Profundizar el conocimiento y los efectos prácticos de la luz y la intercepción lumínica en la productividad de las plantas frutales caducas

Mauricio Frías Giaconi
Ingeniero Agrónomo
Consultor Privado

Datos pertinentes:

- Lugar: Hort+Research,
 Estación Experimental de
 Havelock North, Hawke's
 Bay, Nueva Zelandia
- Contacto: Dr Jens Wünsche.
- Proyecto: cofinanciamiento por FIA bajo el código FIA-FP-V-2002-1-A-003.
- Fecha: 25 de Abril al 18 de mayo del 2003

Los Problemas en Chile, visión personal:cruza todas las especies

- SOMBREAMIENTO.
- IRRIGACIÓN.
- NUTRICIÓN.
- VARIEDADES.

Sombreamiento:

- Portainjertos.
- Densidad de plantación, relaciones.
- Densidad de vegetación.
- Manejo, forma de la copa, ángulos.
- Orientación hileras.
- Altura plantas.

Portainjertos: estimación personal.

- Manzanos:
 - ◆ 80 % semilla.
 - ◆ 15 % clonales semivigorosos
 - ◆ 5 % clonales semienanos.
- Perales:
 - ♦ 85 % semilla.
 - ◆ 10 % betulaefolia + calleriana.
 - ◆ 5 % clonal membrillero (BA 29 Quince C.)

Evolución de las variedades y densidades de Mz en Chile

Estimación personal

Período	Variedad	Hábito	Portainjerto	Dista	ancia	Densidad	Edad	Situación	Problemas
				EH	SH	pl/há	Actual	Actual	
1950 - 1975	Richared	Estándar	Franco	8	8	156	30 a 40	Arranca	color, productividad
1975 - 1980	Red King Oregon	Endardado	Franco	6	4	417	25 a 30	Arranca y continúa	color, productividad
1980 - 1990	Red King Oregon	Endardado	Franco	5	3	667	15 a 20	Arranca y continúa	color, productividad
	Red Chief	Endardado	Franco	5	3	667	15 a 20	Continúa	productividad
1990 - 1995	Gala	Estándar	Franco	5	3	667	8 a 13	Continúa	color, productividad
				4,5	2,5	889	8 a 13	Continúa	color, productividad
				4,5	2,5	889	8 a 13	Continúa	
1995 - 2000	Royal Gala	Estándar	MM 106	4,5	2,5	889	3 a 8	Continúa	
			EM 26	4	2	1250		Continúa	
2000 adelante	Royal Gala	Estándar	EM 9	3,5	1,5	1905		Continúa	

Implicancias prácticas:

■VIGOR ALTO → SOMBRA

INEFICIENCIAS

EXCESO DE INTERVENCIÓN

CÍRCULO VICIOSO

CONTROL DEL VIGOR ????

Mauricio Frias G. / Ingeniero Agrónomo / Consultor Privado / mauriciofrias@123.cl

Mauricio Frias G. / Ingeniero Agrónomo / Consultor Privado / mauriciofrias@123.cl

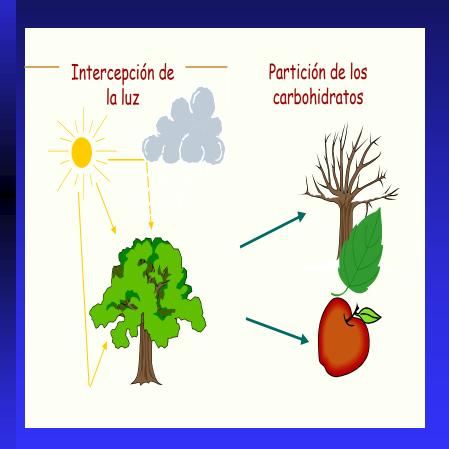
Mauricio Frias G. / Ingeniero Agrónomo / Consultor Privado / mauriciofrias@123.cl

Mauricio Frias G. / Ingeniero Agrónomo / Consultor Privado / mauriciofrias@123.cl

>No nutrición.????? >No riego ????????

LA ÚNICA ALTERNATIVA ESTABLE ES.....

C A R G A:


Mauricio Frias G. / Ingeniero Agrónomo / Consultor Privado / mauriciofrias@123.cl

ÚNICA ALTERNATIVA ESTABLE:

- - ◆ VIGOR CONTROLADO.
 - **♦** PORTAINJERTO.
 - ♦ VARIEDAD.
 - ♦ DENSIDAD.
 - ♦ COSECHA DE LUZ: Tema Pasantía
 - ♦ *MANEJO*

COSECHA DE LA LUZ:

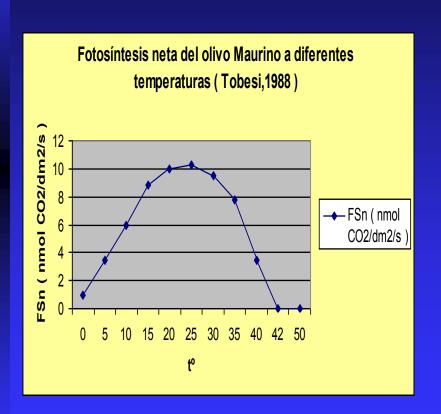
Porqué la luz es importante ?:

Porque la producción de un huerto (kilos de frutas, hojas, dardos y brotes, raíces y tronco, reservas), está relacionado directamente con la cantidad de luz que intercepte, que capture (aunque no exclusivamente (CO₂, O₂,H₂O,T^o,etc).

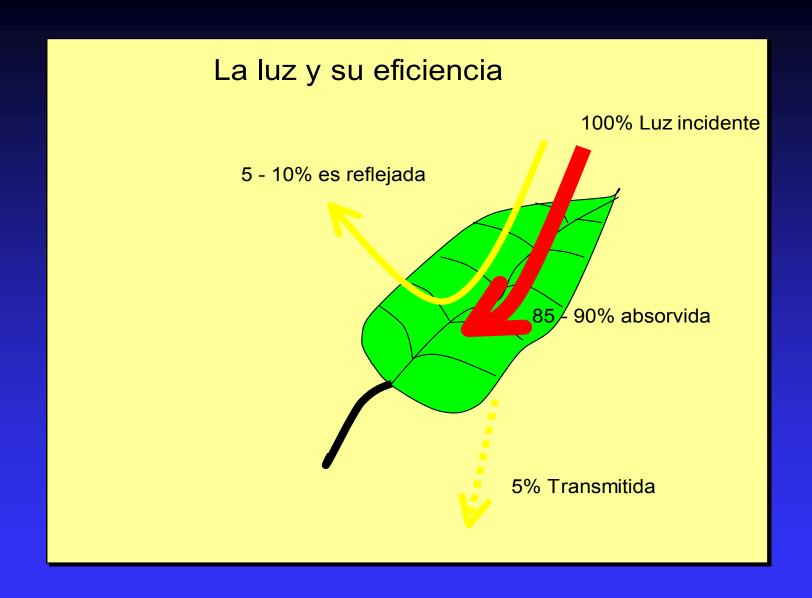
Porqué la luz es importante:

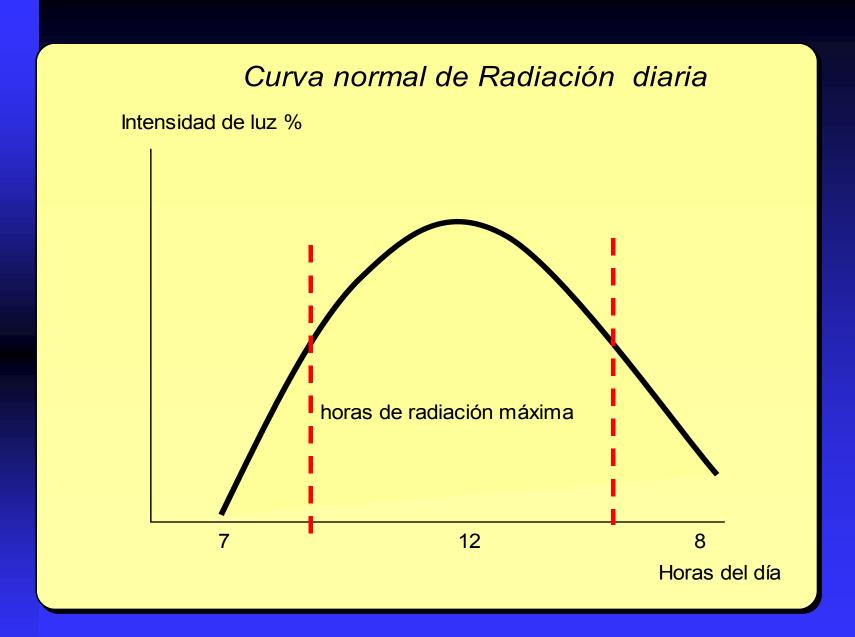
- Porque es básico para el proceso de fotosíntesis.
- Porque es básica para la formación del color en muchas especies. El color se forma con carbohidratos manufacturados en el proceso de fotosíntesis.
- ATENCIÓN: algunas antocianinas se forman por la radiación directa sobre el fruto .
- Para color, no menos del 50 al 70% de la luz máxima es requerida.

•FOTOSÍNTESIS:


FOTOSÍNTESIS: la ecuación

$$CO_2 + H_2O$$
 \longrightarrow $CH_2O + O_2 + Energía$


Que es fotosíntesis?:


- Es el proceso mediante el cual se fija químicamente el dióxido de carbono, CO₂, desde el aire hasta formar carbohidratos.
- Este proceso se realiza en los cloroplastos de todo tejido verde.
- El carbohidrato obtenido es usado para producir y almacenar energía, para la formación de los "ladrillos " del crecimiento.
- Se requiere un mínimo de 30 al 50% de la luz incidente para máxima fotosíntesis.

