que
ocurren en el mismo tubo. Esto significa que cuando se lleva a cabo una reacion de
amplificacidon maultiple, lo que ocurre es que en un mismo tubo pueden estar ocurmendo
simultaneamente una serie de reacciones paralelas que van a resultar en productos
especificos amplificados . Luego mediante el uso del Biochips ,se pueden detectar
simuitaneamente una serie de puntos y/o los patdégenos de interés a partir de la misma

muestra.

El método de PCR mudltiple consta de cuatro pasos:
1. Preparacion del Reactivo (Pre-PCR)
2. Preparacion de la Muestra (Pre-PCR)
3. Amplificacién (Post-PCR)
4. Deteccion (Post-PCR)

6 DIAGNOTEC
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Preparacién del Reactivo (Pre-PCR).

Master Mix (Mezcla Maestra): es el reactivo primario utilizado en PCR. Este reactivo
tiene los componentes necesarios que permiten la amplificacion especifica de la

secuencia objetivo:

. Nucledtidos marcados: Unidades individuales de dATP, dGTP, dUTP y dCTP

marcado., .
Cofactor de la enzima: Mg*? para la polimerasa Tag o Mn*? para la Transcriptasa

reversa

. Polimerasa Taq o Transcriptasa reversa: Enzima utilizada para la replicacion del

DNA o RNA.

. Buffers: Se usan para mantener el pH y la concentracidén de sales adecuados.

. Partidores o Pnmers para patégeno 1, para el patogeno 2, para el patégeno 3, etc:

Son pequenas secuencias sintéticas de DNA de una sola cadena que consisten de
no mas de 20 a 30 bases. Son complementarios a la secuencia de DNA/RNA de

cada uno de los patégenos de interés.

Preparacion de la Muestra.

Las muestras que se pueden usar son: tejido, sangre, ovas ,fluido ovarico, semen. Las

técnicas de preparacion de la muestra variaran dependiendo del tipo de acido nucleico

que se desea extraer o aislar.

Fudamentalmente la muestra debe ser lisada para liberar al patdgeno, luego se deben

separar las proteinas del 4cio nucleico y finaimente se debe recuperar el DNA y/o RNA

y una vez extraido de la muestra, se aflade al tubo de reaccién con la Mezcla Maestra.

Amplificacién mdiltiple

Una vez que se ha aladido el DNA/RNA extraido la muestra al tubo de reaccion con la

Mezcia Maestra, se somete a la reaccidn de PCR (con Transcripcion Reversa si fuese

necesario) multiple dentro del termociclador.

7
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Deteccion

Una vez que ha finalizado la reaccion de PCR multiple , el(los) producto(s)
amplificado(s) se somete(n) a una reaccidn de hibridacidn con la matniz diseflada
especificamente para la deteccion del patégeno(s) de interés, esta reaccion consiste en
una serie de pasos de hibridacién y lavado. Finalmente la matriz se somete a la lectura
mediante un lector que es capaz de detectar las sefales emitidas por el producto
marcado en el caso de que haya hibridado con algun ligando presente en la matriz. Esto
se traduce en una serie de puntos marcados y al tener conocimiento previo de la matriz
disefiada se puede determinar que producto logré hibridar con la matriz.

Asi se puede detectar simultdneamente en una pequefia superficie una serie de

patdgenos de interés
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General Information

Notes

This booklet describes in detail all of the steps in an ArrayTube® hybridization and detection
experiment. Hybridization is performed directly in the ArrayTube (AT) against the (customized)
microarray integrated within the microtube. For the detection of the hybridization pattern, the
ArrayTube® reader ATR 01 is required. User instructions for the ATR 01 reader are available in
the separately provided ATR 01 Reader Manual. Since the detection of the hybridization pattern
is done online within the reader (after the enhancement reaction has been initiated), carefully
read all of the notes for ATR 01 use before starting your detection experiment. Take all of the
notes and recommendations into consideration to ensure reliable and successful experiments. F
there are any complications or questions, contact support@clondiag.com

Copyright
Copyright by CLONDIAG® chip technologies 2002. Reproduction and publication of any part of this
manual is prohibited without written permission of CLONDIAG® chip technologies.

Trademarks

ArmrayTube® and CLONDIAG® are trademarks of CLONDIAG® chip technologies GmbH. Registered names
and trademarks used in this document, even when not specifically marked as such, are protected by law.
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Storage and Handling

To secure optimal performance, the ArayTubes® (AT) are shipped in light-protective foil sealed
under inert gas. Within these packages, the AT’s can be stored at room temperature for at least
6 months. After opening these packages, we recommend that the AT's be used within a week to
prevent a loss in their performance. Keep the tubes inside the foil in which they were shipped in
a dry and dark location. Protect the ArrayTubes® from direct sun light exposure. Avoid touching
or scratching the microarray on the bottom of the tube. Information on how to store the
processed ArrayTube® upon completion of the experiment can be found in the section "Post
Assay Procedure “ on page 15.

A Precautions

» The AmayTubes® are for research laboratory use only.

» Follow standard lab safety regulations when using the AT's with any hazardous material that
may be required in your individual experiments.

< Do not expose the Array Tube® or the solutions to direct sun light.

» Never scratch or touch the array surface (e.g. during pipetting steps with the pipette tip).

¢ Do not bring any metallic surface (tweezers, etc.) into contact with the AT and AT solutions.

e Keep your solutions nuclease-free.

Reagents and Materials

a) Supplied Materials
e AT Hybridization Buffers
Ready-to-use solutions.
We offer three different AT Hybridization Buffers, [, [I and [11. Depending on your
individual assay, buffer [, I or I will be best for your experiment.
e AT Blocking Mix
Ready-to-use powder blend for dissolving in water or a buffer.

CLONDIAG chip technologies GmbH www clondiag.com
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b) Additionally required reagents

Solution o Remarks 'Recommended Company*
e Streptavidin-gold Streptavidin - colloidal British Biocell™ '
conjugat (STP.5) Gold labeled (5nm)
+ Silver enhancement kit*** British Biocell™

e SDS —wash solutions for preparation see below Common lab suppliers

= SSC -wash solutions

* These suppliers are recommendations only.
** Please ask for your local distributors.
“** An alternative homemade silver solution is available. For more information, please contact us.

c) Preparing AT Assay Solutions
The washing buffer procedure listed below is only a recommendation. Depending on your
individual assay, altemative buffer solutions may result in better resuits.

Name ‘ ' Procedure o
¢ AT Blocking solution | e Pfebére 1-2 mi of 2% solution of AT
Blocking Mix in AT Hybridization
Buffer. Mix and vortex for dissolving.

¢ TritonX solution ¢ Prepare a 0.001% TritonX 100
aqueous solution

* Silver solution (British Biocell) e Mix 70 pl of enhancer and initiator
solution in a ratio of 1:1

*  2xSSC (wash solution) + Dissolve 17.53 g NaCl and 8.82 g
Na-citrate in 100 ml H,;0

*  2xSSC/SDS (wash solution)  Dissolve 17.53 g NaCl and 8.82 g

Na-citrate in 100 ml H,0, add SDS
to a final concentration of 0.2%

* 0.2xSSC (wash solution) e Dissolve 1.753 g NaCl and 0.882 g
Na-citrate in 100 ml H,0

CLONDIAG chip technologies GmbH www.clondiag.com
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AT Experiment Procedure:

The illustrations on the next two pages give an overview of the methods used in an AT assay
experiment. Within the ArrayTube® containing the individual probe array, the hybridization,
washing, conjugation and detection steps are performed. All sample preparation procedures,
including labeling, are usually done outside of the ArrayTube®. The main step in the labeling
process is adding gold particles to the target molecules. This can be done either by the direct
binding of gold to the target or by indirect gold labeling via the biotin-streptavidin interaction, in
which gold particies are linked to streptavidin molecules. After hybridization, all target molecules
binding to the microarray will carry gold particles. Upon adding a silver enhancement solution,
the gold particles will induce the precipitation of elementary silver specifically at those spots
where the gold-labeled target molecules are bound. The hybridization pattern can be visualized.

In our instructions, we recommend doing the gold labeling via the indirect method because it is
more reliable and less expensive.

CLOND!AG chip technologies GmbH www _clondiag.com
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AT Experiment Workflow
~ 1.Sample Preparation 2. ArrayTube® Conditioning "
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(e.g. RNA) (eg. biotinylated primer) specific microarray

At first, the sample preparation procedures like extraction, purification, amplification and biotin
labeling need to be performed using standard methods that are best suited to your specific
target. For biotinylation of the target molecules, use a standard procedure when introducing
biotinylated primers or nucleotides during PCR or for direct chemical coupling of biotin to the
target molecules.

The second preparation step includes pre-conditioning the AT probe-array.
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Target hybridization and the washing and blocking steps are performed within the ArrayTube®

reaction vial.
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After hybndization, a streptavidin gold conjugate is added which binds to the biotinylated target
molecules. The gold particles induce a silver precipitation reaction that results in a detectable

hybridization pattem.
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The ArrayTube® Reader detects as a time series the AT hybridization pattern, which has been
recorded and analyzed by IconoClust-AT software.
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Partisan arrayLIMS

The array image results can be evaluated and prepared for further processing with IconoClust-
AT. As an option for your experiment, our software system Partisan arrayLIMS, which manages

the whole experiment data workflow, is available.
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AT Experiment Steps

All of the AT experiment steps are summarized in Table 1. The required procedures are
described on the following pages.

Table 1
Step  Experiment Step* . AT Component* g . Notes
1. Sample Preparaion ' Pperformed by using any
and Biotinylation standard procedure that is best
suited to the user’s specific
target.
2. AT Conditioning AT
3. Target Hybridization
AT
4, Washing AT Hybridization Buffer Supported by AT assaying
5, Blocking AT Blocking Mix protocols.
6. Gold labeling
(conjugation reaction)
7. Silver Enhancement AT Supported by AT assaying
8. Detection AT protocols. Silver Enhancement
ATR 01 and Detection are parallel
IconoClust-AT
processes.
9.  Image Analysis ~ IconoClust-AT '

10. Post Assay Procedure AT

“All of the AT experiment steps can be supported by PARTISN arraylIMS, CLONDIAG®s powerful array laboratory
information management system. PARTISAN arrayLIMS organizes all data around microarray experiments and can
easily be used with the AT-System.

10
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Before starting

Prepare all solutions according to the instructions on p. 5. Prepare a 860°C water bath or a
heating block for use in step 4. Prepare a heating block at 95°C for denaturation of the
hybridization sample. Tum on the AT Reader and adjust its working temperature to 25°C. Before
performing step 8, start the approprate IconoClust-AT functions required for AT online detection
(see also ATR 01 Manual).

1. Sample Preparation

Perform sample preparation, purification and amplification by following the procedures that you
would nommally use and that are most appropriate for your specific target. For target labeling, we
recommend using indirect labeling via the biotin-streptavidin-gold complex. Follow standard
biotinylation procedures like introducing biotinylated primers or nucleotides during PCR or
having direct chemical coupling of biotin molecules to targets.

2. AT Conditioning

Before performing hybridization, the AT has to be pre-conditioned. Wash the AT 2-4 times every
step with 100 ul of the hybridization buffer for S min at 500rpm* each time.

“Listed rpm values are recommendations only.

3. Sample Hybridization

Required materials: Volume
Sample in hybridization buffer 100 pl
2 x SSC/SDS 500 pi
2xSSC 500 pl
0.2 x SSC 500

o Preparing the AT hybridization sample

3.1 Prepare an aliquot of your labeled sample in 100 pl of hybridization buffer to a final
concentration of > 100 pM. We recommend that you optimize the concentration of the
sample by testing different aliquots.

1
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¢ Hybridization (Outside of the AT)
3.2 Heat the hybridization sample at 95° C for 2 min.
33 Load the sample into the AT and incubate it at 60°C for 1h at 500 rpm. You might need
to optimize the incubation time and temperature depending on the sample used.
Caution: Never rinse the ArmrayTube with distilled water after hybridization because it will result
in denaturation.

4. Washing after hybridization

4.1 Remove the sample solution.
42 Add 500 il of 2 x SSC/SDS wash solution. Wash the tube for 10 min at 30°C and at 500

pm.

43 Discard the solution. Add 500 pl of 2 x SSC wash solution. Wash the tube for 10 min
at 20°C at 750 rpm.

44 Remove the solution. Add 500 pl of 0.2 x SSC wash solution. Wash the tube for 10
min at 20°C at 750 rpm.

45 Dry the tube in a Speed Vac.

5. Blocking

Required materials Volume

AT Hybridization Buffer 100 pi

AT Blocking Mix 2 % (viwv) in AT Hybridization Buffer

5.1 Prepare a fresh 2% (viwv) solution of AT Blocking Mix in the hybridization buffer
and shake it at 500 mpm.
52  Add 70 ul of the blocking buffer solution to the tube. Incubate it for 15 min at 30°C.

6. Gold Labeling (Conjugation Reaction)

If using the recommended indirect target labeling, the biotinylated target molecules will have
already hybridized to the probe arrays. For labeling, the streptavidin-gold conjugate now has to
be added following the procedure below:

12
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Required materials: Volume

Streptavidin.5 gold conjugate (conjugation 250 pg/ul

solution)

2 x SSC/SDS 500 ul

2xSSC 500 ul

0.2x SSC 500 pl

. Conjugation

6.1 Add the conjugation solution into the AT, which contains the blocking solution of step 5.
incubate it for 15 min at 30°C.
6.2 Carefully remove the complete soiution with a pipette.

. Washing:

6.3  Wash with 500 pl 2 x SSC/SDS for 10 min at 30°C
6.4  Wash with 500 pl 2 x SSC for 10 min at 20°C

6.5  Wash with 500 ul 0.2 x SSC for 10 min at 20°C

Note: After the AT is preconditioned and the sample is prepared, we recommend processing it
within a day. During this time, keep the AT and the sample on ice until further processing.

7. Silver Enhancement

When adding the silver enhancement solution, the gold particles attached to the hybridized
target molecules will immediately induce the precipitation of elementary silver corresponding to
the hybridization pattem.

Note: The AT reader and the appropriate IconoClust-AT functions for online AT image detection
need to be started at this point. See also the ATR 01 Manual.

Before Recording:
e Start the IconoClust-AT program. Set the correct directory for saving the images, the
collecting interval time and the number of readings (see p. 12 in the ATR 01 Manual) . For

your first experiments, we recommend recording 120 images with a time interval in between
of 20 sec. The total recording time would then be 40 min, which usually results in a complete

precipitation reaction.

13
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Note: Depending on your assay, shorter time intervals with less readings might be useful.

« Place the ArrayTube® in the reader slot. If required, adjust the tube’s position with the live
preview mode of IconoScan.

Required materials: Volume
Enhancer Solution 35 4l
Initiator Solution 35 ul
0.2 x SSC 500 i

o Preparation of the Silver Enhancement Solution

71 Pipette 35 ul of the enhancer and initiator solution into a separate microreaction tube.

7.2  Vortex the reagents, add 500 pl of 0.2 SSC and incubate the solution at 25°C for 20-40
min with 550 rpm.

Note:
e Always prepare a fresh silver enhancer solution on ice.
* For temporary storing, keep the enhancer and initiator solution in a dark location at 2-8°C
prior use.

¢ Silver Enhancement
Carefully add 70 pl of the freshly prepared silver enhancement solution into the AT. (Try to
prevent air bubbles from forming within the solution. If bubbles do form, carefully try to remove

them by repeated up- and down pipetting of the AT solution).

Next, begin the recording of the precipitation reaction (see also ATR 01 Manual, p. 13).

Click the record button on the upper menu bar

of the image acquisition module IconoScan. ) a# Fopam

Depending on the assay conditions, a gray precipitation pattemn will become visible after 5-10
min. The full development of the precipitation pattern usually needs 15 - 20 min, and ends with
the saturation of the reactions after 30 - 40 min.

