

#### Content:

- > Introduction
- > How do we measure antibiotic resistance ?
- > What do we measure ?
- > Mastitis pathogens and trends in antibiotic resistance

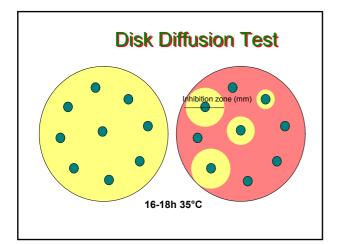
### Facts:

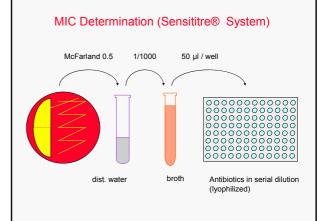
- $\checkmark$  Mastitis is one of the most important diseases in dairy cattle
- ✓ Mastitis is an infectious disease, usually caused by bacteria
- ✓ Mastitis is the single most common cause for antibiotic treatment in dairy cattle

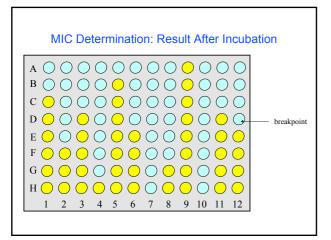
#### Use of Antibiotic Udder Preparations in Switzerland Results of a Market Research Study 1993

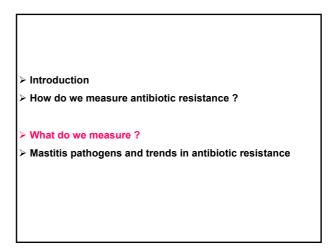
| Intramammaries                                      | Amount    |
|-----------------------------------------------------|-----------|
| Lactation products:                                 |           |
| syringes (pieces)                                   | 1 264 000 |
| <ul> <li>suspensions in bottles (liters)</li> </ul> | 10 500    |
| Dry cow products:                                   |           |
| • syringes                                          | 1 642 000 |

CH dairy cow population in 1993: 805 000


### Introduction


- > How do we measure antibiotic resistance ?
- > What do we measure ?
- > Mastitis pathogens and trends in antibiotic resistance


### Antibiotic Susceptibility Testing


- 1. Agar Diffusion Test (Disc Diffusion Method)
- 2. Determination of the Minimal Inhibititory Concentration (MIC) or the Minimal Bacteriocidal Concentration (MBC)
- 3. Other Methods (e.g. Impendance)

### → → → same basic principle









# Principle of Antibiotic Susceptibility Testing

Determination of the minimal concentration of a specific antimicrobial substance which is needed to inhibit the growth of a specific bacterial strain or to kill it.

A bacterial strain is considered to be resistant, "if the concentration of a specific antimicrobial substance to kill or inhibit its growth is higher than achievable in vivo". (Normenausschuss Medizin DIN 1979)

# The Breakpoint Problem

Achievable concentration in vivo:

- where? (blood, milk, tissue)
- different pharmacokinetics (man vs. animal, cow vs. cat)
- mode of treatment (systemic vs. intramammary)



- > How do we measure antibiotic resistance ?
- > What do we measure ?
- > Mastitis pathogens and trends in antibiotic resistance

### Key questions of the NMC study:

- After 4 decades of antibacterial drug use in dry cow and lactation therapy, does scientific data exist to demonstrate emerging antimicrobial resistance in mastitis pathogens?
- 2. Does scientific data exist that supports the need for systematic change in dry cow therapy to prevent the development of resistance of mastitis pathogens antibacterial drugs within a herd?

### **Overview of Literature**

Comparison of resistance data from different resistance studies: Mission impossible !

- > different techniques, different laboratory skills
- different breakpoints
- Iack of species differentiation
- > different geographical regions

### Resistance Monitoring of Mastitis Pathogens in Switzerland

- ✓ the same laboratory, the same people
- ✓ the same technique (MIC determination)
- ✓ the same breakpoints
- ✓ bacterial isolates from the same regions of Switzerland

|                                     | Survey 1980-1998                   |        |      |      |                                                   |      |      |           |  |
|-------------------------------------|------------------------------------|--------|------|------|---------------------------------------------------|------|------|-----------|--|
|                                     | S. aureus<br>(% resistant strains) |        |      |      | Streptococci (non agal.)<br>(% resistant strains) |      |      |           |  |
| Antibiotic                          | 1980                               | 1986   | 1992 | 1998 | 1980                                              | 1986 | 1992 | ,<br>1998 |  |
| Penicillin G                        | 47.8 *                             | 33.3 * | 9.4  | 9.0  | 0.5                                               | 0    | 0    | 0.1       |  |
| Cloxacillin                         | 0                                  | 0      | 0.4  | 0    | 5.6                                               | 9.7  | 10.1 | 8.5       |  |
| Cefoperazon                         | 0 **                               | 0 **   | 0    | 0    | NT                                                | 3.2  | 5.8  | 4.3       |  |
| Spiramycin                          | 0.2                                | 0.4    | 0.4  | 0.4  | 1.2                                               | 6.8  | 4.8  | 3.4       |  |
| Chloramphenicol                     | 5.3                                | 2.0    | 2.9  | 3.1  | 1.8                                               | 4.3  | 0.5  | 2.8       |  |
| Neomycin                            | 0.2                                | 0.4    | 0.4  | 0.5  | NT                                                | NT   | NT   | NT        |  |
| Amoxycillin<br>(Clavulanate potent) | NT                                 | NT     | 0    | NT   | NT                                                | NT   | NT   | NT        |  |
| Rifamycin                           | NT                                 | NT     | 0    | 0    | NT                                                | NT   | 6.9  | 7.4       |  |
| Gentamicin                          | NT                                 | 0      | 0    | 0.1  | NT                                                | 1.4  | 3.2  | 2.7       |  |
| Norfloxacin                         | NT                                 | NT     | NT   | NT   | NT                                                | NT   | 12.7 | 14.8      |  |

| 3               | urvey 1980-                        | 1998  |       |      |  |  |  |
|-----------------|------------------------------------|-------|-------|------|--|--|--|
| Antibiotics     | Coliforms<br>(% resistant strains) |       |       |      |  |  |  |
|                 | 1980                               | 1986  | 1992  | 1998 |  |  |  |
| Ampicillin      | 16.0                               | 26.8  | 23.3  | 24.2 |  |  |  |
| Cefoperazon     | 3.7*                               | 9.8*  | 2.1   | 5.8  |  |  |  |
| Chloramphenicol | 12.4                               | 14.7  | 6.2   | 3.2  |  |  |  |
| Neomycin        | 13.4                               | 12.9  | 10.4  | 11.8 |  |  |  |
| Polymyxin       | 0                                  | 2.2** | 2.1** | 0.3  |  |  |  |
| Gentamicin      | 0                                  | 0     | 0.5   | 1.1  |  |  |  |
| Norfloxacin     | NT                                 | NT    | 0     | 0    |  |  |  |
| Cotrimoxazol    | 3.7                                | 8.9   | 6.7   | 5.9  |  |  |  |

# Conclusion

(based on an *overall appreciation* of resistance data in literature)

### **Key Question 1**

After 4 decades of antibacterial drug use in dry cow and lactation therapy, does scientific data exist to demonstrate emerging antimicrobial resistance in mastitis pathogens?



### **Key Question 2**

Does scientific data exist that supports the need for systematic change in dry cow therapy to prevent the development of resistance of mastitis pathogens antibacterial drugs within a herd?

NO