La actividad fotosintética:

- El rango óptimo se sitúa entre los 20 y los 30° C (Forsyth y Hall,1965).
- Siempre baja la FN desde 35°C y se detiene a 45°C.

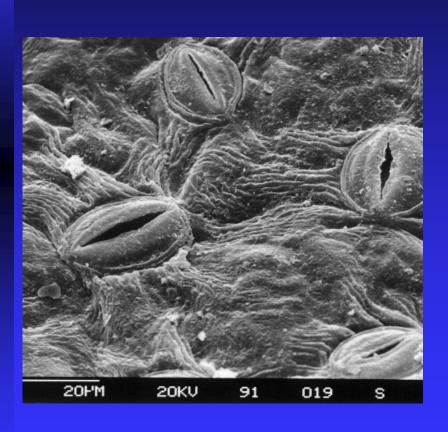
Aportes de carbohidratos:

- Hojas de dardos:
 - Fundamentales para:
 - Inicio crecimiento
 - División celular
 - Cuaja

- Hojas de brindillas y brotes:
 - ◆ Desde 20 40 días en adelante, son las proveedoras para:
 - Término de la división celular.
 - Elongación celular.
 - Vida diaria.
 - Raíces, Reservas

Eficiencia de uso de la luz:

 Está directamente relacionada la cantidad de CO2 asimilado por mmol de FF con la temperatura.

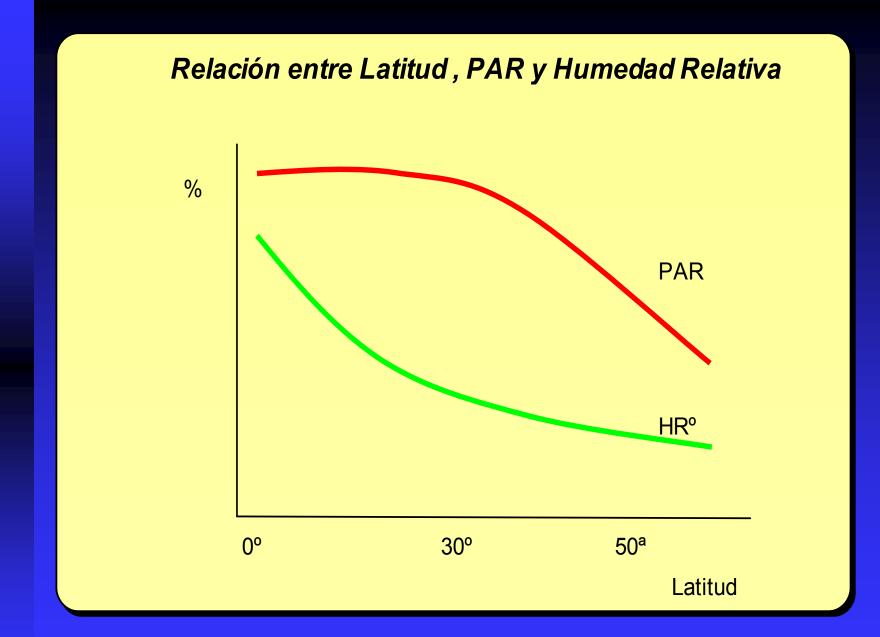

Tasa fotosintética:

- En Mz, las hojas de brotes tienen, a fin del verano, una FS neta 3 veces mayor que las hojas de dardos (mas viejas).
- Los árboles de Mz con fruta transpiran mas agua que los sin fruta a igual IAF.

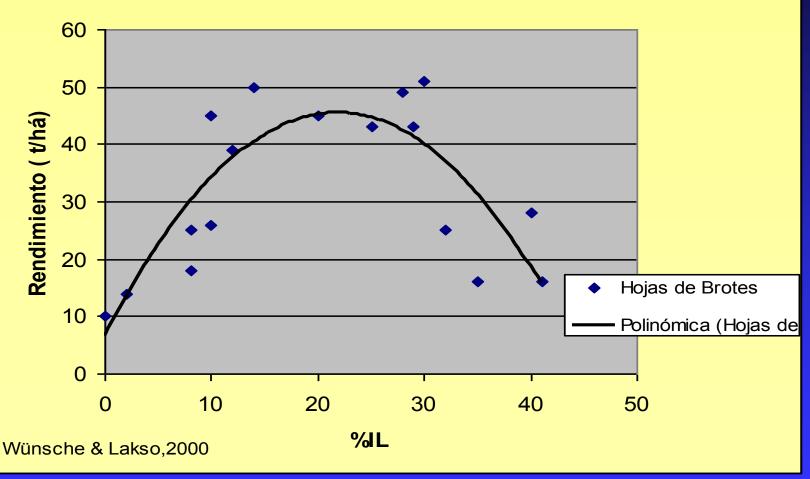
Energía recibida:

- En plantas tipo C3, la diferencia en cantidad de materia seca acumulada está mas dada por la diferencia en intercepción de luz, que por la capacidad de conversión de ésta.
- En Gil,G; según Monteith,1981

Tasa fotosintética:


- El intercambio de gases que regula este factor, depende absolutamente de la apertura de los estomas
- Varía con la edad de la hoja, siendo máxima en guindo a los 40 días con 80% expansión y 15 a 30 días después de máximo tamaño en Mz.

Actividad y utilidad de dos diferentes tipos de brotes, Brindillas y Chupones en árboles del tipo Delicious, pleno verano (Barritt, 1982)


Tipo brote	Area foliar	Largo	Fotosíntesis		
	cm2	cm		Por brote mg CO2 por	
			-	brote/hora	
Brindilla	704	43	21	148	
Chupón	512	72	6	34	

La respiración:

- Se realiza en oscuridad.
- Realizada por hojas, tallos y raíces puede hacer perder una parte importante de la Fotosíntesis Neta (FN), pérdida que se cuadruplica a 25°C con respecto a 15°C.

Relación Entre Rendimiento/há e Intercepción Lumínica,hojas brotes

Importancia relativa de la superficie de los diferentes tejidos de Mz en dos sistemas de conducción:

	Árboles en dormancia (%)			
Forma árbol	Tronco	Ramas	Brotes	
Eje central	2,1	19,2	78,7	
Seto/ Espaldera	6,8	41,2	52,0	
Do Harrington et al. 1081				

De Herrington et al.,1981

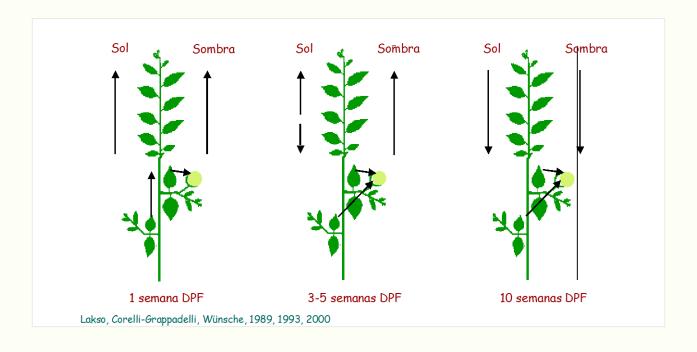
	Árboles pleno follaje (%)			
Forma árbol	Tronco	Ramas	Brotes	Hojas
Eje central	0,5	3,5	13,1	83,0
Seto / espaldera	0,2	1,5	5,3	93,0

De Herrington et al.,1981

Distribución porcentual del área de las hojas según orígen:

- Desde dardos con fruta: 15 25%
- Desde dardos sin fruta: 30 40%
- Desde brotes

30 - 40%



Mauricio Frias G. / Ingeniero Agrónomo / Consultor Privado / mauriciofrias@123.cl

Partición de los Carbohidratos

Partición de los carbohidratos desde hojas de dardos, brotes terminales y chupones como aporte al crecimiento de la fruta, según las condiciones de iluminación

•EFICIENCIA FOTOSINTÉTICA: Repartición de carbohidratos.

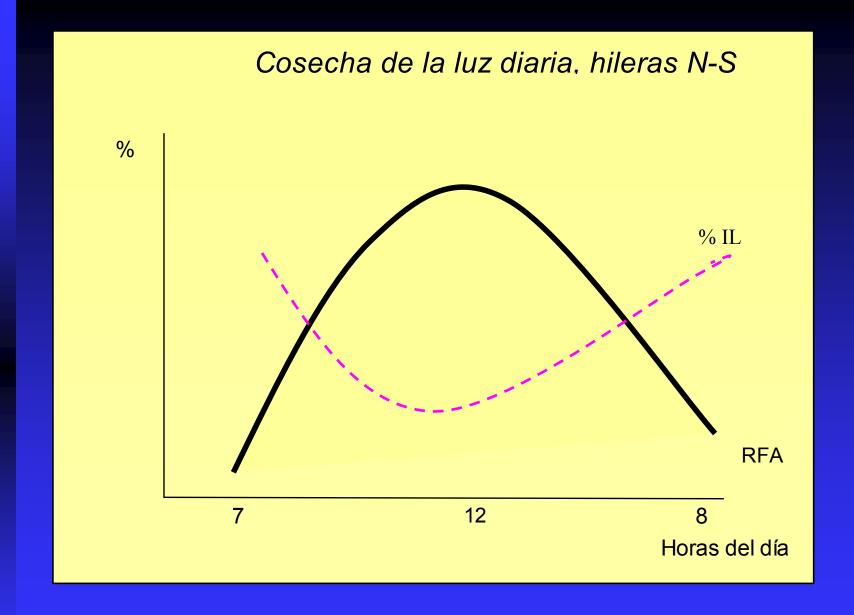
Utilización de la radiación total anual 40