14
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Note: Do not move or vibrate of the AT-Reader during recording!
Do not change the focus position anymore after starting the record process!

After finishing the image recording, pull the AT out of the reader. If you would like to store the
ArrayTube®, follow with the post assay procedures described below.

8. Post Assay Procedure

The precipitation pattem on the AT array is quite stable after the post assay procedure have
been performed and can still be imaged after a couple of months. The post assay procedure
should be done shortly after recording.

Required materials Volume

8.1 Suction off the silver solution.

82  Wash the ArrayTube with 250 pl H;0p4ee OF SSC for 1 min two times.
8.3  Dry the tube in a Speed Vac for 15 min without vacuum.

15
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‘ Mutual Confidential Disclosure Agreement
DATED August 22, 2003

Between

DIAGNOTEC S.A.

and

CLONDIAG chip technologies GmbH
Lobstedter Strasse 103-105
07749 Jena/Germany

Whereas in furtherance of their business relationship each of the parties proposes to
disclose to the other certain confidential and proprietary information in connection with
mutually beneficial business opportunities; and

WHEREAS for their mutual protection DIAGNOTEC and CLONDIAG wish to set out the .
terms and conditions for the use and maintenance of the confidential information of the
other party:

Now therefore, in consideration of the mutual covenants and agreements contained
herein and |ntend|ng to be legally bound, the partles agree as follows:

1. As used in this agreement, the term ' Conndentlal Information” means any
information concerning the current products, future products, business plans, |
marketing plans or research and development of either party, or any third party
proprietary information given to either party, whether disclosed in written, oral or
other media form, to the other party or its employees, but does not include
information which:

(i is known to the receiving party before receipt thereof from the
other party, as evidenced by the receiving party’s records, and
was not acquired, directly or indirectly, from the disclosing party;
or

(i) is disclosed to the receiving party in good faith by a third party
who had a right to make such disclosure; or :

(iii) is made public by the originating party, or is established to be a
part of the public domain otherwise than as a consequence of a
breach by the receiving party of its obligations hereunder.

2. Each party agrees that its obligations hereunder shall continue for so long as the
parties maintain their business relationship, and for a period of five years thereafter,;
provided that this time limitation on the obligations of the parties shall not be deemed
to reduce the term of copyright or other statutory protections.



3. Neither party will use or derive any benefit from or disclose to any person, firm or
corporation, any part of the Confidential Information of the other, except with the prior
written consent of the other.

4. Each party shall disclose and grant access to the Confidential Information of the
other party only those of its bona fide, full-time employees who shall have a
legitimate need to know the Confidential Information for the purposes specified in this
Agreement. Each party shall employ the same safeguards to keep the Confidential
Information of the other party confidential as it employs to safeguard its own trade
secrets, including, without limitation, causing each of its employees with a need to
know to enter into a general confidentiality agreement for the protection of the other
party’s Confidential Information herewith.

5. Each party shall use the Confidential Information of the other party strictly for the
purposes specified in this agreement. Neither party shall use or allow the use of the
Confidential Information of the other party for any purposes without the prior written
consent of the other party.

6. Corifidential Information shall not be copied by either party without the express
written consent of the other, except for such copies as each party may reasonably
require for its use pursuant to this Agreement.

7. Upon written request of the other party, each party shall return promptly to the
requesting party all originals and copies of any and all Confidential Information which
they have received.

8. The parties hereby acknowledge and expressly agree that the disclosure of
Confidential Information without the express written consent of the disclosing party
will cause irreparable harm to the disclosing party, and that any breach or threatened
breach of this Agreement by the receiving party will entitle the disclosing party to
injunctive relief, in addition to any other legal remedies available to it, in any court of
competent jurisdiction.

9. Nothing contained in this Agreement shall be construed as granting or conferring any
rights by license or otherwise in any Confidential Information, except for the right to
use the Confidential Information strictly in accordance with the provisions of this
agreement.

10. This agreement shall apply to each and every country in the world and shall be
governed by and construed in accordance with the laws of the Province of Ontario,
Canada, and shall benefit and be binding upon the respective successors and
assigns of the parties hereto.

IN WITNESS HEREOF, the parties hereto have executed this Agreement as of the date
first noted above.

DIAGNOTEC CLON_DJAG/gﬁgm B




The Assay Processor AP

CLONDIAG® ©
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AP System

Integrated Platform for Genomic Diagnostics at the Point-of-Care

CLONDIAG™s Assay Processor (AP) is a
complete platform for array-based genotyping.
Due to its robust performance and un-
precedented simple structure, the AP has the
potential to become the first test stripe format for
use in pharma-associated diagnostics at the
point-of-care.

Device for a new type of genotyping
assay: fast, robust and inexpensive

The performance of inexpensive, fast and robust
genotyping assays is essential for modern
diagnostic and therapeutic approaches. Proven the
abilty to run genotyping assays at the point-of-care,
personalized medicine will become a common
standard. Systems for point-of-care genotyping will
have to combine all steps necessary to perform a
genetic analysis. With the AP-System, CLONDIAG®
has developed the new key system for complete
array-based genotyping.

Image of the AP principle setup with power lines (1),
gasket (2), microarray (3), guidance for filling needle
(4), heater & sensor chip (5) and cartridge base (6).

The Assay Processor - microreactor with array,
integrated heater and sensor chip.

Integrated solution

The AP-System is based on single reactor assays
combining DNA array analysis with microfluidics
performance. We developed the AP to conduct
sample preparation, target amplification and
labeling, analysis of the target for specific markers
and interpretation of raw data within a single system.
Thus, the AP-System is a complete platform for
performing complex diagnostic assays in a fast,
accurate and inexpensive way.

Multifunctional reaction cartridge

Combining target amplification and array hybridi-
zation, which relies on precise temperature control,
is feasible. To perform both processes, the AP
functions as a miniaturized pressure cooker with a
reaction volume of about 10 pl. The reactor consists
of a chip with thin film temperature sensors and
heaters and the probe array. A gasket serves as a
septum for the delivery of the reagents and the
sample material. Thus, amplification and detection
occur simultaneously in a single reactor.

CLONDIAG?® chip technologies GmbH
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The probe array

A key unit of the AP cartridge is the integrated probe
array which carries out a multitude of analytical
reactions in parallel. For fabricating high quality
arrays of oligonucleotides, we use in-situ synthesis
with micro wet printing (WWP) technology on a four
inch wafer scale. From this, hundreds of identical
miniaturized arrays, each of them 3mm x 3mm in size
with a density up to 10° probes/cm?, are produced
within a single manufacturing step.

CLONDIAG® ©
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AP System

Detection

In regard to assays, the system is optimized for
fluorescence detection of the hybridized target. Due
to the design of the reaction chamber, the AP bears
the unique potential to detect the hybridization
pattern online. This feature provides the opportunity
to develop easy genotyping tests based on robust
fluorescent protocols. Thus, the user no longer
needs to perform numerous handling operations to
obtain the results.

The AP-System - determination of species specific markers for point-of-care detection of infectious diseases:
the amplification performance is strongly comparable to standard benchtop systems; the sequence specific
determination of the amplified target is done by hybridization.

100 bp ladder

thermocycler

B&D: PCR product, standard

C&E: PCR product, AP cartridge

Target: bacterial genomic DNA,
PCR product length ca. 500 bp

Hybridization of a 500 bp PCR
product to CCTglut-170 array

Data matrix

The integrated data matrix interfaces the AP with
assay associated data. This data is accessible within
the database and can be used by the management
software PARTISAN arrayLIMS, permitting
automatic control and processing of the whole assay
process.

Computer controlled processes

The heating, cooling, filling and flushing of the AP are
controlled by CLONDIAG®s software tool
IconoClust. A specific adapter connects the AP to the
DNA reader or the dispensing systems. The AP
injector module can handle small sample volumes of
15-40 pl. Dead volume effects are excluded.

CLONDIAG?® chip technologies GmbH
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Modular design

Due to its modular design, the AP platform supports a
multitude of applications. Different AP modules, like
the AP injector for manual filling, can be easily
plugged into the configuration, optimally fitting the
user's needs. A specific module fixes the AP to the
appropriate optical system for online-detection. The
AP is designed to allow the integration of future
devices, thus leading the way to the development of
assays that meet the requirements of point-of-care
diagnostics.

Fine temperature tuning

The thin film heater, temperature sensor and air
channel allow tuning and rapid alterations of
temperature, which is necessary for the fine
modulation of the PCR and hybridziation reactions
runin aninterval of 0° to 100°C.

AP manual injector

Parallel assay optimization

The AP 8xController enables parallel independent
processing of eight Assay Processors. Each AP unit
is controlled separately, thus allowing for example
the performance of eight different amplification
protocols. Fast and easy assay optimization is
possible.

CLONDIAG® O
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AP System

AP 8xController for automated and independent
AP processing.

Automated image analysis

AP reader control, data readout and automated
image analysis is feasible with CLONDIAG®s
software tool IconoClust. Its program structure and
XML data exchange format permit easy integration
with database systems like CLONDIAG®'s
PARTISAN arrayLIMS.

Database connection

The AP-System is supported by an Oracle based
laboratory information and management system,
PARTISAN arrayLIMS. PARTISAN arrayLIMS
provides management based on objects
representing all data and processes of a bioarray life
cycle. Thus, the entire assay is mapped in the
database.

CLONDIAG® chip technologies GmbH
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Future test stripe

New approaches in point-of-care medical
diagnostics, environmental testing and biotech-
nology require low cost, portable DNA-analysis
instruments that perform the complete analysis
within a single reactor. Since the Assay Processor
satisfies these requirements, we believe that it has
the unique potential to make genomics testing as
easy as today's pregnancy tests.

CLONDIAG® O
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AP System

AP access

The Assay Processor Platform is available for
diagnostics applications development on a
collaborative basis. For more information on AP
applications development, please contactus:

clondiag@clondiag.com.

Components of the AP

Heater
Substrate

Lower
part

B

Datamatrix

((n\nkto database)

L]

Partisan
Database

- chip data

- probe data

- substrate data
- protocol

- others

Upper
part

CLONDIAG?® chip technologies GmbH
Loebstedter Str. 103-105

07749 Jena, Germany

phone: +49/ 3641/ 59 47 O

Fax: +49/ 3641/ 59 47 20

email: clondiag@clondiag.com

© CLONDIAG® 2002
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AT-System: The Platform
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The ArrayTube®(AT) - Array Technology for Every Lab

The ArrayTube® - main features:

e New array-based platform for parallel lab-
genomics

Integration of microarray and microtube
Easy handling

Affordable for every lab

Inexpensive, non-fluorescent detection

Array and reaction tube in one

CLONDIAG®'s ArrayTube®AT is a revolutionary new
platform for performing easy and inexpensive
experiments with microarrays. The direct
implementation of high quality DNA arrays into a
standard micro-reaction tube allows all hybridization
and analysis procedures to be performed in an easily
manageable and straightforward manner. No more
highly specialized equipment is required.
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spotted array »
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the tube

the array

Patented AT platform with synthesized arrays (here: 1024 30mers/spot size 32um/array size 2048 pm x 2048
um/ application: SNP analysis) or spotted arrays (here: array with 120 spotted oligonucleotides)

Platform for every lab

The unique ArrayTube® design allows improved
assay performance - array handling becomes much
easier and more reproducible. Any solution can be
easily pipetted into the AT, incubated and agitated
with microtube equipment available in every lab.

High quality arrays

We develop and produce customized ArrayTubes
with both spotted and synthesized DNA arrays. The
spotted arrays are fabricated by applying state-of-
the-art spotting technologies and optimized
substrate surfaces. For in-situ synthesizing of
arrays, we employ our patented p-wet printing
technology (WWT)which results in high quality arrays
of several thousand oligonucieotides.

®

Multiple advantages

Besides its lab compatibility and easy handling, the
AT comprises many other advantages:

—Working with the AT platform reduces the
amounts of all required reagents.

— The array integration within the reaction vial
guarantees uniform wettability of the array during
all processes.

— As a closed system, the AT ensures protection
against evaporation and contamination effects.

— The specific AT design allows online detection of
the signal amplification.

— With the AT platform array technology is now
accessible to every lab.

CLONDIAG?® chip technologies GmbH
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AT-System: The Detection
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Novel Robust AT Labeling Technology

Principle

To provide a detection kit perfectly suited to our AT
platform, we revived the method of precipitation
staining for its application in array based analysis.
Our new technology is based on gold induced silver
precipitation, which directly correlates to the amount
of specifically hybridized target molecules on the
array. Analysis of the precipitation is done by simple
transmission measurements, which leads to the
effective reduction of the input in optical equipment.

Easy detection

The application of silver precipitates for hybridization
detection alllows the use of a transmission imaging
reader like our AT reader ATR 01, which is affordable
for every lab. No highly sensitive optical equipment
with cost intensive, high performance detectors is
required.

Principle of gold-silver labeling

» silver
streptavidin precipitate
biotinylated gold
target conjugate
/ hybridization /
' duplex -
.
L I 2
probe i | 1 !
k ] : 2
\ i | 2 1
[ | 4 gold < silver o4
[ | hybridization § labeling § enhancement §
'y . F - 8 g
I 8 T & 3

Signal stability

As a result of detection via transmission measure-
ments, problems such as light induced bleaching no
longer arise. Stable output signals allowing comfor-
table data analysis are guaranteed.

Image of silver precipitate (by electron microscopy)

High sensitivity

Following hybridization, target staining is performed
by applying gold-streptavidin conjugates. Gold par-
ticles catalyze the process of silver precipitation in
the presence of silver solutions resulting in an
enhanced detection performance. It is now possible
to receive detection limits higher than those for
conventional labeling methods.

High quality data

The amount of silver precipitate directly represents
the target concentration. By applying the ATR 01
reader, it can be determined by endpoint detection or
by monitoring precipitation dynamically over a period
of time. Quantitative data analysis is feasible with the
integrated reader software IconoClust-AT.

Non-hazardous dyes

All reagents required for the hybridization reaction
using our AT labeling kit are non-toxic. Thus, easy
and cost effective experimental handling is possible.

CLONDIAG® chip technologies GmbH
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AT-System: The Reader

CLONDIAG® ©

chip technologies

The Reader for Analyzing CLONDIAG® ArrayTubes®

Effective solution

Applying the ArrayTubes® in combination with
colorimetric hybridization detection is the key to
create affordable array reader systems that can be
integrated into every lab. In analyzing the hybridi-
zation pattern by transmission measurements, cost
intensive detector equipment, like confocal laser
scanning systems, is not required.

The reader ATR 01 is an instrument that analyses
CLONDIAG® ArrayTubes®. For reliable data
acquisition, the assay temperature is kept constant
during hybridization detection. Operation modes
allow endpoint detection and dynamic data
acquisition during the precipitation process.

ATR 01 reader for sensitive detection of AT hybridization patterns

AT Reader benefits

The system is easy to use. With its user-friendly
graphics interface, working with the ArrayTubes®
becomes a daily routine. The operating software
IconoClust-AT is based on the successful lconoClust
package. Being script based, it allows the user to
customize the reporting scheme and data output,
and provides instant calculation and interpretation.
The system is flexible, reliable and affordable,
making quality array technology accessible to any
lab.

Specifications
Dimensions (W x D x H)
Supply voltage

Pixel Resolution
Operating temperature

246x 134 x 143 mm
110-230 V AC

752 x 582

18° - 30°C (64,4 - 86°F)

Requirements

Desktop computer with 500MHz Pentium Processor,
256 MB RAM, 10GB HD;
Serial port for data matrix reader (optional).

|
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AT-System: The Software

lconoClust-AT, the Tool for AT Data Acquisition and Analysis

lconoClust-AT

Reader control, data readout and data analysis are Image analysis of an in-situ synthesized array (1024
performed with one software package, the probe molecules) with IconoClust-AT. Related array
IconoClust-AT. Based on our powerful stand-alone probes and 3D details are visualized.

software IconoClust, the package comprises all

features for automatic reader control and fast and et o

: o 3 X : e i EEm ey
easy image acquisition. Live previews and online x

data collection can be easily performed. A special
submission algorithm allows immediate transfer of
allimage data into the module for analysis.