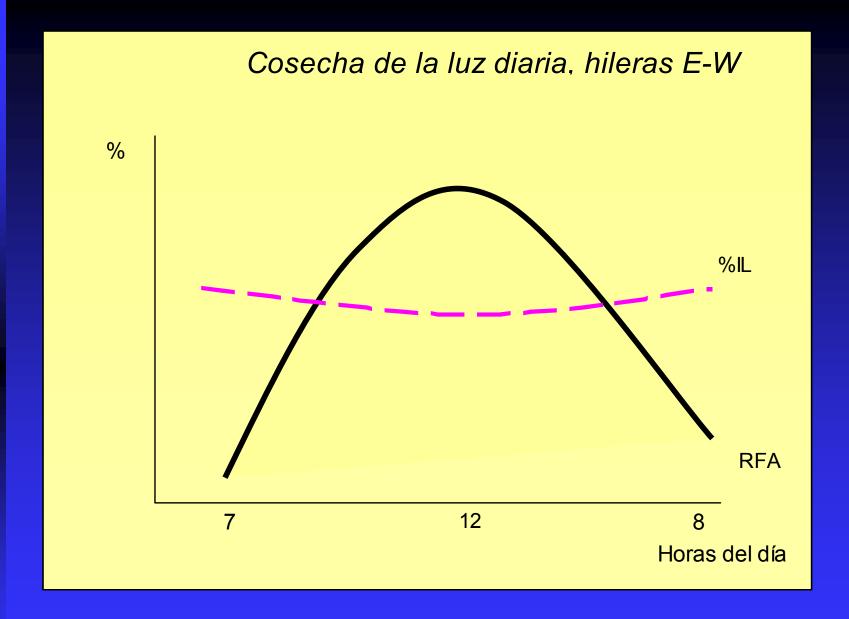
Limitantes	Factores Limitantes
Luz recibida	100%
50% PAR	50% Clima
75% Período de crecimiento	37,50% Zona
40% Promedio LI	15% Diseño de huerto
5% Eficiencia PN	0,75% Fotosintesis
35% Respiración	0,26%
60% ïndice de cosecha de luz	0,16% Repartición
J.Wunsche,2002	40 t/há

Utilización de la radiación total anual 60

Limitantes	100% Factores Limitantes
50% PAR	50% Clima
75% Período de crecimiento	37,50% Zona
60% Promedio LI	23% Diseño de huerto
5% Eficiencia PN	1,13% Fotosintesis
35% Respiración	0,39%
60% índice de cosecha de luz	0,24% Repartición
J.Wunsche,2002	150,0%
	60 t/há

•INTERCEPCIÓN LUMÍNICA:


Que se entiende por Intercepción Lumínica:


Es la porción de la luz solar que es interceptada por todas las partes de la planta, y que en función directa de la cantidad, actúa como cofactor fundamental del proceso fotosintético y de otras actividades fisiológicas propias de los vegetales.

Qué captura la luz?: La estructura

- En huertos viejos y voluminosos, hasta 60% es la estructura.
- En huertos jóvenes, con menos estructura permanente, puede llegar hasta el 25 –30%
- Mientras mayor proporción sea capturada por el follaje, mejor, mas efectivo.

Porqué atrapar la luz presenta problemas?:

- Porque la planta crece en sentido horizontal y vertical.
- Porque esto genera necesidades de adecuada iluminación a diferentes niveles dentro de la planta.
- Porque la posición de las ramas, hojas y brotes y su densidad, bloquean el paso de la luz.

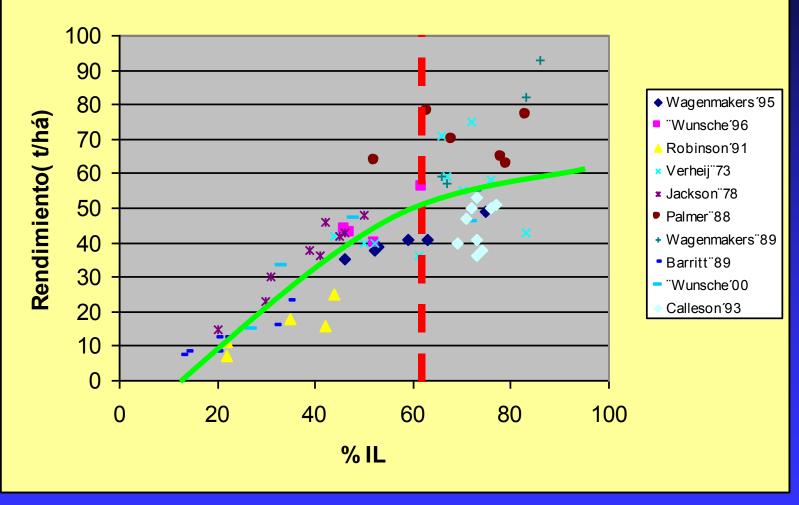
% de Intercepción Lumínica:

- Aproximadamente un 50% de la luz que se recibe es fotosinteticamente activa (RFA).
- La IL tiene relación directa con el rendimiento / há.
- La IL tiene relación directa con el color hasta un cierto valor y luego, la relación es inversa.
- Variedades con colores verdes o amarillos pueden tener % IL mas altos.

Intercepción total PPF(mol m2) en día asoleado, cielo claro

Portainjerto	Distancia	Densidad				
	m	pl/há	North	East	South	West
MM.106	5x3	667	11.4b	19,6	5,4	8,7
M.26	4x2	1250	8.5b	16	3,9	12
Mark	4x2	1250	25.2a	23,3	10,9	12,5
LSD(P=0.05)			P=00.1	NS	NS	NS
Tustin et al.,2001.						

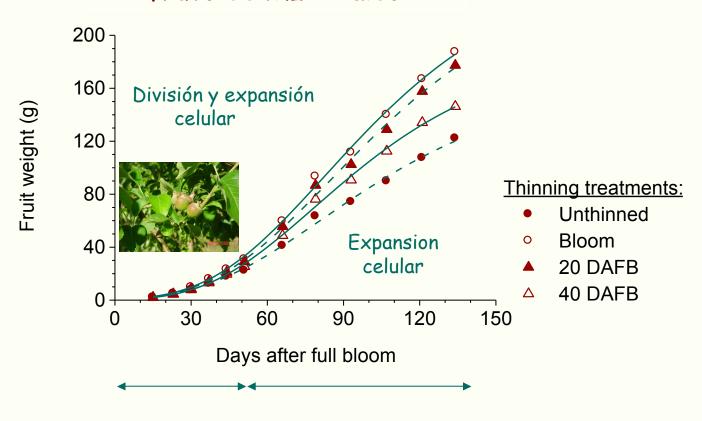
Resúmen				
N+S	I+S E+W			
	16,8		28,3	
	12,4		28,0	
	36,1		35,8	

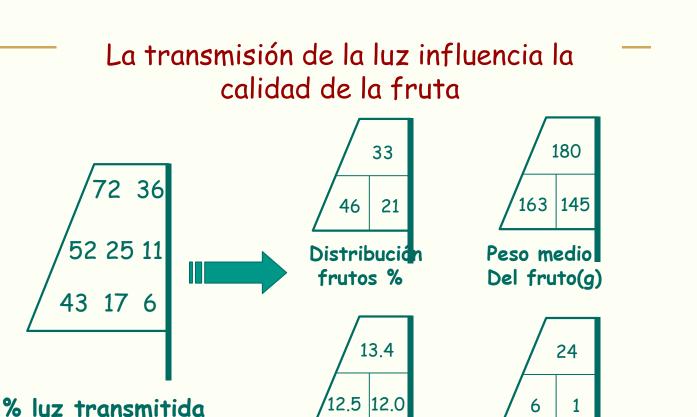

Adaptado por MFG

Intercepción total PPF(mol m2) en día nublado.

Portainjerto	Distancia	Densidad				
	m	pl/há	North	East	South	West
MM.106	5x3	667	2.7b	4,7	2.1b	3,5
M.26	4x2	1250	1.8b	5	1.7b	3,9
Mark	4x2	1250	5.5a	5,7	4.0a	4,7
LSD(P=0.05)			P=00.1	NS	P=0.05	NS
Tustin et al.,2001.						

Resúmen			
N+S	E+W		
4,8	8,2		
3,5	8,9		
9,5	10,4		
Adaptado por MFG			


Relación entre IL y Rendimiento en diferentes cvs. de MZ, J.Wünsche, varios autores

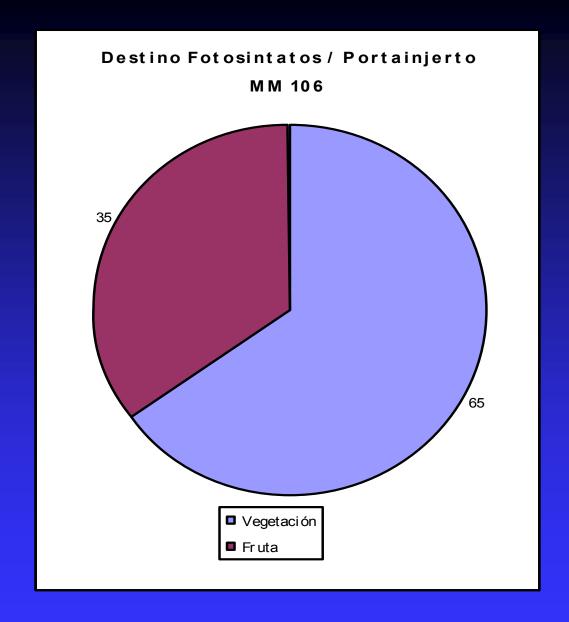


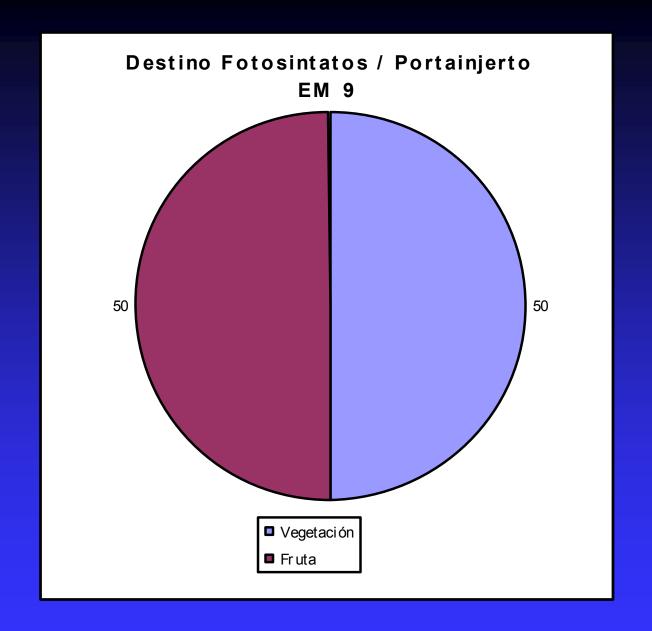
Energía recibida: Efectos

- Catania, Italia, 37,5° Lat. Norte, se recibe 60% mas energía que en Geisenheim, Alemania, 50° Lat. Norte entre Mayo y Octubre.
- Mz en 51,3° Lat. Norte, expuesto a 15% mas de radiación que Mz en 55,3° Lat.
 Norte, ha rendido 20% mas, con un mismo IAF.

Crecimiento estacional del fruto de Mz - Raleo

(Warrington et al., 1989)


Concentración S. solubles (%) % frutos con >10% color rojo


Cosecha de luz:

- En Mz con 2.000 a 2.400 pl/há, en diseño cuadrado, el límite de IL para calidad de fruta es de 70%.
- Muchos huertos considerados buenos, tienen niveles de IL de entre 50 y 55%, por el espacio necesario para el tránsito de maquinaria.

•EFICIENCIA: Portainjertos

Relación entre Intercepción Lumínica (IL) y Distribución de Luz (DL) % L% DL 60% IL y DL

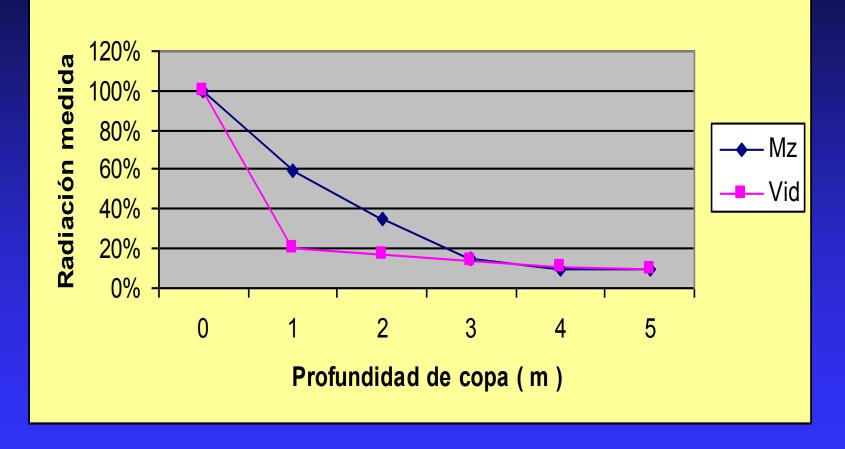
Cual es la mejor manera de tener menor cuaja, producción y calidad:?

- Pobre desarrollo de follaje entre PV y PF.
- Causas probables:
 - Demasiadas ramas.
 - Enfermedades fungosas.
 - Bajas temperaturas, heladas.
 - Demasiadas flores.
 - Tiempo seco, sequía


•DISTRIBUCIÓN DE LA LUZ:

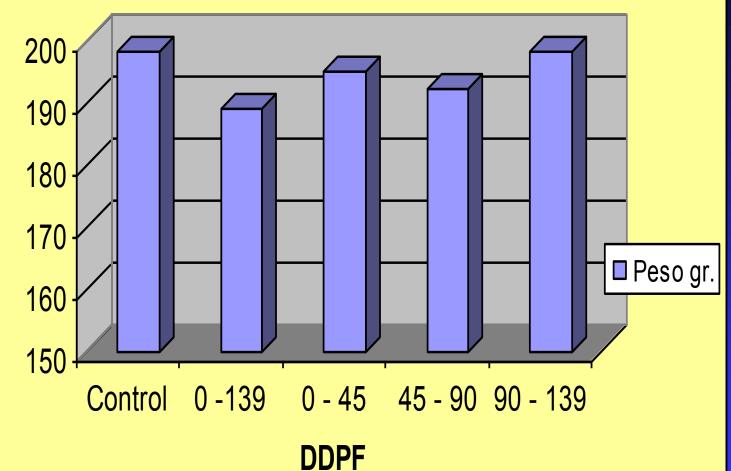
- En Mz, a 2 metros de profundidad se ha medido 30% de la radiación externa (Rom,1991)
- En vid, la segunda capa de hojas recibe 15% de la luz, y 15 cm mas adentro, solo el 5%
 (Smart,1985).
- En naranjos y paltos de copa densa, a 30 cm puede entrar el 7% de la luz (Green y Gerber,1967).

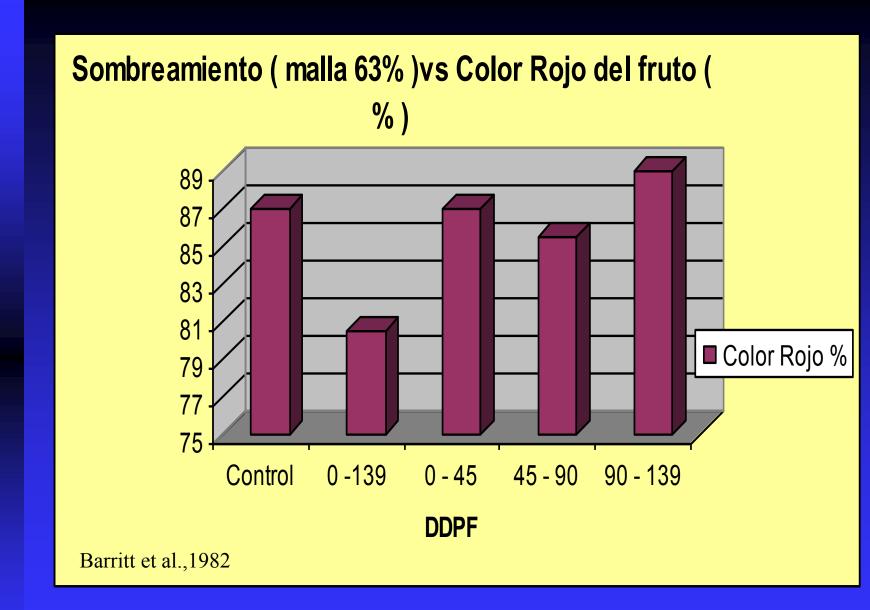
- Depende de muchos factores:
 - ◆ Densidad del follaje.
 - ♦ IAF.
 - Orientación y forma de las hojas.
 - ◆ Viento.
 - ◆ Posición respecto del sol.
 - ◆ Transmisión de la luz directa y difusa.



La radiación lumínica que la planta recibe en el exterior de la copa, penetra en ella según la ley de Beer-Lambert, según IAF y Coeficiente de Extinción.

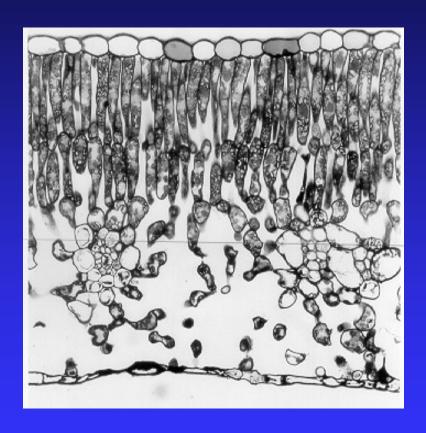
- Aproximadamente el 85-90% de la luz que llega a una hoja es absorbida por esta.
- Cerca de un 5% logra atravesar la hoja y continuar hacia las capas mas profundas.
- Cerca de un 5-10% es reflejada por la hoja.
- La tasa de pérdida de la luz es una función exponencial del número de hojas y del grosor de el follaje.


Extinción de la radiación en copas de Mz y Vid, Smart,1985;Rom,1991


Implicancias de la trasmisión de luz:

- Después de dos metros de follaje atravesado, la luz puede estar a niveles del 30% del total.
- Esta cifra es insuficiente para sostener la actividad básica de la planta.
- Frecuentemente, mas del 30% de una planta recibe menos del 30% de la luz intensa que requiere.
- El interior y parte baja de la planta de torna improductivo y consumidor, compite con la producción de fruta en la misma planta. AUTOCOMPETENCIA

Barritt et al.,1982


Cuando un árbol fue sombreado:

- Tiene una especie de memoria que lo hace recordar la situación en la que estuvo, básicamente deficitaria de carbohidratos, que implica que, aunque se solucione la falta de luz, igualmente tendrá:
 - Menos flores, menos cuaja, frutos mas pequeños.