With the concept of experiment templates, the fast
and automated image analysis of series of images
for high throughput applications is easily accessible.

Database- and LIMS-Interface

IconoClust-AT can be optionally supported by our
extensive laboratory information management
system, PARTISAN arrayLIMS. Program structure
and the XML data exchange format of IconoClust-AT
permit its easy integration into our LIMS-system.

Hybridization of multiplex PCR products against human cyp2D6-array (P450): a) IconoClust-AT screen plot of

data acquisition, b) images of time series, ¢) plot of time series data and d) plot of analyzed hybridization results
with lconoClust-AT.
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~ AT System: The Workflow
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The Genomics Lab Analysis Work Platform

The system

CLONDIAG® has combined the benefits of all AT
components into a powerful working station. The AT
System comprises the new AT platform providing the
array and the reaction vial as one system, the novel
non-fluorescent labeling kit for easy AT detection
and the smart and robust reader system ATR 01. By
integrating our IconoClust-AT software package,
optimal instrument control, data aquisition and
custom specificimage analysis are guaranteed .

Optionally, the AT System is supported by our
powerful laboratory information management
system PARTISAN arrayLIMS, which provides
reliable data and experiment management. All
ArrayTubes®include a unique data matrix accessible
within the database allowing correct AT and data
tracking.

" With the AT System, CLONDIAG® provides an affordable work station for superior array-based
analysis result§, bringing the world c_>“f>_>afray teqh_r12!ogie$‘and rzl_u_!ﬁp_l_ex assays to any lab.

The complete AT System

lg—v.,.,......-.L ——

AT
detection

IconoClust-AT
- reader controlling

ArrayTube® AT
with data matrix

ATR 01

PARTISAN
arrayLIMS

- data acquisition

- image analysis grey value image

CLONDIAG® chip technologies GmbH
Loebstedter Str. 103-105

07749 Jena, Germany

phone: +49/ 3641/ 59 47 0

fax: +49/ 3641/ 59 47 20

email: clondiag@clondiag.com

© CLONDIAG® 2003
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Products and Services

Your AT starter package

We provide the AT System as the new working
platform for easy and affordable array-based
analysis. A typical starter package includes the
reader ATR 01 and a starter kit of ArrayTubes®
designed to customer needs with comprehensive
user instructions. Subsequent ArrayTube® pur-
chases will be provided with identical or modified
array designs.

AT-System: Solutions

CLONDIAG®
chip technologies %b

Services

The services we provide around the ArrayTube®
System include probe and array design. The
complete ArrayTube® package comes with probes
generated by us. On demand, we also apply probes
delivered by the customer for producing the AT
arrays. Additionally, we provide assay development
and data analysis.

”éT Reader Solutipns

Specification

ATR 01 Standard Package: ATR 01 reader with PC provided with framegrabber card
and preinstalled lconoClust-AT software for reader control

and image analysis.

ATR 01 Modular Package: AT reader with IconoClust-AT software for reader contol and

image analysis, and with framegrabber card (for installing in
your own PC)

AT PARTISAN arrayLIMS: System for efficient organization and management of AT

experimental data, for 5 users, preinstalled.

Specification

ArrayTube® Kits

ArrayTube® Starterkit'": Setof 100 (50%) Array Tubes®

Additional ArrayTubes®: Packs of 100 (50%) ArrayTubes®

" ArrayTubes® specified by the customer. Standard AT arrays contain up to 144 spotted
features. Probes can be provided by CLONDIAG® or by the customer. For synthesized arrays
with up to 4096 features please contact us.

? Sets of 50 ArrayTubes® can be delivered, if the probes are provided by the customer.

For inquiries and further information, please contact us.
clondiag@clondiag.com
www.clondiag.com

CLONDIAG?® chip technologies GmbH www.clondiag.com
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Application Fields of the

ArrayTube® System

The ArrayTube (AT) System can be used for multiple
applications in array-based analysis. Its unique
features make it exceptionally suitable for routine

genotyping and mutation analysis. as well as for

applications in expression and proteomics analysis.

Depending on the specific application, ArrayTubes
with spotted arrays (up to 144 features. various
substance classes possible) or in-situ synthesized
arrays (up to 4096 oligonucleotide probes) can be
provided.

Examples of AT-Applications:

o Genotyping of Bacterial Resistance Genes

The ArrayTube® System was used to setup a
genotyping assay for the fast and reliable
analysis of different resistance genes of the germ
Staphylococcus aureus.

o Mutation Analysis of the Human cyp2D6 Gene

Using AT-arrays with probes containing different
mutations of the cyp2D6 gene, clinical samples
were screened for cyp2D6 mutations.

o Species Discrimination & Identification

With a set of specific ArrayTubes®, different
bacteria were identified by hybridization against
AT-arrays carrying selected 16S rDNA
sequences.

o Genotyping of Human HVR2 mtDNA

A 4° sequence space of the HVR2 region of
human mtDNA was analyzed. AT-arrays carrying
a set of 4096 combinatorial oligonucleotide
probes were applied.

o« Analysis of Thrombogenetic Mutations

(OGHAM Diagnostics GmbH)

The AT-System is used for the mutation analysis
of 8 different loci providing risk factors for
thrombosis.

L‘]. B. muﬂngl‘erﬁ%’:mﬁ m B. subtils , [@ EI 8. globigii ®

Identification of different bacteria with spotted AT-
arrays (different colored frames represent bacteria
specific probe molecules).

For inquiries and further information, please contact
us at clondiag@clondiag.com or www.clondiag.com.

s Mutation Analysis of Atherosclerosis
associated Mutations (OGHAM Diagnostics
GmbH)

The ArrayTube® Platform can be applied for the
determination of genetic variants associated with
atherosclerosis.

S
cvesesscenee]

AT-arrays with in-situ synthesized oligo-
nucleotides for optimal probe design.

+ Protein Assays
AT-arrays with spotted proteins can be produced
for the fast detection of protein-target interactions
with the ArrayTube® System.

o Identification of Respiratory Bacteria and
Viruses (Institut Dr. Viollier)

The fast and differential diagnosis of different
respiratory bacteria and viruses was proved with
the Array Tube® System.

e Expression Profiling

The AT-System can be applied for the expression
analysis of selected genes.

with AT-arrays (here: phosphorylated proteins).

© CLONDIAG® 2003
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Genotyping of a 4°-Sequence Space
of Human HVR2 mtDNA Region

Detection and analysis

The detection of the characteristic sample
hybridizations was performed with the ArrayTube®
reader ATR 01. Time series of the specific silver
precipitations representing the hybridization images
were coliected and analyzed with the software
[conoClust-AT.

Results

Different hybridization patterns of the amplified
sample fragments were detected. The results were
compared and aligned with sequence data from
public mtDNA databases. With regard to the five
selected mutation sites, the detected sequence
variations could be correlated to distinct geo-
graphical population origins (database MOUSE I1"),

"MOUSE II:
Mitchondrial and Other Useful SEquences, LMU
Munich, www.gen-epi.de/mouse/index.html

example 1

example 2

Characteristic H)}bri_c_ﬁzation patterns of two different'
samples.

example 1:
origin: Africa
detected sequence:

CCCCATCCCATTATTTATCGCACCTAC

example 2:
origin: Europe
detected sequence

CCTCATCCTATTATTTATCGCACCTAC

Image analysis of 4096-spot AT-arrays with
IconoClust-AT.

8¢ §8 p3rEcsnEb o ¥ H

Comparison of the hybridization results to sequence
data of MOUSE Il and correlation to population
origins.

WHY Results - [according to: hitp:/Avww. gen-epl. de/mouss/inda. himi] g =

Conclusion:

The ArrayTube® (AT) System is most suitable for the
performance of fast and reliable genotyping assays
using highly integrated microarrays. It opens up the
possibility to extend the application of array
technology to fields like forensic medicine.

References:

¢ Anderson, S. et al. (1981); Nature 290, p. 457-
465

* Meyer. S., Weiss, G., von Haseeler, A.(1999);
Genetics 152, p. 1103-1110

» Stoneking. M. (2000); Am.J.Hum.Genet. 67, p.
1029-1031
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Genotyping of a 4°-Sequence Space
of Human HVR2 mtDNA Region

Introduction

Sequences of the noncoding region of human
mitochondrial DNA are potent tools to infer aspects
of genetic population history. They show specific
characteristics like high evolutionary rates and the
maternal mode of inheritance. Especially the
hypervariable sites HVR1 and HVR2 in the
noncoding or D-loop region of mtDNA can be used to
differentiate between non related species: HVR1
and HVR2 contain mutational hot spots with one
polymorphismin 200 - 400 generations [1], [2], [3].
The analysis of mtDNA with conventional methods
like sequencing, PCR, or restriction fragment length
polymorphism is time-consuming and cost-
intensive. Here, the ArrayTube® (AT) System was
applied for the first time to set up a fast, affordable
and reliable genotyping assay for a set of mutations
within the HVR2 region.

Methods

Microarray preparation

After screening public gene databases for the
relevant sequences, five distinct mutation sites
within the hot spot areas of the HVR2 region were
selected for the genotyping analysis. ArrayTubes®
with oligonucleotide arrays covering the complete
sequence space of all 4° = 1024 variants of the five
mutation sites were manufactured. The production of
the 4096 probe arrays (each probe 4 times
redundant) was performed by CLONDIAG®s in situ
synthesis technology (see 'technologies' in
http://www.clondiag.com).

AT-array carrying 4096 oligonucleotides; spot size
20 um 20 um, arrays size 2048 ym x 2048 ym.

Sample preparation and hybridization:

Capillary blood samples (5-10 pl) were collected.
After lysis, the complete HVR2 region was amplified
using 5'-biotinylated primers for labeling.
Biotinylated PCR fragments were diluted 1:20 in AT-
hybridization buffer and pipetted into a pre-
conditioned ArrayTube® containing the HVR2
microarray. Hybridization reaction was performed in
a conventional thermomixer. After washing, the AT-
conjugation and AT-silver enhancement reaction
were performed according to standard ArrayTube®
labeling protocols (http://www.clondiag.com).

%

ArrayTube® processing: After pre-conditioning the AT-array, the biotinylated sample is pipetted (1) into the
ArrayTube® for hybridization (2). Detection of the hybridization pattern is performed by the silver enhancement

reaction (3).

CLONDIAG?® chip technologies GmbH
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AT Application Sample:

Genotyping of the Human
cyp2D6 Gene

Background

The human cyp2D6 gene is coding for the Cyp2D6
enzyme, a member of the Cytochrom P450 family.
The enzyme is involved in the metabolism of drugs
like analgesics, beta-blockers, antidepressants and
others. It was found to be responsible for more than
70 different drug oxidations. Mutations in the cyp2D6
gene can cause severe adverse drug reactions like
toxicity, inefficacy and hypersensitivity. In addition,
Cyp2D6 was also found to be involved in severe
disorders like Parkinson's disease and cancer. Up
until now at least 18 cyp2D6 mutations are known,
which differ highly in their impact on the Cytochrom
P450 function. :

Experiments

DNA containing the related mutations was prepared
by asymmetric multiplex PCR using chromosomal
DNA of clinical samples as a template. For target
DNA labeling, biotinylated primers were used.

M123N

500 — ===

new

Analysis of multiplex PCR products for
different clinical samples with standard
agarose-gel-electrophoresis (1-3)
(N=negative control).

Hybridization against a 100 probe AT array was
performed by inserting the AT into a conventional
microtube thermomixer. Hybridization was started
by pipetting aliquots of PCR product in an
appropriate buffer into the AT. After subsequent
washing steps, a streptavidin-gold-conjugate was
added. Detection of the hybridized target molecules
was achieved by adding a silver enhancement
solution: catalyzed by the gold particles attached to
the hybridized target molecules, silver precipitation
was initiated. The AT was inserted into the AT reader
ATR 01, which collected the hybridization images as
a time series. The reader is provided with heating
and cooling elements guaranteeing constant
hybridization conditions.

Data acquisition and image analysis were done by
an IconoClust-AT software package.

Results

Hybridization pattern of a multiplex PCR product of a
clinical sample carrying several mutations. All
probes were immobilized 4 times redundant. Marker
molecules and a control sequence were added.

o

o e o

® o0
@
o

@

Bar graph of the hybridization pattern received with
the multiplex-PCR product of a clinical sample
carrying several mutations.

Conclusion

CLONDIAG®s AT Platform is an optimal tool for
genotyping cyp2D6 because it allows fast and
reliable screenings of clinical samples for mutations.

© CLONDIAG® 2002
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Fast Genotyping of
Staphylococcus aureus
Resistance Behavior

Results

The results of growth inhibition assays and
hybridization experiments of one clinical sample
isolate are presented. Table 1 summarizes the
resistance pattern as determined by both the
phenotypical and genotypical characterization
methods.

Both methods resulted in well corresponding data.
AT based diagnostics have the advantage of being
very fast, inexpensive and robust in handling.
Compared to classical phenotypical charac-
terization, AT based diagnostics can provide a high
amount of clinically and biologically relevant data in
parallel within a short period of time. Arrays with
modified or additional probe molecules can be
generated easily, thus making the AT Platform a
highly flexible tool. The AT Platform is best suited for
genotyping studies as described here.

Table 1:

Comparison of the conventional growth inhibition
assays of S.aureus and the genotyping analysis
applying the AT Platform.

Isolate 2000 V 8510
virulence factor (epidemic strain “Hannover”)
or resistance phenotype detected gene

Coagulase
Penicillin

Oxagcillin + all -
beta lactams
Erythromycin
Clindamycin

'Levofloxacin

Ami nb-g_l)_/é-d_s_idzs

*Tfé'tracyclinés' o . :
tetK-negative

Toxic Shock | |

Syndrome Toxin | n. available| Tst1-negative

Hybridization pattern representing the genotypical characterization of resistant genes using the AT
Platform, specified with different optimized oligonucleotides.

The Tube

Data matrix

The Array

© CLONDIAG® 2002
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Fast Genotyping of
Staphylococcus aureus
Resistance Behavior

Background

Staphylococcus aureus is a common germ that
causes wound infections, food poisoning, toxic
shock syndrome and other effects. The appearance
of distinct S.aureus populations showing resistance
to many antibiotics is of increasing significance to
hospitals because they complicate patient
treatment. Choosing the appropriate treatment
depends on the rapid and accurate identification of
the infecting S.aureus strain and its specific
antibiotic resistance.

As of now, about 30 S.aureus genes that are
resistant and their complete sequence information
have been identified. Screening for these genes
using conventional methods like PCR is extremely
time-consuming and cost-intensive. Therefore,
these screenings cannot be performed routinely with
clinical specimens.

CLONDIAG®s AT Platform provides a solution that
allows fast and reliable array-based genotyping and
SNP analysis, which, for example, can be used to
determine the antibiotic resistance patterns of
bacterial pathogens based on their genes.

Staphylococcus aureus cells in pus
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Experiments

In order to generate the appropriate AT array used in
the genotyping analysis, oligonucleotide probes
complementary to the resistance genes shown in
table 1 were determined using CLONDIAG® software
tools. Probe molecules were synthesized by stan-
dard procedures and immobilized by needle-based
spotting techniques and covalent coupling to the
substrate surface. For the hybridization experiments
with the AT Platform, genomic DNA from clinical
isolates of S.aureus was prepared.

CLONDIAG® chip technologies GmbH

An amount of 5 pg of isolated genomic DNA was
labeled by applying a method developed by
CLONDIAG® resulting in fragmented and biotin-
ylated DNA that is ready for the hybridization
procedures. Hybridization against the array was
performed in the AT inserted into a conventional
microtube thermomixer. Detection was done with the
AT reader ATR 01. As a control, the antibiotic
resistance patterns of the isolates were
characterized phenotypically based on growth
inhibition assays using the VITEK 1 system
(BioMerieux).