Efectos de la sombra:

- Dardos sombreados hasta recibir 33% de la radiación total, redujeron su capacidad de cuaja entre 20 y 40% (Rom, 1989).
- Períodos de sombreamiento de hasta 3 días cercano a la PF, disminuyen significativamente la cuaja. Una alta nubosidad en ese período crítico debe entonces ser considerada como potencial ayuda para raleo.

La densidad de la hoja:

Influencia de la región de la copa en el peso específico de la hoja de diferentes partes de una planta de Granny Smith, varios sitemas

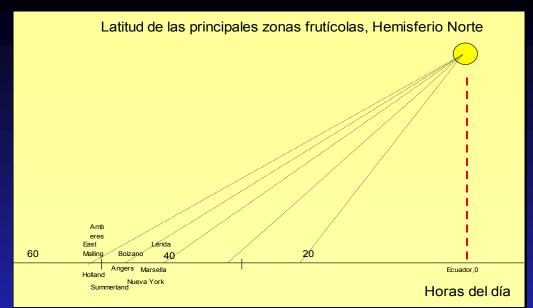
Tipo de	Región de	Región de la copa (peso específico:mg/cm2)					
сора	Arriba	Afuera-	abajo	Adentro-abajo			
Eje Central							
Jóven		12.1	10.9	7.9			
Establecido		11.2	10.0	7.4			
Ápice		12.7	10.2	6.8			
Eje		12.8	11.9	7.7			
Multilíder		11.5	11.1	7.3			
Orientación:							
N-S		10.3	8.0	6.0			
E-W		11.8	7.4	6.6			

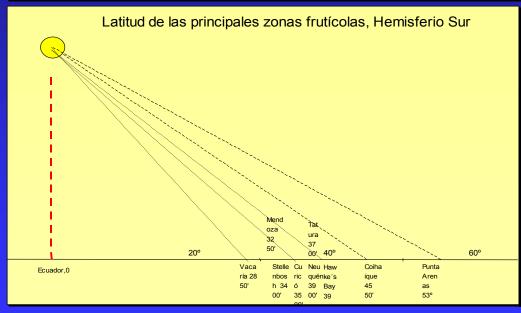
Warrington et al.,1990

Hojas sombreadas:

- Son mas grandes,mas delgadas, con menos capas de células de empalizada,mayor concentración de clorofila.
- Producen menos fotosintatos /cm2, se saturan con menos luz. Ej: hojas de vid cv. Sultana iluminada se satura con 7.000 pié-bujía y consume 26 mg de CO₂/dm2/s. Una sombría se satura con 4.000 pié-bujía y consume 16 mg de CO₂/dm2/s.

Kriedemann y Smart,1971


El sombreamiento:


- Plantas de gran tamaño y de copa redonda, normalmente poseen hasta el 50% del volúmen de su copa (el interior), recibiendo menos del 30% de la radiación (Heinicke,1963;Looney, 1968.
- Esta proporción sombría disminuye con:
 - Plantas mas pequeñas.
 - ◆ Con plantas de forma trapezoidal o triangular.

COSECHA DE LUZ:Controversia

Máxima intercepción de luz vs Acceso para peatones y maquinaria.

•EL EFECTO DE LA LATITUD:

Latitudes principales zonas frutícolas pomáceas

H. Norte	Latitud °N	H. Sur	Latitud º S
Groningen (Ho)	51 30'	Vacaría (Bra)	28 50'
East Malling (Uk)	51 20'	Perth (Au)	32 00'
Amberes (Be)	51 15'	Mendoza (Ar)	32 50'
Summerland (Ca)	49 50'	Stellenbosh (SA)	34 00'
Angers (Fr)	47 25'	Montevideo (Ur)	35 00'
Yákima (USA)	46 30'	Curicó (Ch)	35 00'
Bolzano (It)	46 30'	Tatura (Au)	37 00'
Marsella (Fr)	43 15'	Temuco (Ch)	38 40'
Nueva York (USA)	42 50'	Rio Negro (Ar)	39 00'
Lérida (Es)	41 40'	Valdivia (Ch)	39 40'
		Hawke's Bay (NZ)	39 50'
		Puerto Montt (Ch)	41 30'
		Coihaique (Ch)	45 50'
		Punta Arenas (Ch)	53 00'

Efecto de la orientación de la hilera en la IL

Fecha 1 de Enero

Alto 3 m

DEH 3,5 m

Distancia libro 1,5 m

IAF 2

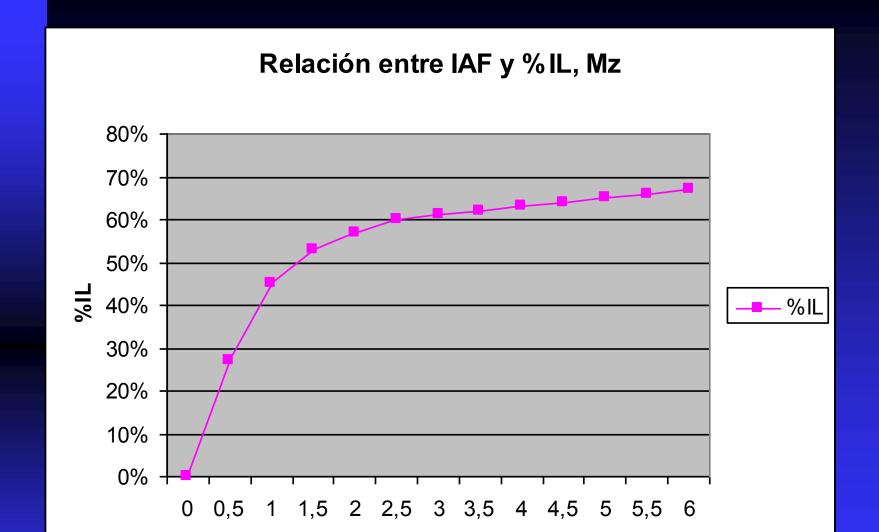
Ubicación 37º Latitud Sur

Obloadion	or Latitud Gai		
Hileras	Grados desviación al Oeste	% IL	% N-S
N-S	0	49,7	100%
	15	49,5	100%
	30	49,0	99%
	45	47,7	96%
	60	45,2	91%
	75	42,0	85%
E-W	90	41,9	84%

Fuente: Contacto personal John Palmer, 2003

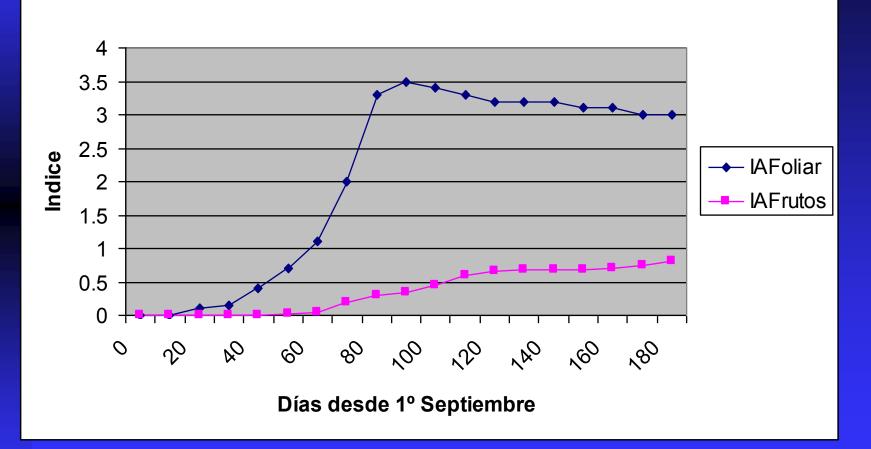
Latitud:1

- Gran interacción entre latitud y orientación de las hileras, desde el punto de vista de IL.
- Incrementos de rendimiento del 58% en D'Anjou y 34% en Williams en hileras orientadas N S, comparadas con hileras E O (Lombard & Westwood, 1977, 42°N).
- Incrementos de cosecha del 17% para manzanos N
 − S , comparados con hileras E − W (Christensen, 1979 , 55.3°N).


Latitud:2

- Hasta 50% mas de cosecha en la cara asoleada de hileras E O de durazneros (
 DeJong & Doyle, 1985, 36.7°N).
- El efecto de la orientación de las hileras en la IL es mayor a latitudes menores y con plantas altas.

•EL INDICE DE ÁREA FOLIAR: LAF


•Indice de Área Foliar: IAF

- Es el número resultante de la división de la superficie del total de las hojas de una planta o total de plantas de una hectárea, por la superficie que ocupa la planta o la há.
- Ej: 28.000 m2 de hoja/há
 10.000 m2 de superficie
- IAF: 2,8

IAF

Variación estacional del IAFoliar y del IAFrutos Mz

Crecimiento anual de brotes , Fuji, injertado sobre MM106,M26 y M9.

Portainjerto	Distancia	Densidad	Crecimiento anual brotes (m/planta)			
	m	pl/há	Año 1	Año 2	Año 3	Año 4
MM.106	5x3	667	6.9a	55.6a	114.4a	199.5a
M.26	4x2	1250	5.4ab	33.3b	68.8b	104.1b
Mark	4x2	1250	4.2b	12.9c	26.2c	34.6b
LSD(P=0.05)			2	15.5	16.7	74

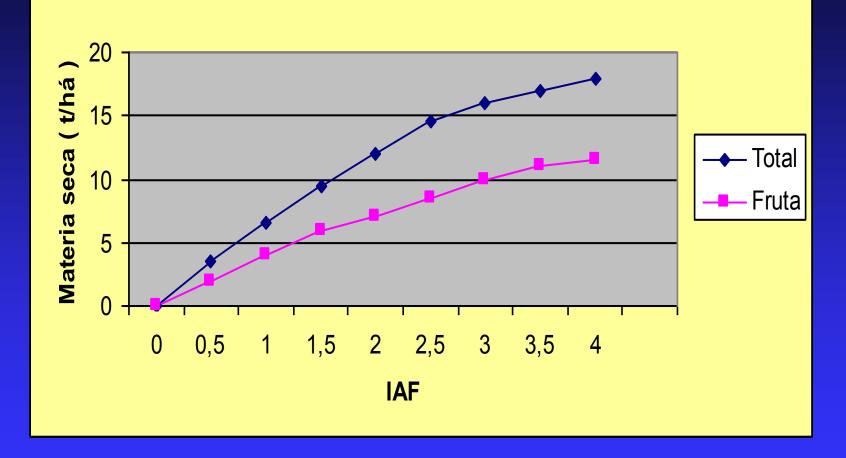
Tustin et al.,2001.

Intercepción de luz, plantas Fuji sobre diferentes portainjertos y densidades.

Portainjerto	Distancia	Densidad	Intercepción de luz (% RFA)			
	m	pl/há		Año 3	Año 4	Año 5
MM.106	5x3	667		37ab	54b	59b
M.26	4x2	1250		44a	60a	64a
Mark	4x2	1250		29b	42c	42c
LSD(P=0.05)				9,2	4,2	4,3

Tustin et al.,2001.

IAF para Fuji sobre diferentes portainjertos, 7ºhoja, toda la planta


Portainjerto	Distancia	Densidad		IAF según zona			
	m	pl/há	Base	Media	Alta	Total	
MM.106	5x3	667	2.1a	0.9a	0.5a	3.4a	
M.26	4x2	1250	2.0a	1.1a	0.6a	3.7a	
Mark	4x2	1250	1.4b	0.4b	0.2b	1.9b	
Tustin et al	2001	P=0.05					

IAF para Fuji sobre diferentes portainjertos, 7ºhoja, según tipo de brote

Portainjerto	Distancia	Densidad	IAF según brote				
	m	pl/há		Hoja dardo	Hoja bolsa	Hoja Brote	
MM.106	5x3	667		1.3a	0.7	1.4a	
M.26	4x2	1250		1.3a	0.7	1.7a	
Mark	4x2	1250		0.7b	0.6	0.6b	

Tustin et al.,2001. P=0.05

Producción de materia seca, Mz Golden/M9 y Crispin/M27 según ITL e IAF (Palmer 1989).

Estimación de los cm2 de hoja para un determinado peso de fruto M.Faust 1989, pag 33

Para		100 gr	peso fresco	200 cm2 de hoja
	+	25 gr	peso fresco	75 cm2 de hoja extra

100		200
125		275
150		350
175		425
200		500
225		575
250		650

50000 kilos equivale a 250000 frutos/há

con 888 pl/ha 125000000 cm2/há 12500 m2/há

1,25 IAF

BAJO ??

•EL ÍNDICE DE DENSIDAD FOLIAR: IDF

•Indice de Densidad Foliar: IDF

- Es el número resultante de la división de la superficie del total de las hojas de una planta o total de plantas de una hectárea, por el volúmen que ocupa la planta o la há.
- Ej: 28.000 m2 de hoja/há
 12.000 m3 de volúmen
- IAF : 2,3

IDF para Fuji sobre diferentes portainjertos, 7ºhoja, según tipo de brote

Portainjerto	Distancia	Densidad	IDF según brote				
	m	pl/há	Hoja dardo	Hoja bolsa	Hoja brote	Total	
MM.106	5x3	667	0.91	0.48b	1.00		2.39b
M.26	4x2	1250	0.97	0.55b	1.26		2.78b
Mark	4x2	1250	1.33	1.14a	1.22		3.69a
Tustin et al.,	2001.	P=0.05					

Rendimiento anual para Fuji/ diferentes portainjertos en Pirámide Delgada

Portainjerto	Distancia	Producción anual, t/há				
	m	Año 3	Año 4	Año 5	Año 6	Año 7
MM.106	5x3	32	61	98	83	95
M.26	4x2	40	81	78	112	102
Mark	4x2	47	41	43	60	63

Tustin et al.,2001.

La densidad de la copa:

- Tiene relación directa con el grado de sombreamiento de la parte interior y baja de la planta.
- Puede ser cuantificada:
 - ◆ Mz: AF/VC, no mayor a 2,8.
 - ◆ Vid: AF/AC,no mayor a 1,5.
 - ◆ Vid: capas de hojas, entre 1y 3.

COMO SE MIDE LA INTERCEPCIÓN DE LA LUZ?

Mauricio Frias G. / Ingeniero Agrónomo / Consultor Privado / mauriciofrias@123.cl

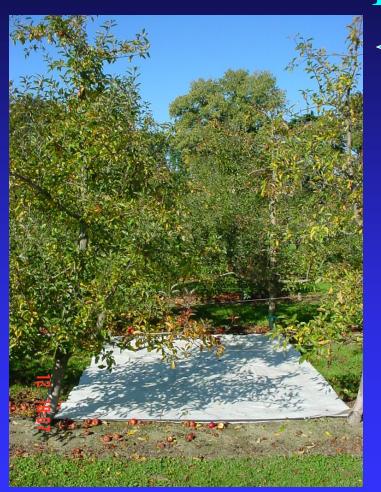
Mauricio Frias G. / Ingeniero Agrónomo / Consultor Privado / mauriciofrias@123.cl

Métodos:

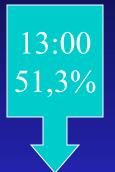
- Técnicas de medición: Fotografía ojo de pescado, Medidores múltiples de luz, Ceptómetro, Malla de puntos.
- Observar el sombreamiento en el suelo, bajo la planta, a diferentes horas del día y durante la temporada.
- Mirar la planta cerca de cosecha: hojas amarillas (tempranas?), falta de color, fruta pequeña, hojas grandes y delgadas,

•MALLA DE PUNTOS:

Mauricio Frias G. / Ingeniero Agrónomo / Consultor Privado / mauriciofrias@123.cl



Mauricio Frias G. / Ingeniero Agrónomo / Consultor Privado / mauriciofrias@123.cl



Mauricio Frias G. / Ingeniero Agrónomo / Consultor Privado / mauriciofrias@123.cl