Scheme of genotyping experiments with the AT
Platform.

Staph. aureus -
cells from overnight culture

Preparation of DNA

Fragmentation of DNA
b
Alluiid Al

Labeling

0> € ™ w0
& O, Ot

Hybridization to immobilized probes
and detection
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Fundamentals of cDNA microarray

data analysis

Yuk Fai Leung and Duccio Cavalieri

Bauer Center For Genomics Research, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA

Microarray technology is a powerful approach for
genomics research. The multi-step, data-intensive
nature of this technology has created an unprecedented
informatics and analytical challenge. It is important to
understand the crucial steps that can affect the out-
come of the analysis. In this review, we provide an over-
view of the contemporary trend on various main
analysis steps in the microarray data analysis process,
which includes experimental design, data standardiz-
ation, image acquisition and analysis, normalization,
statistical significance inference, exploratory data analy-
sis, class prediction and pathway analysis, as well as
various considerations relevant to theirimplementation.

The development of microarray technology has been
phenomenal in the past few years. It has become a
standard tool in many genomics research laboratories.
The reason for this popularity is that microarrays have
revolutionized the approach to biological research. Instead
of working on a gene-by-gene basis, scientists can now
study tens of thousands of genes at once. Unfortunately,
they are often daunted and confused by the complexity of
data analyses. Although it is advisable to collaborate with
statisticians and mathematicians on performing a proper
data analysis, it is crucial to understand the fundamentals
of data analysis. In this review, we explain these
fundamentals step-by-step (Figure 1; Table 1). Instead of
discussing any particular analysis software, we focus
primarily on the rationale behind the analysis processes
and the key factors that affect the quality of the result. For
a compilation of current microarray analysis software see
a recent article [1) and author’s website (http:/ihome.
cuhk.edu.hk/~b400559/arraysoft.html; permanent link:
http://genomicshome.com). We also focus on the use of
the two-dye ¢cDNA microarray data analysis, although
most of our discussions are also applicable to the single-dye
oligonucleotide platform (i.e. Affymetrix) (Box 1). We hope
that by appreciating the fundamentals novices will become
successful at microarray data analysis.

Experimental design and implementation
‘If the experimental design is wisely chosen, a great
deal of information is readily extractable, and no
elaborate analysis might be necessary. In fact, in
many happy situations all the important conclusions
are evident from visual examination of the data’. [2]

Corresponding author: Yuk Fai Leung (yfleung@cgr.harvard.edu).

‘Well begun is half done’, is an aphorism that is
especially true of for microarray experiments. Good design
is very important at the beginning of a microarray experi-
ment. A typical microarray usually consists of tens of
thousands of elements. On the one hand, it provides a
comprehensive coverage that almost always promises
some new discoveries. On the other hand, analyzing the
vast amount of data being generated can be daunting to
scientists. It is therefore, more important now than ever, to
design a microarray project carefully to generate high-
quality data and to maximize the efficiency of data analysis.

Good microarray experimental design should comprise
at least four elements: (i) a clearly defined biological
question and/or hypothesis; (ii) treatment, perturbation
and observation of the biological materials, as well as the
microarray experimental protocols, should be as little
affected by systematic and experimental errors as possible;
(iii) a simple, sensible and statistically sound microarray
experimental arrangement that will give the maximal
amount of information given the cost structure and
complexity of the study [3-5]; and (iv) compliance with
the standard of microarray information collection, which
will be further discussed in the next section.

Standardization of information generated by microarray
experimentation

The adoption of international standards have long been
seen as vital in science because of the confusion generated
through the use of various units. We have been experienc-
ing a similar issue in the microarray field. The same
increase or decrease in gene expression observed by
two different laboratories might actually be different,
especially when they are using different experimental
protocols and data-analysis methods. Without a standard,
it is almost impossible to judge the validity of a result
Jjust by inspecting the expression changes or even the raw
data [6]. In view of this problem, the Microarray Gene
Expression Data (MGED) Society (http://www.mged.org),
an international initiative to develop standards for
microarray data, has recently proposed a standard
Minimum Information About a Microarray Experiment
(MIAME) (http://www.mged.org/Workgroups/MIAME/
miame.html) [7]. The research community has embraced
it and many major journals now require compliance with
MIAME for any new submission [8). It is therefore
advisable to ensure that the experimental design,
implementation and data analysis comply with the
MIAME standard
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Glossary

Adaptive circle segmentation: a segmentation process in which the diamaeter
of the circle being applied to the spot is calculated case by case In order to
sddress the variation of spot dlameter. The pixels that fall within the circle are
regarded as foreground.

Background estimation: the background fluorescence signal usually orig-
Inates from non-specific hybridization of the labeled samples or auto-
fluorescence of the glass slide. This unwanted background signal needs to
be estimated and removed from foreground signal during image analysis.
Background intensity subtraction: the calculation of fluorescence signal from
the background pixels of a spot identified during the segmentation process.
Usually the median of the plxel intensities I3 used.

Dye-swapping expariment: two hybridizations of the sample pair of samples In
which the labeling dye of the two samples is reversed in one of hybridizations.
Averaging the two expression ratios would give one 8 good estimate of the
true ratio.

Fixed circle segmentation: a segmentation process In which a circle with a
constant diameter 18 applled to all spots on the image. The pixels that fall
within the circle are regarded as foreground.

Intensity extraction: the process that calculates the foreground (signal) and
background Intensities from the pixels after the segmentation process.

Local background sstimation: 8 commonly used background estimation
method In which the immediate background pixels surrounding the spot, as
identified by the segmentation process, are used for estimating the back-
ground signal.

Segmaentation: 8 computational process which differentiates the pixéls within
a spot-containing region into foreground (true signal) and background.

Spot intensity extraction: the calculation of fluorescence signal from the
foreground pixels of a spot identifled during the segmentation process.
Usually the mean of the pixel intensities Is used.

Spotrecognitionor gridding: a computational process which locates each spot
on the microarray image.

MIAME represents the minimal information to be
recorded that enables faithful experimental replication,
the verification of the validity of the reported result, and
the facilitation of the comparison among similar experi-
ments. Besides, the information should be structured with
controlled vocabularies and ontology to assist in develop-
ing database and automated data analysis. Currently, the
minimal information includes the six parts: (i) experimen-
tal design; (ii) array design; (iii) samples; (iv) hybridiz-
ations; (v) measurements; and (vi) normalization controls.
Adetailed description ofeach part and a convenient checklist
are available on the MIAME website (http//www.mged.org/
Workgroups/MIAME/miame_checklist.html).

Image acquisition and analysis

After performing all biological and hybridization experi-
ments, the first step of data analysis is scanning the slide
and extracting the raw intensity data from the images.
There are four basic steps in image acquisition and
analysis: (i) scanning; (ii) SPOT RECOGNITION OR GRIDDING
(see Glossary); (iii) SEGMENTATION; and (iv) INTENSITY
EXTRACTION and ratio calculation.

Image acquisition is a very important step in data
analysis. Once an image has been scanned, all data, high
or poor-quality, are essentially fixed. A poor-quality image
requires further manipulations, which will lead to a
decrease in the power of analysis. There are two pre-
requisites for obtaining a high-quality image. First, all
steps in array construction, RNA extraction, labeling,
and array hybridization have to be performed to the
highest possible standards. These endeavors ensure that
all images would be least affected by contamination
(e.g. dust or dirt), and have consistent spots with high
signal-to-noise ratios. Second, the choice of scanning

hybnd’lzatlon
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Figure 1. Flow of a typical microarray experiment. A typlcal microarray experiment
begins with good experimental design. After carrying out the blological experi-
ment, the samples, either tissues from patient or snimal model, or cells from
in vitro cultures, are collected. Their RNAs are then extracted and labeled with
different fluorescent dyes, and co-hybridized to a microarray. The hybridized
microarray Is scanned to acquire the fluorescent images. Image analysls is per-
formed to obtain the raw signal data for every spot. Poor quality data are filtered
out and the remaining high quality data are normalized. Finally depending on the
alm of the study, one can infer statistical significance of differential expression,
perform various exploratory data analyses, classify samples according to their
disease subtypes and carry out pathway analysis. Note that data from all the steps
should be collected according to certain standards, minimum Information about a
microarray experiment (a.g. MIAME]), and archived properly.

parameters is also important. We discuss the settings
for the Axon scanner, but the general principle is applic-
able to other platforms. A low laser power (30%) should be
used whenever possible to prevent photo-bleaching. The
photomultiplier tube (PMT) gain settings are adjusted
during the scanning process to balance the overall
intensities between the two channels (i.e. cy3 and cy5)
as much as possible. This balance can be evaluated in
several ways: (i) visual inspection of the scanning image.
The non-differentially expressed spots should appear
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Table 1. Summary of microarray analysis steps®

Analysis step Caveats

Experimental design and Implementation

Data collection and archival
Image acqulsition

Image analysls
necessary

Data pre-processing

Data normalization

Identifying differentlally expressed genes

Exploratory data analysis

Class prediction ahd classification
Pathway analysis

Define the biological question and hypothesis clearly

Design the microarray experimental scheme carefully; Include blological replication in
experimental design

Avoid experimental errors

Compliance with microarray information collection standards {(e.g. MIAME)

Avoid photo-bleaching

Try to balance the overall intensities between the two dyes

Scan image at appropriate resolution

Inspect the gridding result manually; adjust the mask and flag poor-quality spots If

Choose and apply an appropriate segmentation algorithm

Apply quality measures to aid decision of spot quality

Remove poor-quality spots

Remove spots with intensity lower the background plus two standard deviations.
Log-transform the intensity ratios

Use diagnostic plots to evaluate the data

Consider using LOWESS and its variants for normalization

Do not use fixed threshold (i.e. two-fold increase or dacrease) to infer significance
Calculate a statistic based on replicate array data for ranking genes

Select a cut-off value for rejecting the null-hypothesis that a gene is not differentially
expressed; remember to adjust for multiple hypothesis testing

Use different analysis tools with different setting to ‘explore’ the data

Validate the result by follow-up experiments

Do not over-train the classifier; try to balance the accuracy and genaralizability

Try to understand the microarray data in a pathway perspective and not genes in isolation

*Abbreviations: LOWESS, locally weighed scatterplot smoothing: MIAME, minimum Information about & microarray experliment.

yellow (i.e. ratio equals to 1) on a balanced image (Figure 2a).
In many cases, most of the spots on the array are non-
differentially expressed; (ii) examining the extent of overlap
between the pixel distribution histograms of both channels
(Figure 2b); and (iii) computation of the global normalization
factor for all the spots contained in the two channels, for
example the sum of signals in one channel divided by the
sum of signals in the other one. A well-balanced image
should have a factor close to 1.

The choice of a suitable scanning resolution depends
on the array specification. A rule of thumb is that the
resolution setting should be at least 10% of the spot
diameter. At the same time, the number of spots with
saturated pixels should be kept to a minimum (e.g. <3-5
spots in a whole yeast genome array with 6240 elements)
to maximize the dynamic range usage of the scanner.

Box 1. Different microarray technologies

Excessive scanning of a slide should be avoided to prevent
photo-bleaching. Images of high-quality can be acquired
routinely when all these factors are taken into consider-
ation (Figure 2a).

Spot recognition or gridding is not a difficult problem for
most contemporary image analysis software, although itis
often necessary to adjust the grid for some spots manually
afterwards. In fact, many scientists prefer to visually
inspect the images for adjusting the grid and flagging low
quality spots instead of totally relying on software recog-
nition. Segmentation is a process used to differentiate the
foreground pixels (i.e. the true signal) in a spot grid from
the background pixels. This is a tricky computational
problem because the spot morphology in a poor-quality
image can vary substantially and the background can
be high. Furthermore, the image can contain other

In general, there are two types of microarray platforms depending on
the method of nucleic acid deposition on the chip surface: robotically
spotted [62] or In situ synthesls by photolithography, a technology that
is commonly used in computer chips fabrication [53]. The latter is
commercially available from Affymetrix™. Historically the robotically
spotted microarrays were referred to as cDNA microarrays because the
nucleic acids being spotted were PCR products amplified from cDNA
librariess. And the photolithographically synthesized arrays were
commonly called oligonucleotides arrays or oligoarrays because
shorter oligonucleotides {~25mers) were placed on the arrays and
each gene is represented by multiple oligos. It is inaccurate to use the
type of probes on arrays to differentiate different platforms because
researchers now also prepare oligoarrays by robotically spotting
oligonucleotides {~50 to 70mers) on the slide.

Nonetheless, there is still a fundamental difference in the experi-
mental setup between the robotically spotted arrays and photolitho-
graphically synthesized ones. In the robotically spotted array
experiments, the two samples under comparison ars labeled with two

http./ntigs.trends.com

different fluorescent dyes and co-hybridized to the same array. This is
essentially a comparative hybridization experiment. The ratio between
the two dyes indicates the relative abundance of a gene in these two
samples. In the photolithographically synthesized array experiments,
the two samples under comparison are labeled with the same dye and
individually hybridized to different arrays.

Although most downstream analyses like exploratory analysis are
similar for the two-microarray platforms, the differences in sample
labeling and hybridization have created different requirements in
upstream data pre-processing. In particular, because the samples are
individually hybridized to different arrays in the case of photolitho-
graphically synthesized array experiments, there are specific concerns
on features selection [54,55], background adjustment [56], the relation-
ship between signal intensity and transcript abundance [56,57], probe-
specific biases [58] and normalization across different arrays [55,56].
This review is focused on the data analysis of the spotted cDNA
microarrays, the most accessible microarray platform for general
biologists.
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Figure 2. A typical microarray image, pixel distribution histogram for image acquisition, and the effect of Image quality on spot recognition and segmentation, (8} In this
microarray experiment yeast cells treated with a chemlcal that induced a subtle expression change was compared with the untreated cells by hybridization to a microarray
with a complete set of yeast open reading frames (ORFs). (b} Plxel histogram for image acquisition. The histograms of the two channels should overlap as much as pos-
sible. {c—e) Effect of Image quality on spot recognition and segmentation. (¢) A high-quality image. (d} Image with dust contamination. (e} Image with high background.
{More poor-quality images and how to trouble shoot are available at http:/stress-genomics.org/stress.fls/expression/array_tech/Atrouble_shooting/ftroubles_index.htm.

imperfections. This can make a proper segmentation These algorithms are implemented in different image
difficult. There are several algorithms for segmentation, analysis software [9]. The adaptive circle segmentation
including FIXED CIRCLE SEGMENTATION, ADAPTIVE CIRCLE and local background estimation algorithms work effi-

SEGMENTATION, adaptive shape segmentation and histo- ciently for us, but the choice of appropriate algorithms
gram segmentation. There are also several algorithms for obviously depends on the quality of the raw images. For
BACKGROUND ESTIMATION, for example constant back-  example, the adaptive circle segmentation that estimates

ground, LOCAL BACKGROUND and morphological opening. the diameter separately for each spot, works best when all
hutp://tigs.trends.com
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the spots are circular. Figures 2c—e show the recognition
and adaptive circle segmentation results of spots with
different background contaminations. When the image
quality is high, the algorithm can predict the size of the
spots and segment their signal accurately (Figure 2c). If
there is dust contamination (Figure 2d) or a high back-
ground signal in the image (Figure 2e), the algorithm will
not only reject those poor-quality spots, but might also
recognize the contamination as a spot (Figure 2d). In this
case, both the true signal and background signals will be
erroneously estimated. Because it is much more robust for
various algorithms to perform segmentation and back-
ground estimation processes on a high-quality image than
on a low-quality one, it is crucial to produce a high-quality
microarray and collect a high-quality image from it in
the first place.

Recently there has been an interesting experimental
segmentation method reported in which the DNA spots on
the microarray were counterstained by 4/, 6 -diamidino-2-
phenylindole (DAPI) and the counterstained image used
to assist in the segmentation process [10]. This new
experimental approach has apparently resolved many
limitations of the algorithmic approach and potentially
facilitated the development of a fully automated image
analysis system.

After the segmentation process, the pixel intensities
within the foreground and background masks (i.e. the
areas in the image defined as foreground and background
by the software, respectively) are averaged separately to
give the foreground and background intensities, respec-
tively. Median or other intensity extraction methods can be
used when there are extreme values in the spots that skew
the distribution of pixel intensities. Subtracting the BACK-
GROUND INTENSITY from the foreground intensity in each
channel gives the SPOT INTENSITY for calculating the
expression ratio between the two channels.

A rapidly developing area that assists in image analysis
is the measurement of quality. Some software apply
criteria such as diameter, spot area, circularity and repli-
cate uniformity to judge whether a spot is of sufficiently
good quality for downstream analysis. The underlying
assumption of these criteria is usually a perfect spot,
which can be too idealized. A working definition of a good
spot is therefore necessary. There is also a need to relate
these measures to more common statistical concepts in
order that they can be useful for a routine image analysis
[9]. A combination of the empirical counterstain segmen-
tation method discussed above [10] and theoretical quality
measures can be a practical solution. The DNA counter-
stain provides information about actual spot morphology
and DNA distribution in the spots, which helps to formu-
late an improved basis for applying different theoretical
measures to evaluate the spot quality.

Data pre-processing and normalization

The data extracted from image analysis need to be
pre-processed to exclude poor-quality spots and normal-
ized to remove many systematic errors as possible before
downstream analysis. Any spot with intensity lower
than the background plus two standard deviations
should be excluded. The intensity ratios should also be
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log-transformed so that upregulated and downregulated
values are of the same scale and comparable [11].

The process of normalization aims to removing sys-
tematic errors by balancing the fluorescence intensities of
the two labeling dyes. The dye bias can come from various
sources including differences in dye labeling efficiencies,
heat and light sensitivities, as well as scanner settings for
scanning two channels. Some commonly used methods
for calculating normalization factor include: (i) global
normalization that uses all genes on the array (Figure 3b);
(ii) housekeeping genes normalization that uses con-
stantly expressed housekeeping/invariant genes; and
(iii) internal controls normalization that uses known
amount of exogenous control genes added during hybrid-
ization (http//www.dnachip.org/mged/normalization.html)
[11]. Unfortunately these normalization methods are
inadequate because dye bias can depend on spot intensity
and spatial location on the array. Housekeeping genes are
not as constantly expressed as was previously assumed
[12]. As a result, using housekeeping genes normaliz-
ation might introduce another potential source of error.
Dye-swapping experiments are seen as a plausible
solution to reduce the dye bias problem, but can be
impractical because of the limited supply of certain
precious samples.

Recently there have been suggestions for using a non-
linear normalization method on the basis of gene intensity
and spatial information [4,11]}, which is believed to be
superior to the other methods. Figure 3 provides a com-
parison of various normalization methods, using the data
extracted from Figure 2a. All data analyses and graph
plotting were performed using statistical microarray
analysis (SMA) package (http:/stat-zww.berkeley.edu/
users/terry/zarray/Software/smacode.html) running in
R statistical environment (http://www.r-project.org/). The
plots show Log; of the expression ratio versus average spot
intensity. Ideally the center of the distribution of log-ratios
should be zero, the log-ratios should be independent of spot
intensity, and the fitted line should be parallel to the
intensity axis. In our example, the global locally weighted
scatterplot smoothing (LOWESS) normalization is a good
choice because it provides a good balance on the three
factors mentioned above (Figure 3c). The fluorescent
images (Figure 2a) do not suffer from serious spatial
effects, as indicated by a very similar log expression ratio
distribution among all the print-tips in the bloxplot for the
global LOWESS normalization (Figure 3c). However,
when there is a significant difference in the distribution
of log-ratios among the print-tips in the bloxplot, sug-
gesting a possible spatial effect, print-tip group LOWESS
(Figure 3d) or scaled print-tip group LOWESS normal-
ization (Figure 3e) should be considered. Apart from
within-a single array, the distribution of gene expression
ratios from replicate experiments might have different
distribution of log ratios due to the difference in experi-
mental conditions. Therefore scaling adjustment is often
necessary to standardize the distribution of log-ratios
across replicate experiments to prevent any particular
experiment becoming dominant and affecting downstream
statistical analysis.
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Data analysis

The next stage of analysis is to apply various statistical
and data mining techniques to study the data. There are
several typical approaches that are discussed in the
following sections.

Significance inference - identifying significantly
differentially expressed genes

Traditionally, differentially expressed genes are inferred
by a fixed threshold cut off method (i.e. a two-fold increase
or decrease), but this is statistically inefficient, the main
reason being that there are numerous systemic and
biological variations that occur during a microarray
experiment. Although some of the systemic variations
such as dye bias can be effectively removed by normal-
ization, random biological variations such as sample-to-
sample and physiological variations are more difficult
to handle [13,14) (for a comprehensive review of various
statistical issues, variations and errors of microarray
experiment see Ref. [15]). Because of these underlying
variations, merely using a fixed threshold to infer sig-
nificance might increase the proportion of false positives or
false negatives. A better framework of significance infer-
ence includes calculation of a statistic based on replicate
array data for ranking genes according to their possibi-
lities of differential expression and selection of a cut-off
value for rejecting the null-hypothesis that the gene is not
differentially expressed.

Replication of a microarray experiment is essential to
obtain the variation in the gene expression for statistics
calculation. It has been suggested that every microarray
experiment should be performed in triplicate to increase
data reliability [16]. There are two types of replication:
biological and technical. Biological replication refers to the
analysis of multiple independent biological samples
(e.g. one tissue type obtained from different patients
with the same disease, or individual samples of a par-
ticular cell line under the same treatment), whereas
technical replication refers to the repetition of microarray
experiment using the same extracted RNA samples.
Biological replication is particularly important for expres-
sion profiling of disease tissues, because there might be
variability of expression among the same tissue type or
tissue heterogeneity. Any particular tissue might not be
representative of the whole disease sample group. Tech-
nical replication provides a precise measurement of gene
expression for a particular sample and eliminates many
technical variations introduced during the experiment.
Unfortunately, merely obtaining a precise expression
measurement of a tissue by technical replication will not
resolve the problem of biological variation. Therefore it is
usually preferable to have biological replication rather
than technical replication if there are not enough tissues
or resources to perform several microarray experiments,
provided the experiment procedures are carried out care-
fully [4,5]. Statistical methods such as Student’s ¢-test

and its variants [17,18]), ANOVA [19,20], Bayesian method
[17,20,21], or Mann-Whitney test [22], can be used torank
the ganes from replicated data.

Setting a cut-off for differential expression is tricky,
because one has to balance the false positives (Type I error)
and the false negatives (Type II error). Furthermore, per-
forming statistical tests for tens of thousands of genes
creates a multiple hypothesis-testing problem. For example,
in an experiment with a 10 000-gene array in which the
significance level a is set at 0.05, 10 000 X 0.05 = 500 genes
would be inferred as significant even though none is
differentially expressed. Therefore using a p-value of 0.05
is likely to exaggerate Type I errors. The multiple hypo-
thesis testing problem is conventionally tackled by con-
servative approaches that control the family-wise error
rate (FWER), the probability of having at least one false
positive among all testing hypotheses [23]. A classical
example is the Bonferroni correction. However, controlling
the FWER can be too stringent and limits the power to
identify significantly differentially expressed genes. In fact,
differential expression is usually confirmed by RT-PCR,
northern blots or in situ hybridization [24]. It is often
acceptable to have few false positives if the majority of true
positives are chosen. Therefore it might be more practical
to control the false discovery rate (FDR) (25], the expected
proportion of false positives among the number of rejected
hypotheses. A program, statistical analysis of microarray
(SAM), has been developed to utilize this FDR concept as a
tool to assist in determining a cut-off after performing
adjusted t-tests (https//www-stat.stanford.edw/~tibs/SAM/
index.html) [18].

Exploratory data analysis — understanding the
(dis)similarities of the gene exprassion lavels among all
samples

Also known as unsupervised data analysis, exploratory
data analysis does not require the incorporation of any
prior knowledge in the process. It is essentially a grouping
technique that aims tot find genes with similar behaviors
(i.e. expression profiles). Some commonly used examples
include principal component analysis (PCA) [26] or singu-
lar value decomposition (SVD) [27] for dimensionality
reduction, as well as hierarchical clustering [28], K-means
clustering [29] and self organizing maps (SOMs) (30] for
clustering. There are already several excellent reviews
on various unsupervised analyses and their applications
in microarray data mining [31-33], therefore we do not
discuss their details here.

There is perhaps no unsupervised data analysis that
can suit all situations. Different analyses or even different
parameters of the same analysis can reveal unique aspects
of the data. This idea is illustrated in Figure 4, in which
five genes from a hypothetical time series data are
clustered using various distance or similarity measures
and unweighted pair group method with arithmetic mean
(UPGMA) algorithm. Each distance or similarity measure

Flglfu 3. A comparison of various normallzation methods. The raw data was extracted from Figure 2a. Any spot with intensity lower than the background plus two standard
deviations or of poor-quality was excluded from further analysis. From top to bottom: Log, ratios (M) versus average intensities {A} plot and boxplot of the data without
normalization (a) and with four different kinds of normalization methods: (b) median, {¢) global locally welghted scatterplot smoothing (LOWESS), (d) printtip group

LOWESS, (o] scaled print-tip group LOWESS.



TRENDS in Genetics Vol.19 No.11 November 2003

(b) Correlation coefficient
with centering

J (c) Absolute correlation
coefficient without
centering

(d) Absolute correlation
coefficiant with
centering

(e) Euclidean distance

(f) Manhatten distance

TRENDS in Genelics

4
1
3 o-—-——-—--«mo.\\
_— \\
% 2 B rrmemernarenaanans *‘\ \\\ /,0
= \\\ \\\ /
'g 1 - \\ﬁ. \.\ . o, //
e Sl S e -—+--Gene A
$ o ; . r \“,r:::: M NS ot y , | —#—Gene B
3 1 2 3 .- 4 5 6 e 7
g -1 e * o
i r’/‘/ \\"‘\
2 o el Ty
8 =2 4 e ~ > ,X x\\\\\
-3 Lx T~
//‘/’
—4 Feecsenarcoscaaanns o
-5
; Time (hr)
Distance similarity measure
Y EEEEESE
‘ (a) Correlation coefficient
. without centering

(=1

0534 1.067

EREEEEE

1] 0.059

0.119 0.178

ap/igs.trands.com




TRENDS in Genetics Vol.19 No.11 November 2003 857

can assign the genes to different clusters. For example,
Euclidean and Manhattan distances are sensitive to
absolute expression levels, and are able to reveal those
genes that have similar expression levels in the cluster.
Two main clusters are identified in the data, one for
gene A and B and the other cluster for gene C, D and E
(Figure 4e,f). A and B are clustered with each because
their overall expression ratios more similar when com-
pared with C, D and E, and vice versa. The similarity
between their expression profiles suggests the genes in
the two clusters might be co-regulated. However, if the
researchers conclude the analysis at this stage, they are
likely to miss some other interesting relationship among
the genes. A slightly different picture is revealed by using
correlation coefficient with centering, a similarity measure
that is sensitive to the expression profile shape, regardless
of the expression levels (Figure 4b). Gene A, B and C are
grouped in the same cluster whereas D and E are in
another. Intriguingly, A and C, gene D and E are correlated
with each other perfectly using this distance measure. An
inspection of the expression profile offers a hint. Although
A and C differ largely in expression level, the shape of their
expression profiles is the same. This is also true for gene D
and E. As a result, the correlation coefficients for both
A and C and gene D and E are 1. This result suggests
gene A and C, gene D and E are likely to be co-regulated,
and analyzing their promoters can sometimes identify
common regulatory elements. Further insight is provided
using absolute correlation coefficient with centering as a
similarity measure (Figure 4d). This time A, C, D and E
are clustered perfectly together, leaving B separate. It is
because the shape of the expression profiles of A and C are
a mirror image of D and E. Although their correlation
coefficient is — 1, which will place them in two separate
clusters as shown in Figure 4b, the absolute value of their
correlation coefficient is the same and will place them in
the same cluster. Therefore it is very likely that A, C, D, E
are regulated by a same factor or mechanism, which
represses the expression A and C while enhancing the
expression of D and E, and vice versa. The same principle
also applies to the choice of clustering algorithms [31].

Hence, it is always advisable to apply several unsuper-
vised analyses and different parameters to explore the
data. Nonetheless, there must be a balance between the
tume spent on data analysis and the time spent on subse-
quent experimental confirmation. Unsupervised analysis
is a useful method for generating new hypotheses. The
validity of the result has to be built upon both statistical
significance and biological knowledge.

Class prediction - using gene expression profiles as a
means to classify samples

Another intriguing type of data analysis is to train a
classifier algorithm using the expression profiles of pre-
defined sample groups, so that the classifier can best
assign any new sample to the respective group. This type of

analysis is also known as supervised data analysis, which
has great promise in clinical diagnostics [81] and has
been used successfully in several recent studies {34-36].
Examples of such analysis include support vector machines
[37], artificial neural networks [38], k-nearest neighbor (39]
and various discrimination methods (http:/stat-www.
berkeley.eduw/users/terry/zarray/Html/discr.htrl). The ulti-
mate goal is to generalize the trained classifier as a
routine diagnostic tool for differentiating between the
samples that are difficult or even impossible to classify by
available methods.

The challenge for supervised data analysis is to
generalize the classifier for all situations. The training
samples are often limited in number that might not be
sufficiently representative for their classes in general.
Over-training on the same dataset would result in a
situation called ‘over-fitting’, in which the classifier is
very effective in classifying the training samples but not
accurate enough for new samples. A balance between
accuracy and generalizability has to be established by
validation of the trained classifier. Several approaches
are available for this purpose. For example, the training
samples are divided into two individual sets, one for train-
ing and one for validation. The training of the classifier
will be stopped when the prediction error on the validation
set reaches a minimum. More sophisticated cross-validation
methods divide the training dataset into several subsets.
Each subset will be the validation set in turn. The overall
accuracy therefore is the average accuracy across all
validation trials. An extreme case of cross-validation is
called leave-one-out cross-validation, in which one sample
is taken away from the training set to be a validation
sample each time. An investigation of several supervised
analyses, their performance, and cross-validation was
detailed previously [40].

An emerging approach - pathway analysis

Genes never act alone in a biological system -~ they are
working in a cascade of networks. As a result, analyzing
the microarray data in a pathway perspective could lead to
a higher level of understanding of the system. There are at
least three interesting approaches in this area. The first is
a natural extension of the exploratory cluster analysis
described above. If several genes are assigned to the same
group by cluster analysis, as discussed above, they might
be co-regulated or involved in the same signaling pathway.
Analyzing the promoters of this group of genes can often
reveal common regulatory motifs and unveil a higher level
of network organization in the biological system [41). The
second is to reverse-engineer the global genetic pathways,
the identification of the global regulatory network archi-
tecture from microarray data. It can be done by a system-
atic targeted perturbation like mutation or chemical
treatment [42], and time series experiments [43]. The
assumption here is that the perturbation will cause a
change in expression of other proteins in the network. This

Figure 4. Different distance measures provide different views of the data. Line graphs of a hypothetical time series experiment with five genes and seven time points
(upper panell. Hierarchical clustering of the data using six common distance or similarity measures {lower panel): (a) correlation coefficlent without centering,
(b) correlation coefficient with centering, (c) absolute correlation coefficient without centering, (d) absolute correlation coefficient with centering, (e) Euclidean distance,
{f) Manhattan distance. Clustering was performed using unweighted pair group method with arithmetic mean algorithm (UPGMA).
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change in the expression profiles should be able to capture
the underlying architecture of the network. Various
methods have been proposed for constructing a network
from this kind of microarray data, such as a Boolean
network that simplifies gene expression as a binary logical
value to infer the induction of a gene as a deterministic
function of the state of a group of other genes [44—-46] and a
Bayesian network that models interactions among genes,
evaluates different models and assigns them probability
scores [47,48] (readers are referred to two excellent reviews
on these and other methods for reverse engineering of
networks [49,50]). The final approach is to study the
expression data on a pathway perspective. Our group has
recently developed a method called Pathway Processor
(http://cgr.harvard.edu/cavalieri/pp.html) that can map
expression data onto metabolic pathways and evaluate
which metabolic pathways are most affected by transcrip-
tional changes in whole-genome expression experiments
[51]. We used the Fisher Exact Test to score biochemical
pathways according to the probability that as many or
more genes in a pathway would be significantly altered
in a given experiment than by chance alone. Results from
multiple experiments can be compared, reducing the ana-
lysis from the full set of individual genes to a limited
number of pathways of interest.