Uso de malla de puntos : %IL

Ligth Interception messure in the field

Data May 14 /2003

Variety Royal Gala / MM 106

Distance BR 5 m

BT 2,5 m

Tree density 800 pl/há

Tree higth 4,5 m

Tree wide maximum 3,2 m

Tree wide minimum 1,5 m

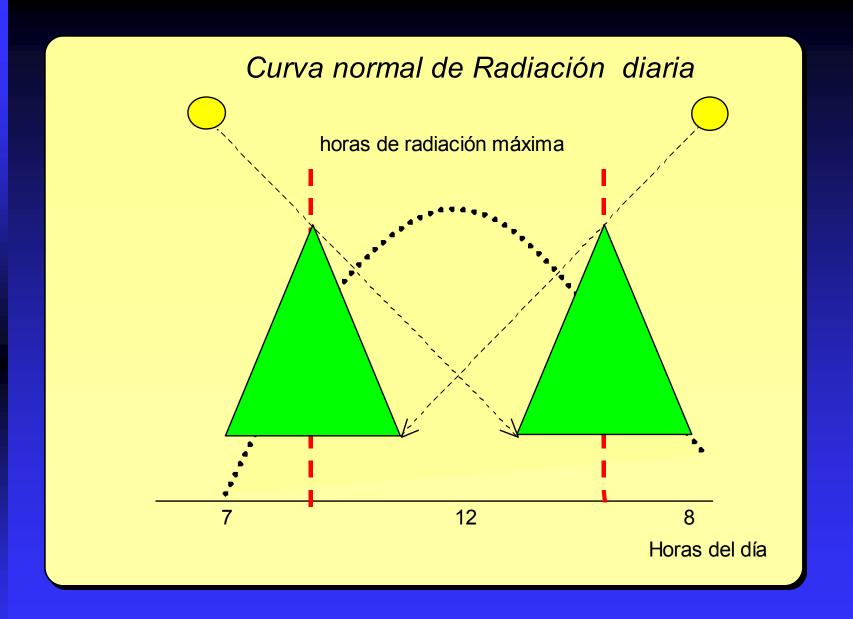
Tree wide average 2,35 m

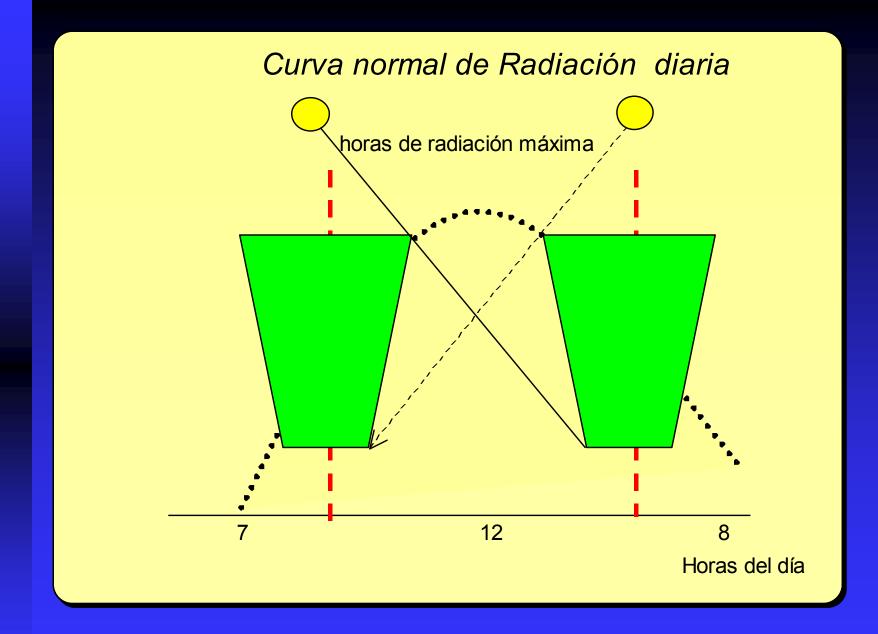
TRV 21150 cubic m per row

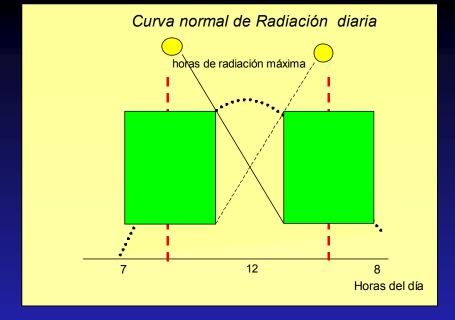
Tree volume 16,0 cubic m/tree

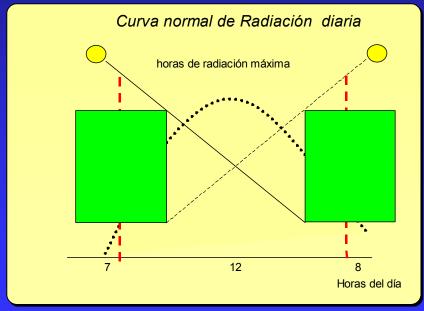
12838 cubic m/há only plants

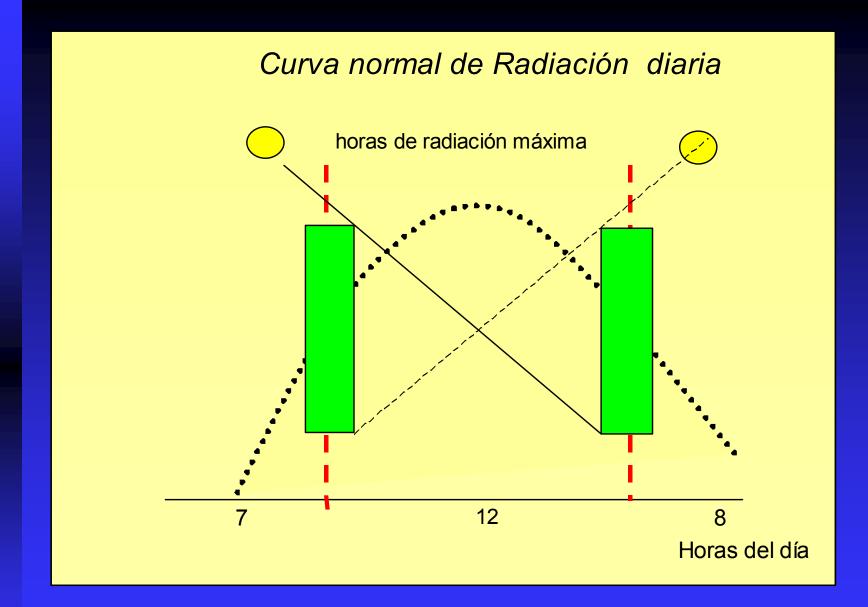
Sq m/tree 12,5 sq m

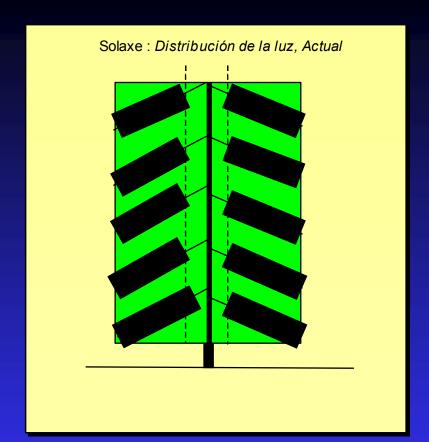

Row orientation 33° North- East

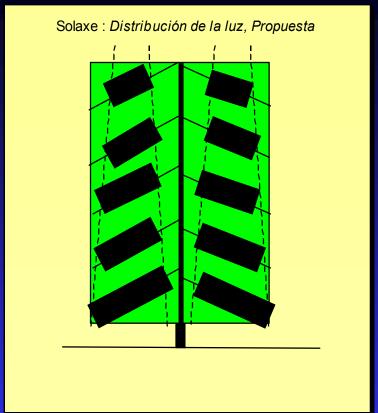

LI %	Total Points	Shade points	Ligth points	%LI
11:20 AM	170	125	45	73,5%
12:10	170	106	64	62,4%
14:45	170	128	42	75,3%
15:40	170	115	55	67,6%
LI% Average				69,7%

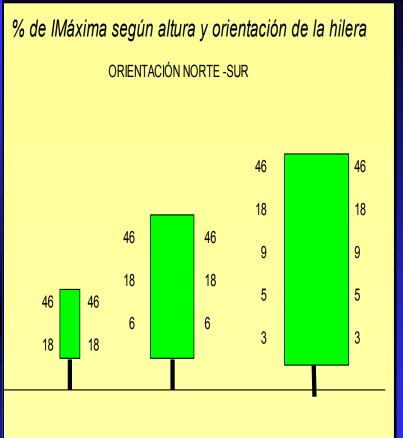

•COMO ENFRENTAR PROBLEMAS DE ILUMINACIÓN EN LOS HUERTOS?

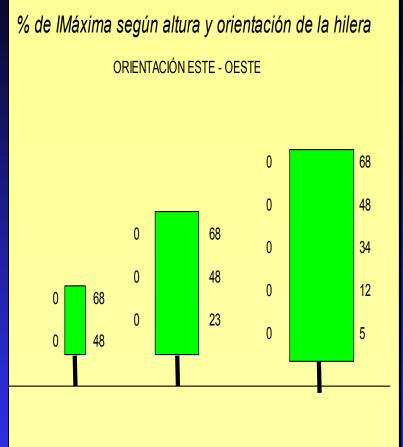


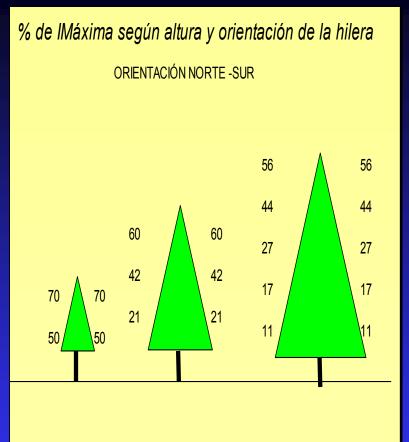

•EL DISEÑO:

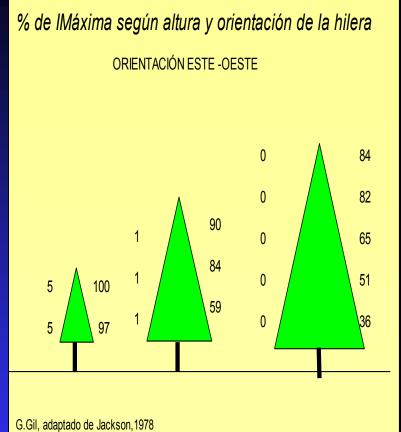




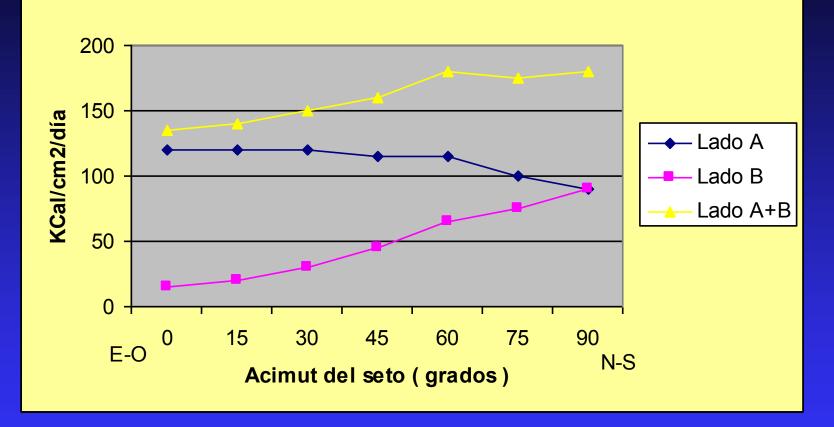








•LA ORIENTACIÓN:



Intercepción real de la luz (Fr) y volúmen de la copa bién iluminada (Vci>30%), en setos, según distancia, orientación y época del año (Palmer, 1989)

Latitud	Orientación Luz D = 2 m		2 m	D = 3 m		
			lº Verano	lº Otoño	lº Verano	lº Otoño
30°	N-S	Fr	0,69	0,72	2 0,52	0,55
		Vci	84	7	7 97	91
30°	E - O	Fr	0,62	0,7	5 0,44	0,53
		Vci	64	. 7!	5 66	77
51,3°	N - S	Fr	0,73	0,79	9 0,56	0,62
		Vci	78	6	1 94	78
51,3°	E - O	Fr	0,69	0,83	0,49	0,7
		Vci	70	6	1 74	89

Considera: IDF: 2,6;Ancho base planta: 1,5 m; alto planta: 2 m.

Efecto de la orientación de las hileras en la l Máxima, para el Mz, Caín,1972.