Conclusion

Microarray analysis is evolving rapidly. New and more
complex analyses appear everyday, making it easy for the
researcher to get lost in endless new methods and soft-
ware. Collaborating with statisticians and mathemati-
cians is often advisable for performing a proper microarray
analysis. Nonetheless, this will not replace biological
expertise, a good foundation for statistical methods and
meticulousness in conducting experiments.

Acknowledgements
YFL is supported by a Croucher Foundation Postdoctoral Fellowship. We

thank Alice Yu Ming Lee and Abel Chiu Shun Chun for their critical
comments on this manuscript.

References

1 Leung, Y.F. et al. (2002) Microarray software review. In A practical
approach to microarray data analysis (Berrar, D.P. et al., eds), Kluwer
academic

2 Box, G.E.P. et al. (1978) Statistics for experimeniers ~ an introduction
to design, data analysis, and model building, John Wiley & Sons

3 Churchill, G.A. (2002) Fundamentals of experimental design for cDNA
microarrays. Nat. Genet. 32 (Suppl. 2), 490-495

4 Yang, Y.H. and Speed, T. (2002) Design issues for cDNA microarray
experiments. Nat. Rev. Genet. 3, 579-6588

5 Simon, R.M. and Dobbin, K. (2003) Experimental design of DNA
microarray experiments. Biotechniques, S16-S21

6 Perou, C.M. (2001) Show me the data!. Nat. Genet. 29, 373

7 Brazma, A. et al. (2001) Minimum information about a microarray
experiment (MIAME)-toward standards for microarray data. Nat.
Genet. 29, 365-371

3 Anonymous, (2002) Microarray standards at last. Nature 419, 323

9 Yang, Y.H. et al. (2001) Analysis of cDNA microarray images. Brief.
Bioinform. 2, 341-349

10 Jain, A.N. et al. (2002) Fully automatic quantification of microarray
image data. Genome Res. 12, 326-332

11 Quackenbush, J. (2002) Microarray data normalization and trans-
formation. Nat. Genet. 32 (Suppl.), 496501
12 Lee, P.D. (2002) Control genes and variability: absence of ubiquitous

hupi/figs.trends.com

reference transcripts in diverse mammalian expression studies.
Genome Res. 12, 292-297

13 Novak, J.P. et al. (2002) Characterization of variability in large-scale
gene expression data: implications for study design. Genomics 19,
104113

14 Pritchard, C.C. et al. (2001) Project normal: defining normal vari-
ance in mouse gene expreasion. Proc. Natl. Acad. Sci. U. S. A. 95,
13266-13271

15 Nadon, R. and Shoemaker, J. (2002) Statistical issues with micro-
arrays: processing and analysis. Trends Genel. 18, 266-271

16 Lee, M.L. et al. (2000) Importance of replication in microarray gene
expression studies: statistical methods and evidence from repetitive
¢DNA hybridizations. Proc. Natl. Acad. Sci. U. S. A. 97, 98349839

17 Lénnstedt, [. and Speed, T.P. (2002) Replicated Microarray Data. Stat.
Sinica 12, 31-46

18 Starey, J.D. and Tibshirani, R. (2003) SAM thresholding and false
discovery rates for detecting differential gene expression in DNA
microarrays. In The Analysis of Gene Expression Data: Methods and
Software (Parmigiani, G. et al., eds), Springer

19 Kerr, M.K. et al. (2000) Analysis of variance for gene expression
microarray data. J. Comput. Biol. 7, 819-837

20 Long, A.D. et al. (2001) Improved statistical inference from DNA

microarray data using analysis of variance and a Bayesian statistical

framework. Analysis of global gene expression in Escherichia coli K12.

J. Biol. Chem. 276, 19937-19944

Baldi, P. and Long, A.D. (2001) A Bayesian framework for the analysis

of microarray expression data: regularized ¢ test and statistical

inferences of gene changes. Bioinformatics 17, 609-519

22 Wu, T.D. (2001) Analysing gene expression data from DNA micro-
arrays to identify candidate genes. J. Pathol. 196, 63-65

23 Dudoit, S. et al. (2002) Statistical methods for identifying differentially
expressed genes in replicated cDNA microarray experiments. Stat.
Sinica 12, 111-139

24 Chuaqui, R.F. et al. (2002) Post-analysis follow-up and validation of
microarray experiments. Nat. Genet, 32 (Suppl. 2), 509-6514

25 Reiner, A. et al. (2003) Identifying differentially expressed genes
using false discovery rate controlling procedures. Bioinformatics 19,
368-375

26 Raychaudhuri, S. (2000) Principal components analysis to summarize
microarray experiments: application to sporulation time series. Pac.
Symp. Biocomput., 4565-466

27 Alter, O. el al. (2000) Singular value decomposition for genome-wide
expression data processing and modeling. Proc. Natl. Acad. Sci. U. S. A.
97, 10101-~-10106

28 Eisen, M.B. et al. (1998) Cluster analysis and display of genome-wide
expresaion patterns. Proe. Natl, Acad. Sci. U. S. A. 96, 14863-14868

29 Tavazoie, S. et al. (1999) Systematic determination of genetic network
architecture, Nat. Genet. 22, 281-285

30 Tamayo, P. et al. (1999) Interpreting patterns of gene expression with

self-organizing maps: methods and application to hematapoietic

differentiation. Proc. Natl. Acad. Sci. U. S. A. 96, 2907-2912

Quackenbush, J. (2001) Computational analysis of microarray data.

Nat. Rev. Genet. 2, 418—-427

32 Sherlock, G. (2001) Analysis of large-scale gene expression data Brief.
Bioinform. 2, 350-362

33 Valafar, F. (2002) Pattern recognition techniques in microarray data
analysis: a survey. Ann. N. Y. Acad. Sci. 980, 41-64

34 Pomeroy, S.L. et al. (2002) Prediction of central nervous system
embryonal tumour outcome based on gene expression. Nature 415,
436-442

36 Shipp, M.A. et al. (2002) Diffuse large B-cell lymphoma outcome
prediction by gene-expression profiling and supervised machine
learning. Nat. Med. 8, 68-74

36 Khan, J. et al. (2001) Classification and diagnostic prediction of
cancers using gene expression profiling and artificial neural networks.
Nai. Med. 7, 673-679

37 Brown, M.P. (2000) Knowledge-based analysis of microarray gene
expression data by using support vector machines. Proc. Natl. Acad.
Sei. U. S. A. 97, 262-267

38 Vohradsky, J.(2001) Neural network model of gene expression. FASEB
J. 15, 846-854

39 Theilhaber, J. et al. (2002) Finding genes in the C2C12 osteogenic

2

—

3

—



TRENDS in Genetics Vol.19 No.11 November 2003 669

pathway by k-nearest-neighbor classification of expression data. 49 de Jong, H. (2002) Modeling and simulation of genetic regulatory
Genome Res. 12, 166-176 systemas: a literature review. J. Comput. Biol. 9, 67-103

40 Ben-Dor, A. et al. (2000) Tiasue classification with gene expression 650 D’haeseleer, P. (2000) Genetic network inference: from co-expression
profiles. J. Comput. Biol. 7, 569583 clustering to reverse engineering. Bioinformatics 16, 707-726

41 Pilpel, Y. et al. (2001) Identifying regulatory networks by combina- 51 Grosu, P. et al. (2002) Pathway Processor: a tool for integrating whole-
torial analysis of promoter elements. Nat. Genet. 29, 1563-159 genome expression results into metabolic networks. Genome Res. 12,

42 Hughes, T.R. et al. (2000) Functional discovery via a compendium of 1121-1126
expression profiles. Cell 102, 109-126 52 Schena, M. et al. (1995) Quantitative monitoring of gene expression

43 Tavazoie, S. et al. (1999) Systematic determination of genetic network patterns with a complementary DNA microarray. Science 270, 467470
architecture. Nat. Genet. 22, 281-285 53 Lipshutz, R.J. et al. (1999) High density synthetic oligonucleotide

44 Liang, S. et al. (1998) Reveal, a general reverse engineering algorithm arrays. Nat. Genet. 21 (Suppl. 1), 20-24
for inference of genetic network architectures. Pac. Symp. Biocompul., 64 Zhou, Y. and Abagyan, R. (2003) Algorithms for high-density oligo-
18-29 nucleotide array. Curr. Opin. Drug Discov. Devel. 6, 339-345

45 Akutsu, T. et al. (2000) Algorithms for identifying Boolean networks 55 Schadt, E.E. et al. (2001) Feature extraction and normalization
and related biological networks based on matrix multiplication and algorithms for high-density oligonucleotide gene expression array
fingerprint function. J. Comput. Biol. 7, 331-343 data. J. Cell. Biochem. 37 (Suppl.), 120-125

46 Maki, Y. et al. (2001) Development of a system for the inference of large 56 Schadt, E.E. et al. (2000) Analyzing high-density oligonucleotide gene
scale genetic networks. Pac. Symp. Biocomput., 446-458 expression array data. J. Cell. Biochem. 80, 192-202

47 Friedman, N. et al. (2000) Using Bayesian networks to analyze 57 Sasik, R. et al. (2002) Statistical analysis of high-density oligonucleo-
expression data. J. Comput. Biol. 7, 601-620 tide arrays: a multiplicative noise model. Bioinformatics 18, 1633-1640

48 Hartemink, A.J. et al. (2001) Using graphical models and genomic 68 Li, C. and Wong, W.H. (2001) Model-based analysis of oligonucleotide
expression data to statistically validate models of genetic regulatory arrays: expression index computation and outlier detection. Proc. Natl.
networks. Pac. Symp. Biocomput., 422-433 Acad. Sci. U. S. A. 98, 31-36

‘Mouse Knockout & Mutation Database: .

(MKMD) Is BloMedNet's fully searchable‘database
8, Visit the database to gain rapid acces
_unology, embryonic developmem skelato
rns./lt'includes extensive links to:MEDLINE

' n(;ed MKMD featurlng a new reviews gactio

an: :Inistitutes interested.in subscribing can expénence th
tia Ask your Informatia ﬂ"cer/lerarlan to contact their local Elsevier Sclence Ace: T M ‘o
mkmd@biomednet.com. For more details, visit the site at: http://research.bmn com/mkmd




COMMENTARY

Questions and Answers on Design of Dual-Label
Microarrays for Identifying Differentially

Expressed Genes

Kevin Dobbin, Joanna H. Shih, Richard Simon

The rapid growth in the use of microarrays has generated
many questions about how to design experiments that use this
technology effectively. Investigalors need answers 0 questions
about RNA sample selection, allocation of samples o arrays,
robustness of design, dye bias, sample size, and statistical power
1o ensure that the experimental objectives are achieved. We
address some common questions that arise in designing dual-
label microarray experiments and provide statistical answers
to these questions, focusing specifically on how to select opti-
mal designs for the identification of differentially expressed
genes.

BACKGROUND

The dual-label microarray measures the expression level
of thousands of gencs for a sample of cells. A common goal
of microarray experiments is to determine which genes are dif-
ferentially expressed among two or more predefined classes
of biologic specimens. These types of study goals are referred
to as “‘class comparisons” (/). Some examples of class compari-
sons are 1) identifying the ditferentially expressed genes in
BRCA1 mutation—positive, BRCA1 mutation-negative, and
sporadic cases of primary breast cancer (2); 2) identifying the
differentially expressed genes in colon cancer cells treated
with high versus low doses of camptothecin (3); and 3) identi-
[ying the dilferentially expressed genes in Lhe prostate cancer
cell line LNCaP before and after treatment with the tumor
growth inhibitor, PC-SPES (4). Because of their widespread
usc. class comparison experiments will be the focus of this com-
mentary. .

A microarray generally consists of either cDNA or extemally
synthesized oligonucleotides that are printed or coated on glass
slides. A dual-label microarray uses competitive hybridization in
which nucleic acids (i.e., cDNA, cRNA, or RNA) derived from
two RNA sources are hybridized to the same microarray (5,6).
The cDNA from one source is labeled with green (Cy3) dye, and
the cDNA from the other source is labeled with red (Cy5) dye.
either directly or indirectly (7). The cDNA or oligonucleotides
representing different genes are immobilized on the glass slide
and are often referred to as spots. For each spot there are two
corresponding measurements, one for each dye, often referred to
as the two channels. The advantages of competitive hybridiza-
tion for cDNA experiments have been well established (8). The
relative intensities of two labeled specimens measured at a
single spot are much less variable than the relative intensities if
measured at corresponding spols on different arrays. Relative
expression measurements provide a means of controlling the
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variability in the size and shape of corresponding spots and
the effects of variation in sample concentration on the surface of
the array.

The relative expression measurements compare the expres-
sion levels of labeled cDNA that have originated from two dif-
ferent RNA sources. cDNA from a single source is often applied
to every microarray slide and is labeled with the same dye (either
Cy3 or Cy5). These labeled cDNAs are referred to as the refer-
ence. If the reference is labeled with Cy3 dye. then the nonref-
erence samples are all labeled with Cy5 dye. Comparisons be-
tween the nonreference samples are based on log-ratios of the
intensity of the CyS dye to the intensity of the Cy3 dye for
corresponding spots on different arrays. Basing comparisons be-
tween the nonreference samples on the log-ratios eliminates the
sources of variability attributable to aspects of the spot that
affect both channels similarly. The gene expression data from
such a design, called a reference design, is easy to analyze
because simple ¢ tests or similar statistical methods can be ap-
plied directly to the log-ratios, and there is much existing soft-
ware available for performing such tests. In addition, it is also
possible to control for spot variability from designs that do not
usc a rclerence by statistical modeling. Hence, the reference
design may or may not be the best choice for a particular situ-
ation.

The ability to measure expression levels for two samples on
each ¢cDNA array permits a number of design options for as-
signing specimens to labels and arrays. When choosing among
these design options, one should consider the objectives of the
experiment, the sources of variability, and the differences be-
tween dyes with regard to labeling and detection characteristics.
The purpose of this commentary is to provide statistically sound
advice about the design of investigations for finding differen-
tially expressed genes using dual-label microarray platforms.
We present a number of results comparing the statistical prop-
erties of different designs that we have established elsewhere.
However, to keep the presentation nonmathematical, we have
replaced equations presented in our earlier articles (9,10) with
graphical displays where appropriate.
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SAMPLE SELECTION

Is It Sufficicnt to Samplc Onc Individual From Each
Class?

The answer is no, because the goals of class comparison are
0 determine whether the gene expression profiles are different
between the classes and to identify differentially expressed
genes. Different individuals in the same class are not expected to
have exactly the same gene expression level measurements. Bio-
logic variation and measurement error will produce some dif-
ferences in the gene expression profiles. If we sample only one
individual from each class, then there is no way to distinguish
expression differences associated with class from those associ-
ated with biologic variation or measurement error. Some genes
may vary widely in their expression level from individual to
individual in the same class, whereas others may display differ-
ential expression that is relatively small but is nonetheless criti-
cal for class distinction. Therefore, it is important to have mul-
tiple (and distinct) individuals from each class to obtain an
estimate of biologic variation. Similarly, in studying gene ex-
pression in model organisms under different biologic conditions,
it is important to have distinct applications of the conditions and
harvesting of cells.

How Many Replicates of Each RNA Sample Should Be
Hybridized?

Some invesligalors (/1) have promoted using three or more
replicate measurements for each RNA sample, and others (/2)
have suggested that at least two replicate measurements are re-
quired for each sample. These guidelines may be correct in some
situations; however, they will probably not be correct for class
comparison problems. When one is interested in class compari-
son, then replication measurements should gencrally be at the
population level, so that each replicate represents RNA from a
ditterent individual. Intuitively, the reason that this level of rep-
lication produces the best comparisons is that, by replicating at
the population level, one simultaneously reduces variability
from both population heterogeneity and experimental error,
When multiple aliquots are replicated from the same RNA
source, one only reduces variability [rom experimental error.
Therefore, replication of individual samples is inefficient for
class comparisons.

Hybridization replicates increase the accuracy of the indi-
vidual sample measurements (/7). However, if the number of
arrays is fixed (e.g., when one only has time or resources avail-
able to run a prespecified number of arrays), then increasing the
hybridization replicates requires decreasing the number of dis-
tinct RNA samples assayed. The result of this approach is a
reduction in the accuracy of the class mean estimates. The re-
lationship between sample measurement accuracy and class
mean estimate accuracy as the number of hybridization repli-
cates per sample increases for an experiment with a fixed num-
ber of 24 arrays is shown in Fig. 1. (see supplemental informa-
tion at http://jncicancerspectrum.oupjournals.org/jnci/content/
vol95/issuel8/index.shtml] for details and proof). Accuracy is
defined as the inverse of the vanance of the mean estimate.
Population parameter estimates are most accurate when hybrid-
ization replication (i.e., subsampling) is avoided, even though
the accuracy of individual sample estimates is at a minimum
when there is no subsampling. With less subsampling, one is
better able to detect differentially expressed genes in the classes
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Fig. 1. Accurucy of sample and class mean estimates as & function of the number
of replicates per sumnple. The number of arrays was fixed at 24. Accuracy is
defined as the inverse of the variance of the estimate. The estimates arc the
difference in the class averages for class mean estimates (solid squares) and
the average of repeated measurcments on the same sample for sample est-
mates (open circles). Some purameters, such as the biologic and cxperimental
vuriation, were fixcd to construct the display. For further details about math-
ematical equations, rcfer to online supplemental information (see http//
jncicancerspectrum.oupjournals.org/inci/content/vol95/issuc 1 8/index.shtml).

when the total number of arrays is fixed. An obvious exception
to this rule is when only a limited number of valuable RNA
samples are available and when one does not have access to
more. Assaying each sample multiple times will clearly be pret-
erable to assaying each sample only once.

One might think that replicate hybridizations would help off-
set high measurement variability in low-quality microarray ex-
periments that display high variation in repcated assays on the
same sample. The power to delect a differentially expressed
gene as a function of the number of subsamples per sample used,
for example, of both a high-quality (i.e., displays low variation
in repeated assays on the same sample) and a low-quality ex-
periment, is shown in Fig. 2 (see supplemental information at
htip://jncicancerspectrum.oupjournals.org/jnci/content/vol95/
issuel8/index.shtm] for details and proof). The high-quality ex-
periment is assumed to have an experimental error variance of
half the biologic variance, and the low-quality experiment is
assumed to have an experimental error variance twice that of the
biologic variance. Although the loss of power is more dramatic
for the high-quality experiment than for the low-quality experi-
ment, the low-quality experiment also loses power when one
replicates hybndizations for a lixed number of arrays.

What Are the Advantages and Disadvantages of Pooling
Samples?

Pooling samples involves mixing together RNA from several
sources belore labeling and hybridization. Two molivations for
pooling samples are 1) not enough RNA available from each
individual to perform the assay, and 2) wanting to reduce the
number of arrays used. Investigators sometimes hope to cut
down on the number of arrays needed by comparing a single
pooled sample from each class. The reasoning behind this ap-
proach is that the concentration of an mRNA molecule in a
pooled sample is likely to be closer to the average concentration
for the class than the concentration in a sample from a single
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Flg. 2. Statistical power to detect differentially expressed genes as a function of
the number of replicates per sample. The number of arrays was fixed at 24. The
high-quality (i.c., displays low variation in repcated assays on the same sample)
experiment (solid squares) has experimental error variance half that of the
biologic variance. The low-quality (i.c., displays high variation in repeated as-
says on the same sample) experiment (open circles) has experimental crror
variance twice that of the biologic variance. The power is the probability of
detecting a twofold change in genc expression levels for the high-quality ex-
periment and a 2v2-fold change in gene expression levels for the low-quality
experiment (i.c., to make the powers comparable). For further details about
mathematical cquations, refer 1o online supplemental information (see hup//
jncicancerspectrum.oupjournals.org/jnci/content/vol95/issuc 8/index.shtml).

individual. Unfortunately, a single pooled sample from each
class will not be adequate for statistical inference, because one
has no estimate of the biologic or experimental variability in the
gene expression levels for pooled samples constructed from
samples of the same class. Taking multiple subsamples from
each pool and repeating them on multiple microarrays does not
solve this problem, because variation among the subsamples will
reflect only measurement error and will not include biologic
variation.

It is possible to perform valid statistical comparisons between
the classes with pooled data, but this approach requires multiple
povled sumples from each class. Dilferent pools of RNA should
be constructed from different sets of individuals so that the
pooled samples are independent and represent true replication.
Comparisons of gene expression levels between classes are then
straightforward. However, there are still some disadvantages to
this approach. 1) It does not allow one to understand the con-
tribution of individual RNA samples to the observed gene ex-
pression levels, which makes it impossible to identify outlier or
poor-quality RNA samples. 2) A pool average is potentially
biased for the class average—that is, the average expression
level of a gene in the pool may differ from the average of the
expression levels of the gene in the contributing samples. which
can happen because of inequalities in the amounts of RNA con-
tnbuled by different samples or because mixing of the RNA
causes unanticipated alteration of gene expression. 3) It may be
difficult or impossible to understand how gene expression is
distnbuted in the population from pooled data and. hence, to
make valid stalistical inferences or predictions for individuals. In
summary, pooling of samples is recommended when there is not
cnough RNA from individual samples to run a microarray. The
use of several independent pools from each class will allow for
valid statistical inference about the classes.
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PAIRING SAMPLES FOR CO-HYBRIDIZATION
What Types of Designs Should Be Considered?

Three designs have been proposed for cDNA microarray
class comparison experiments (Fig. 3). The reference design is
by far the most widely used because spot-to-spot variation can
be eliminated in a simple way by using ratios or log-ratios. There
are many other advantages to the reference design, which are
explored later in this section; however, its widespread use should
not preclude consideration of other alternatives. The distinctive
feature of a reference design is that expression of a gene for a
sample is measured relative to the expression of that gene at the
same spot on the same array for a reference sample.

The ability o co-hybridize two differentially labeled sampies
to each array may appear to apen a Pandora’s box of experi-
mental design possibilities. However, do we really need to sort
through cvery possible design? The fact that the difference in
gene expression levels between corresponding spots on different
microarrays is a major source of variability makes the arrays
analogous to a blocking factor in agricultural experiments. There
is extensive statistical literature on the design of such experi-
ments (]3,14), but it cannot be applied directly to dual-labeled
microarray experiments, because the error structure for micro-
array data is somewhat different than the agricultural analog. We
have adapted the method for deriving optimal designs in the

Reference Design

Red A, Ay B, 8,

Green R R R R

Balanced Block Design

Red A, B, A, B,

Loop Design

Red (- A, B,

Ay B,

Green B, Ay B, A,

|

Fig. 3. Design diagrams for cDNA microarray class comparison experiments.
Rectangles represent the arrays. A, is sample | from class A, B, is sample |
from class B, A, is sample 2 from class A, and so on. R is the reference sample.
Arrows connect samples repeated on multiple arrays. Red is the CyS dye and
Green is the Cy3 dyc used to label the reference and nonreference samples.
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presence of a blocking factor to microarray experiments (9) and
have established that, for many class comparison studies, the
balanced block design shown in Fig. 3 is optimal. The effect of
spot-to-spot variation in genc expression levels is eliminated in
the balanced block design because each gene's expression level
is measured at the same spot on the same array for samples from
each of the two classes being compared.

The third type of design that might be considered for cDNA
microarrays is one proposed by Kerr and Churchill (75), which
they called a loop design (Fig. 3). Unlike the two other designs,
the loop design requires two aliquots from each RNA sample.
These aliquot pairs connect the arrays and are arranged so that
the connected arrays form a loop pattern.

Class comparisons for the balanced block design and the loop
design are accomplished by fitting an analysis-of-vanance
(ANOVA) model to the logarithm of the background-corrected
channel-specific intensities (9) and fitting a separate model for
each gene. This approach can also be used for analysis of the
reference design, but the results are equal to or very similar to
applying simple Student's 7 tests to the log-ratio measurements.

More claborate designs have been proposed to achieve dif-
lerent experimental objectives (715,16); however, we will Tocus
on the three types of designs presented in Fig. 3 because they are
the most obvious choices for class comparisons. Other types of
designs to consider are presented in the dye bias section.

Which Design Will Provide the Best Class Comparisons?

Balanced block, loop, and reference design experiments can
all provide unbiased estimates of the differences in gene expres-
sion levels between class means, i.e., differences between the
average gene expression levels. However, the three designs are
not equally efficient. The efficiency of a design is based on the
precision of the statistical estimates of the differences in the
class means for “equivalent experiments.” We define two no-
tions of equivalent experiments that we think are appropriate to
many microarray studies: 1) Two experiments are equivalent if
they use the same number of microarrays, and 2) two experi-
ments are equivalent if they use the same (nonreference) samples
and subsamples.

Delinition 1 is appropriate when nonrelerence RNA samples
are abundant and the limiting factor is the amount of time or
resources required to actually run the arrays. The question then
might be “If I can afford to run only 20 arrays, how should I
design the experiment?” Definition 2 is appropriate when the
nonreference RNA resources are scarce and the cost of running
the arrays is less critical. The question then might be “Given that
[ have only these 12 RNA samples, how should I design the
experiment?”

Efficiency comparisons of the three designs for a typical ex-
periment (with biologic variation twice that of the experimental
error variation) calculated from equations presented in Dobbin
and Simon (9) are shown in Fig. 4, A. When the number of
microarrays is limited (equivalence delinition 1), then the bal-
anced block design is substantially more efficient than the ref-
erence or the loop designs. However, the efficiency gain with the
balanced block design comes with some sacrifice, including ro-
bustness and difficulty in clustering samples.

When the nonreference RNA samples are limited (equiva-
lence definition 2), then the efficiencies of the reference and
balanced block design are similar (Fig. 4, B). The loop design is
less efficient than the balanced block design and also sutters
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Fig. 4. Comparison of design efficiencies. A) Comparison of design efficicncies
for the reference (solid bars), loop (hatched bars), and balanced block (open
bars) designs when the number of arrays is fixed. B) Compurison of the refer-
ence (solid bars) and balunced block (open bars) designs when the nonrcference
RNA samples are fixed. Efficicncy is the inverse of the variance of the estimated
difference between the class averages. Some parameters, such as the biologic and
cxperimental variation, were fixed to construct the display. Results are general
in that the specific number of arrays or samples used does not uffect the rela-
tionship between the heights of the histogram bars. The loop design was not
included in the histogram becausc it uscs a different sampling scheme. For
further details about mathematical cquations, refer to online supplemental infor-
mation (sce http//jncicanccrspectrum.oupjournals.org/jnci/content/vol95/
issucl8/indcx.shtml).

from the same lack of robustness. The more robust reference
design appears to be better overall than the other two designs
when nonreference RNA samples are limited. '

What Happens If the Class Definitions Change?

It is not unusual to have different classifications of the
samples or to have corrections in the class of specific samples.
The reference design is more robust to changes in the classifi-
cation scheme than either the balanced block or loop designs.
The reason for this increased robustness is that the relerence
design will remain a reference design with a new classification.
In contrast, the balanced block design will probably lose its
structure (i.e.. it will no longer be a balanced block design). With
regard to a new classification, many arrays may contain two
samples from the same class, which can result in a severe loss of
efficiency. It is also possible that, with a new classification, the
classes cannot be compared with the balanced block design be-
cause they never appear together on any arrays. The loop design
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is also subject to large efficiency loss, because under a new
classification, the classes may appear together only on a small
proportion of arrays.

What If We Also Plan to Perform Class Discovery on the
Samples?

Class discovery is the process of finding a new classification
system for a set of biologic samples on the basis of gene ex-
pression profiles when the class labels are unknown ahcad of
time. Clusler analysis is the mosl appropriale approach Lo use in
class discovery. Of the three designs presented in Fig. 3, effec-
tive class discovery can only be performed for the reference and
loop designs. Individual samples must be compared in class
discovery. The balanced block design confounds spot variability
with comparison of samples on different arrays because no RNA
sample appears on more than one array. The arrows connecting
the samples repeated on different slides in the reference and loop
designs indicate why this type of confounding is not a problem
in these designs—that is, connections can be made between any
two samples on different arrays using the arrows.

The reference design is recommended for class discovery
because cluster analysis can perform substantially better with a
reference design than a loop design (9), particularly as the num-
ber of samples increases. An example of a cluster analysis for 10
and 20 samples, which was originally presented in Dobbin and
Simon (9), is presented in Fig. 5. The data in that figure were
generated from two true clusters (i.e., the data in each cluster
were generated from a different mean gene expression vector).
The number of discrepancies between the clusters found by a
common cluster analysis algorithm and the true clusters for the
relerence and loop designs appear on the x-axis. The reference
design finds the true clusters almost every time, whereas the
loop design performs poorly for 10 samples and much worse for
20 samples. Moreover, the loop design performs even worse
when there are more than 20 samples (9). The difference in
cluster analysis performance is so dramalic thal it will usually
offset any relatively moderate differences in efficiency and
power between the loop and reference designs. For this reason,
we recommend using the reference design for class discovery
experiments.

What Is Sacrificed If a Reference Design Is Not Used?

Most investigators are familiar with the reference design, and
they may want to know what will be sacrificed if an aliernative
design such as the balanced block design is used. In addition to
the issues discussed in the last two questions, there are other
considerations worth mentioning. {) The data from a balanced
block or loop design may be more difficult to analyze than data
from a reference design. Most microarray analysis packages as-
sume a reference design has been used, so analyzing the experi-
ment may require switching to different software. 2) The bal-
anced block or loop design may be more diflicull to devise than
the reference design. If there are many groups being compared
or many possible ways to group the samples, designing the study
so that all comparisons of interest can be made may be non-
trivial. 3) It may not be possible to compare data from different
microarray experiments or prospective data that is analyzed by
microarrays at different times. If a common reference sample is
used for all experiments, then there is some foundation for the
comparnison of samples collected over time or samples analyzed
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Fig. 5. Comparison of cluster analysis performance. Comparison of cluster
analysis performance for the reference (solid bars) and loop (hatched bars)
designs on A) 10 samples and B) 20 samples. Simulated data comes from two
true (each with a different mean gene expression) clusters. One thousand genes
were present in the clusters, 20 of which were differentially expressed. x-axis is
the number of discrepancies between true clusters and closest matches. y-axis is
the frequency of the number of discrepancies observed in 200 simulations.
Simulation was based on a prostate cancer dataset [see Dobbin and Simon (9) for
dctails].

in different experiments, a situation that is generally not possible
for balanced block or loop designs.

DyE Bias
What Is the Source of Dye Bias?