Efecto de la orientación de la hilera en la IL

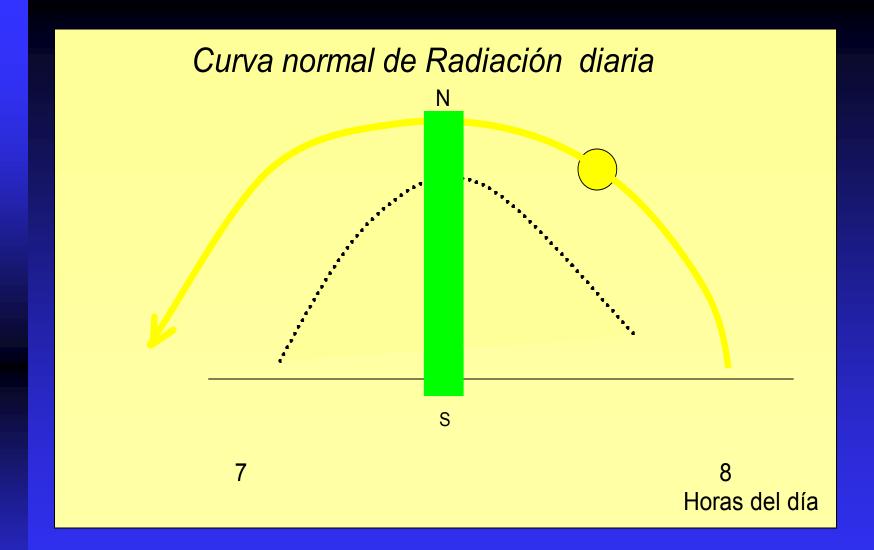
Fecha 1 de Enero

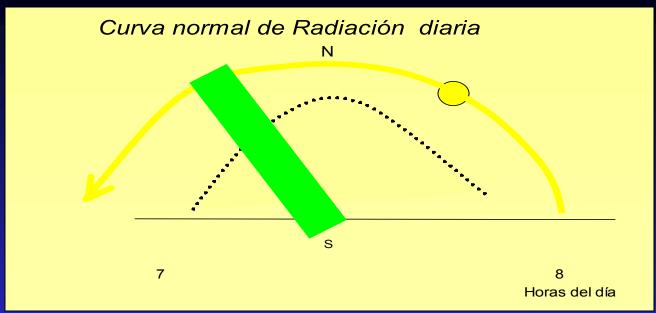
Alto 3 m

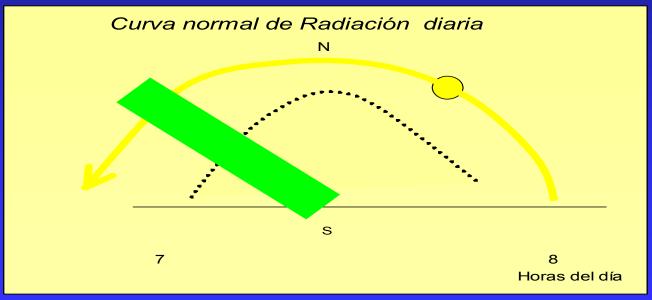
DEH 3,5 m

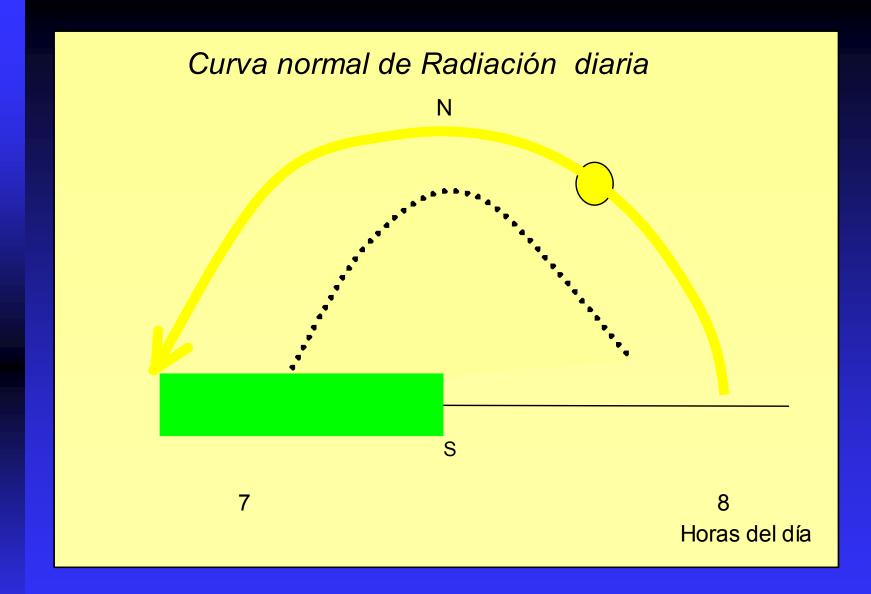
Distancia libro 1,5 m

IAF 2


Ubicación 37º Latitud Sur


Obloadion	or Latitud Odi		
Hileras	Grados desviación al Oeste	% IL	% N-S
N-S	0	49,7	100%
	15	49,5	100%
	30	49,0	99%
	45	47,7	96%
	60	45,2	91%
	75	42,0	85%
E-W	90	41,9	84%


Fuente: Contacto personal John Palmer, 2003


Cosecha de luz:

- La desviación de una orientación Norte Sur hasta en 40°, no causa una gran disminución en la intercepción de la radiación, pero existe una importante diferencioa entre las dos caras desde los 15°.
- En hileras Este Oeste, desviaciones de hasta 30°, no significan grandes cambios en la ya desigual distribución de la luz.

Cuanto aumentar la IL

- 1.- Hasta cifras cercanas al 60 70%,
- 2.- Bajo esta cifra, mala ocupación del espacio y volúmen disponible.
- 3.- Sobre esa cifra, pobre distribución de la luz.
- 4.- Hasta que la Distribución se hace limitante.

Como incrementar la IL?

- 1.- Aumentando la densidad de plantación.
- 2.- Aumentando la densidad de follaje para tener mas IAF
- 3.- Reduciendo la distancia entre las hileras.
- 4.- Aumentando la altura de los árboles.
- 5.- Plantando hileras orientadas Norte Sur.

La porosidad de la sombra en el suelo, buen indicador de la IL:

Mauricio Frias G. / Ingeniero Agrónomo / Consultor Privado / mauriciofrias@123.cl

Diseño de los huertos:

- Las consideraciones claves para definir forma, densidad, altura, orientación...
 - ◆ Ancho mínimo para el paso de la maquinaria(no sólo la disponible).
 - ◆ Altura de la planta, de acuerdo al sistema de aplicación para control de plagas y enfermedades y de cosecha.
 - ◆ Diámetro de la copa (% IL, DL).

La relación Ancho – Alto:

- La altura máxima para una planta està definida por el sistema de conducción, la maquinaria disponible y la forma de cosecha.
- La porosidad de la copa permite plantas de mucha altura.
- La altura será menor con copas densas.
- La altura será menor con plantas ubicadas en hileras orientadas Este-Oeste.
- La altura será menor con hileras mas cercanas.
- La altura será menor con plantas mas anchas.

La relación Ancho – Alto:

- Se acepta, varios autores, que la altura de una planta puede variar entre el 65 y el 100% de la distancia EH.
- Para setos o plantas orientadas Norte-Sur, la altura puede ser mayor que en hileras Este-Oeste.
- Mientras mas inclinados los costados del seto, mayor altura o menor distancia EH.
- A mayor latitud, mayor distancia EH o menor altura de las plantas.

Reglas a considerar para Alta Densidad (AD):

- AD significa mas de 500 plantas / há.
- Solo portainjertos EM 26 o menores (o MM 106 para suelos delgados o replantes), son apropiados para emprender una AD.
- AD de plantas otorga una producción temprana.
- Arboles con ramillas anticipadas producen tempranas y altas cosechas.
- Las podas retrasan la entrada en cosecha.
- El soporte para las plantas es una cosa obligatoria, no optativa.

Mauricio Frias G. / Ingeniero Agrónomo / Consultor Privado / mauriciofrias@123.cl

Mauricio Frias G. / Ingeniero Agrónomo / Consultor Privado / mauriciofrias@123.cl

RESÚMEN DE IDEAS:

- Mantener árboles porosos, siempre.
- Orientar hileras rango Norte Sur (cosecha).
- Cuidar de no errar en la densidad de plantación.
- Llegar hasta el máximo de IL posible (60 70%)
- No superar IAF recomendados (IDF).
- Regular la altura.
- Cuidar e incrementar las hojas iniciales (dardos).
- Cuidar las hojas finales (reservas).

Desde la productividad:

- Interesa la cantidad de energía que llega a las plantas para el total de días de período vegetativo.
- La fotosíntesis será máxima cuando toda la superficie foliar esté expuesta a la radiación óptima por el mayor tiempo posible.
- La productividad será máxima cuando la IL y la distribución de la luz en el follaje sea máxima.
- La IL es máxima a niveles de 75-80%, tanto para frutales de hoja caduca como persistente.
- Para frutales caducos entonces, la máxima superficie foliar deberá estar expuesto lo mas temprano posible y mantenerse activo por el mayor tiempo posible.

Además:

- No existe un solo huerto óptimo.
- Es posible igualar resultados y eficiencias con diferentes diseños y formas.

G,Gil, 1997.

Agradecimientos especiales:

- Fondo de Innovación Agraria, FIA
- Dr. Gonzalo Gil, mi profesor.
- Dr. Jens Wünche, mi amigo.

Mauricio Frias G. / Ingeniero Agrónomo / Consultor Privado / mauriciofrias@123.cl

MUCHAS GRACIAS