Cy3 and CyS have different efficiencies for their labeling
ability and detection characteristics. Background correction and
normalization adjust for consistent dye-related differences that
are not gene-specific. For example, median centering of arrays is
meant to eliminate bias that is common across all genes, and
intensity-dependent normalization, such as loess smonthers, ad-
just for bias related to overall spot intensity (/5). Gene-specific
dye bias is displayed by genes that do not fall into the overall
pattern of the dye effect that characterizes the majority of genes.
This bias may persist even after normalization.

Does Gene-Specific Dye Bias Exist?

To our knowledge, there has been no definitive study char-
acterizing the nature or magnitude of gene-specific dye bias. In
addition, it is not clear that gene-specific dye bias is the same
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from one experiment to another or from one laboratory to an-
other, but it is of general concern among microarray investiga-
tors. Many studies (3,/8-22) have been designed to guard
against gene-specific dye bias, whereas others (8,17,23-25) have
made gene-specific dye bias adjustments to their statistical
analysis. Some studies have attempted to eliminate gene-specific
dye bias through technical innovations in labeling (7,23,26,27).
Although novel labeling procedures such as indirect labeling
appear (0 reduce gene-specific dye bias, it is nol clear thal they
eliminate dye bias.

We have obsecrved gene-specific dye bias and provide, as an
example, one reference design experiment involving transgenic
mice (Green J: unpublished data). Nine distinct RNA samples
from nine mice were examined, and three of these samples were
run twice, once with each dye label (i.c., once with the reference
labeled with Cy3 and once with the reference labeled with Cy5),
for a total of 12 arrays. The intensity data were first background-
adjusted to eliminate stray fluorescence signals from the slide
and normalized to make the measurements on different arrays
comparable. We then performed an ANOVA on the individual
channel log intensitics. An ANOVA mode! was fit separately o
data for each of 8832 genes. In the ANOVA approach, the dye
bias effects are called dye-by-gene interactions. Overall, we ob-
served that there were many genes with a statistically significant
dye-by-gene interaction (P<.001), but these effects tended to be
small. The size of these effects on the base 2 log-scale is shown
in Fig. 6. The average absolute value of the gene-by-dye inter-
actions was 0.18 (standard deviation = 0.16), corresponding to
a 1.13-fold change in gene expression levels. Only 10 of the
8832 genes had dye bias that corresponded to a twofold or
grealer change in géne expression levels. Tseng et al. (8) have

presented similar results. Although dye bias appears to be coni- -

mon in these direct-labeled cDNA experimens, it appears to be
fairly small in magnitude.

When Is Gene-Specific Dye Bias an Issue?

Gene-specific dye bias is a potential issue when comparisons
are made between samples labeled with different dyes. Hence, it
is not generally a problem in reference design experiments be-
cause they compare classes of nonreference RNA samples. Be-

05
Dye Contrast Estimates

05 00

W e

Fig. 6. Fxtimated dye hiax contrast that was not corrected for in normalization.
Estimates for dye bias were based on 8832 penes from a transgenic mouse
experiment. Dita were ransformed to base 2 logarithms so that an estimated dye
bias comtrfst ‘of size | comesponds 1o a twofold change in gene expression.
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cause all of the nonreference RNA samples are labeled with the
same dye, the dye bias between the nonreference and reference
intensities does not become a bias in comparing classes. Gene-
specific dye bias is a potential problem, however, if nonrefer-
ence RNA samples are compared with a common reference
RNA sample. Gene-specific dye bias is also an issue for bal-
anced block and loop designs. When gene-specific dye bias is an
issue, its magnitude must be estimated for each gene, and an
explicit adjustment (o the slalistical analysis must be made (o
ensure that class comparisons are unbiased. For example, in
ANOVA analysis, the adjustment involves adding terms repre-
senting gene-specific dye bias to the statistical model.

How Should I Design an Experiment to Eliminate Dye
Bias From the Class Comparisons?

Dye bias can be eliminated from the class comparisons in two
ways: 1) by labeling all samples from all classes being compared
with the same dye, and 2) by labeling half the samples with one
dye and half the samples with the other dye for each class being
compared.

Reference designs usually use strategy | to eliminate dye
bias. Other designs, such as balanced block designs, often use
strategy 2. Labeling exactly half the samples of a class with a
dye is preferable to labeling some other fraction because it pro-
duces more accurate class comparisons and is simpler to ana-
lyze. If there is an odd number of nonreference RNA samples
from each class (e.g., seven), then strategy 2 would not be able
to be followed exactly (e.g., three samples labeled with red dye
[Cy35] and four samples labeled with green dye [Cy3]). Dye bias
can still be eliminated from such a design, but it requires a more
complex weighted analysis to adjust for the dye asymmetry.

Another approach that is sometimes used to eliminate dye
bias is 10 run 4 set of arrays with the reference in both channels
to identify the genes that display dye bias. These genes could
then be flagged as suspect if they show up as statistically sig-

" nificant in the class comparisons.

Some investigators (12) have used the existence of dye bias
as a reason to run 2ll sample pairs twice, once with each dye, to
eliminate the bias. However, we (10} have shown that complete
dye swapping is an inefficient way to adjust for the dye bias
correction. If each sample is run twice in a fixed number of
arrays, then the effective sample size is cut in half. The reference
design or balanced block design will provide unbiased-estimates
of the class comparison without‘running any sample pairs twice.

Hente, the complete dye-swgpping suategy, ¢ Ialves
" the sam size and reduces e Efiefehdy ain as’
far as class ¢co s are concerned. Balancing the classes

with respect to the dyes is more efficient than dye swapping of
individual samples for eliminating dye bias.

- .

How Will Class Discovery Results Be Affected by Dye
Bias?

Dye bias generally will not have a substantial impact on class:
discovery, although it may be necessary to make an explicit dye
bias adjustment. In this commentary, we have focused on class
comparison experiments in which we already havé class labels
for the samples. Class discovery can be performed on all the
samples or on only the samples within a particular class. Class
discovery using cluster analysis on all of the samples is some-
times performed to verify that the resulting clusters fecapitulate
the known classes (28,29). In addition, cluster analysis within a
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presence of a blocking factor to microarray experiments ( 9) and
have established that, for many class comparison studies, the
balanced block design shown in Fig. 3 is optimal. The effect of
spot-to-spot variation in gene expression levels is eliminated in
the balanced block design because each gene's expression level
is measured at the same spot on the same array for samples from
each of the two classes being compared.

The third type of design that might be considered for cDNA
micruarrays is one proposed by Kerr and Churchill (15), which
they called a loop design (Fig. 3). Unlike the two other designs,
the loop design requircs two aliquots from each RNA sample.
These aliquot pairs connect the arrays and are arranged so that
the connected arrays form a loop pattern.

Class comparisons for the balanced block design and the loop
design are accomplished by fitting an analysis-of-variance
(ANOVA) model to the logarithm of the background-corrected
channel-specific intensities (9) and fitting a separate model for
each gene. This approach can also be used for analysis of the
reference design, but the results are equal to or very similar to
applying simple Student’s ¢ tests to the log-ratio measurements.

More claborate designs have been proposed to achieve dif-
lerent experimental objectives (15,76); however, we will focus
on the three types of designs presented in Fig. 3 because they are
thc most obvious choices for class comparisons. Other types of
designs to consider are presented in the dye bias section.

Which Design Will Provide the Best Class Comparisons?

Balanced block, loop, and reference design experiments can
all provide unbiased estimates of the differences in gene expres-
sion levels between class means, i.e., differences between the
average gene expression levels. However, the three designs are
not equally efficient. The efficiency of a design is based on the
precision of the statistical estimates of the differences in the
class means for “equivalent experiments.” We define two no-
tions of equivalent experiments that we think are appropriate to
many microarray studies: 1) Two experiments are equivalent if
they use the same number of microarrays, and 2) two experi-
ments are equivalent if they use the same (nonreference) samples
and subsamples.

Definition 1 is appropriate when nonreference RNA samples
are abundant and the limiting factor is the amount of time or
resources required to actually run the arrays. The question then
might be “If 1 can afford to run only 20 arrays, how should I
design the experiment?” Definition 2 is appropriate when the
nonreference RNA resources are scarce and the cost of running
the arrays is less critical. The question then might be “Given that
I have only these 12 RNA samples, how should I design the
experiment?”

Efficiency comparisons of the three designs for a typical ex-
periment (with biologic variation twice that of the experimental
error variation) calculated from equations presented in Dobbin
and Simon (9) are shown in Fig. 4, A. When the number of
microarrays is limited (equivalence definition 1), then the bal-
anced block design is substantially more efficient than the ref-
erence or the loop designs. However, the elliciency gain with the
balanced block design comes with some sacrifice, including ro-
bustness and difficulty in clustering samples.

When the nonreference RNA samples are limited (equiva-
lence definition 2), then the efficiencies of the reference and
balanced block design are similar (Fig. 4, B). The loop design is
less efficient than the balanced block design and also sutters
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Fig. 4. Comparison of design cfficiencics. A) Comparison of design efficiencies
for the reference (solid bars), loop (hatched bars), and bulanced block (open
bars) designs when the number of amays is fixed. B) Comparison of the rcfer-
ence (solid bars) and balanced block (open bars) designs when the nonrcfcrence
RNA samples are fixed. Efficiency is the inverse of the variance of the estimated
difference between the class averages. Some parameters, such as the biologic and
experimental variation, were fixed to construct the display. Results are general
in that the specific number of arrays or samples used does not affect the rela-
tionship between the heights of the histogram bars. The loop design was not
included in the histogram becausc it uses a different sumpling scheme. For
further details about mathematical cquations, refer to online supplemental infor-
mation (see http/fjncicanccrspectrum.oupjournals.org/jnci/content/vol95/
issucl8/indcx.shtml).

from the same lack of robustness. The more robust reference
design appears to be better overall than the other two designs
when nonreference RNA samples are limited. '

What Happens If the Class Definitions Change?

It is not unusual to have different classifications of the
samples or to have corrections in the class of specific samples.
The reference design is more robust to changes in the classifi-
cation scheme than either the balanced block or loop designs.
The reason [or this increased robustness is that the reference
design will remain a reference design with a new classification.
In conuast, the balanced block design will probably lose its
structure (i.e., it will no longer be a balanced block design). With
regard to a new classification, many arrays may contain two
samples from the same class, which can result in a severe loss of
efficiency. It is also possible that, with a new classification, the
classes cannot be compared with the balanced block design be-
cause they never appear together on any arrays. The loop design
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particular class is sometimes used to identify novel subclasses
(28,30,31).

In the previous section we discussed two designs for class
discovery—the reference design and the loop design. Dye bias
generally will not affect class discovery for the reference design
because al] the samples being clustered are labeled with the same
dye. The effect of dye bias on cluster analysis results can also be
eliminated from the loop design by making a dye bias adjust-
ment; however, we do not recommend this design because of ils
poor cluster analysis performance, as discussed in the previous
section. '

How Can Dye Bias Be Eliminated From Comparisons
Between the Reference and the Nonreference Samples in a
Reference Design?

One can eliminate dye bias from the comparisons between the
relerence and nonrelerence samples by including dye-swapping
arrays in the design of the experiment. Consider a reference
design experiment used to study a collection of tumor samples,
where the reference sample consists of a mixture of normal
tissue. A fairly common experimental situation is one in which
the primary goal is to perform class discovery on the tumors and
the secondary goal is to compare the tumors with the normal
reference to identify potential tumor markers (32,33). Because
the normal reference sample is labeled with a different dye than
the tumor samples, there is potential for dye bias in the com-
parisons. In this case, we recommend appending the basic ref-
erence design with just enough dye-swapping arrays to allow for
good statistical inference for the comparison with the reference
sample.\This comparison is made by ANOVA and is adjusted for
dye bhias; an example of such a design is shown in Fig. 7. Note,
we do not recommend reversing all the arrays in this situation,
because running all samples both forward and backward with the
reference sample substantially reduces the efficiency of the tu-
mor versus normal comparison (for a fixed number of arrays)
and hinders the ability of the cluster analysis to identify true

W1

Aray 2 Amay k Armay n

Red | S, S, Sy S,

e | - " -
Ar;*ay‘ n+1 Array ne2 Array nek

Green | Sy S, S,

R | R R | R

Fig. 7. Dye-swapping reference design for clustering and comparison of non-
reference with reference RNA samples. Rectangles represent the arrays. S, is
sample | from the nonreference samples, S, is sample 2 from the nonreference
samples, and so on up to some numbered sample n (S,). R is the reference
sample. Of the n + k arrays, k is run as a dye swap on repeated samples. The first
row of arrays represents the forward arrays and second row of arrays represents
the reverse arrays. The reference sample is dyed green (Cy3) on the forward
arrays and red (CyS5) on the reverse armays. The resulting fixed-effects analysis
of variance table has k -1 degrees of frecdom for error.
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groupings in the gene expression data. Running dye-swapping
arrays on all samples essentially sacrifices the primary goal of
discovering a new taxonomy for the secondary goal of identi-
fying potential markers; even for the secondary goal, complete
dye swapping is inefficient in most cases.

SAMPLE SIZE

How Many Biologic Samples Are Needed for a Reference
Design?

Suppose we want to test whether a particular gene is differ-
entially expressed in two classes. To test the null hypothesis that
there is no difference in gene expression levels at the a signifi-
cance level, we want to have 1 — B power to detect a difference
of & in the class mean log-ratios. Let o be the standard deviation
of the log-ratios within each class and n be the total number of
arrays used, i.e., n/2 arrays for each class. Then the usual sample
size formula (34), based on an assumption of normal distribu-
tions within the classes, would be;

42y o2t ZI:E)z
(8/0)?

The notation z,_, indicates the 100(1 — «/2)™ percentile of
the standard normal distribution. When the samples sizes are
small, the normal approximation of the test statistic may be poor,
and an ileralive computational procedure based on Lhe ¢ distri-
bution can be used to compute the sample size. For example, we
have observed an o = .50 for human cancer data using log base
2 intensities on cDNA microarrays and a reference design, and
we have observed v = .25 with data from inbred strains on
transgenic mice (9). A 8 = | corresponds to a twofold differ-
ence in gene expression. Setting a = ,001 guards against an
excessive number of [alse-positive genes. For example, with
10000 genes, o« = .001 results in an average of |0 false-positive
genes, Setting B = .05 provides 95% probability of detecting a
twofold change in gene expression. The resulting sample size is
then 30 total samples for o = .50 and 12 total samples for o =
.25. Because of the small sample sizes, we have used r distri-
bution percentiles in both cases.

What Sample Size Should Be Used for a Balanced Block
Design?

Suppose that two classes will be compared and that the
samples from each class are independent. Again, we want to test
the null hypothesis that there is no diflerence in gene expression
levels hetween the classes at the « significance level and to have
1 — B power to detect a difference of d in the class means. Let
7 be the standard deviation of the log-ratios. In the balanced
block design, each log-ratio involves two independent samples,
one from each class. The 7 parameter will tend to be larger than
the v parameter in the reference design because additional bio-
logic variation is displayed in the log-ratios. Let n be the total
number of arrays used, i.e., n arrays with n samples trom each
class. The sample size formula would now be:

_ (Zy_qnt 21—3)2
(5/7)°

Because the reference sample appears on each array in the
reference design, variabilily among the log-ratios will be smaller
tor a reference design than for a balanced block design. We provide
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on-line supplemental material (see http//jncicancerspectrum.
oupjournals.org/jnci/content/vol95/issue18/index.shtml for de-
tails) that shows how prior data from a reference design experi-
ment can be used to estimate 7. For example, using our estimated
standard deviation of the log-ratios from the reference design
that used human samples (o = .50) and the same parameter
settings that we used for the reference design sample size cal-
culation (8 = 1, a = .001, B = .05) results for 7 = .67, the
sample size required changes rom 30 arrays under the reference
design to 17 arrays under the balanced block design. The refer-
ence design uses 30 arrays from 30 total samples, 15 from each
class, whereas the balanced block design uses 13 fewer arrays
but requires 17 samples from each class, or a total of 34 samples.
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